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Abstract: Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early
effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could
lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops
were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was
extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular
bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor
patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based
drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus,
improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot
homogenization–probe sonication method. The lead GTX-NLC formulation was characterized and
assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus
aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired
physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over
three months at the three storage conditions (refrigerated, room temperature, and accelerated). The
transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold
higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity.
Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment
outcomes in BC.

Keywords: bacterial conjunctivitis; gatifloxacin; nanostructured lipid carrier; stability; transcorneal;
antimicrobial

1. Introduction

Bacterial eye infections can manifest themselves as blepharitis, conjunctivitis, dacry-
ocystitis, endophthalmitis, keratitis, and orbital cellulitis [1]. Conjunctivitis, inflammation
of the conjunctival mucosa, is the most common ocular infection in the United States, with
annual incidence rates of approximately 4 million cases and an approximate treatment cost
of USD 589 million [2,3]. It is a common complication occurring within an intensive care
unit setting, with bacteria contributing to about 50–70% of infectious conjunctivitis [2,4].
If bacterial conjunctivitis (BC) is left untreated, it can affect the adjacent structures and
can potentially increase the risk of other extra- or intraocular infections, leading to visual
impairment and possibly blindness [4].
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Fluoroquinolones are considered one of the most effective drug classes for the treat-
ment of ocular bacterial infections, mainly due to their broad spectrum activity and high
potency [5]. Moxifloxacin (MOX) and gatifloxacin (GTX) solutions were introduced in
2003 as two new fourth generation fluoroquinolones for the treatment of BC [6]. Re-
cently, their ocular application was extended to cover a wider range of ocular infections,
including keratitis and keratoconjunctivitis [7]. These two antibiotics provide better cov-
erage against the leading pathogens in ocular infections, including methicillin-resistant
Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) [8,9]. The Mini-
mum Inhibitory Concentration required to inhibit the growth of 90% of organisms (MIC90)
against Gram-positive bacteria is significantly lower for fourth generation fluoroquinolones
(e.g., GTX and MOX). Furthermore, in the case of Gram-negative bacteria, especially
Pseudomonas aeruginosa, GTX (MIC90 0.38 µg/mL) was found to be more effective compared
to MOX (MIC90 0.75 µg/mL). BC caused by Pseudomonas aeruginosa is of particular concern,
as it may become more severe and can be a risk factor for keratitis, especially in contact
lens wearers [10]. Thus, for this study, GTX was selected for investigation.

GTX is a BCS Class I drug with a high oral bioavailability of 96%. Topical formulations
of GTX (as the sesquihydrate) eyedrops (0.5% w/v) are commercially available as a solution
indicated for BC. Frequent administration of aqueous solutions is necessary due to a low
residence time on the conjunctival surface [11]. Furthermore, nasolacrimal drainage and
rapid tear fluid turnover further contribute to precorneal elimination of the administered
dose [12]. As a consequence, only 1–5% of the drug administered topically penetrates
through to the intraocular tissues [12,13].

Recently, lipid-based drug delivery systems have showcased great potential as con-
trolled drug delivery systems, mainly in terms of enhanced bioavailability, dose reduction,
and penetration through various physiological barriers [14–16]. These drug delivery sys-
tems slowly release the drug by functioning as a reservoir, while also preventing tear
washout and maintaining a prolonged drug release [17,18]. Solid lipid nanoparticles (SLNs)
possess a solid lipid core accommodating the drug which, when applied topically as a
colloidal dispersion, improves the retention time in the cul-de-sac, leading to enhanced
ocular bioavailability [19,20]. Furthermore, due to their small size, SLNs do not cause
blurred vision or discomfort when administered topically [19]. However, SLNs are shown
to expel the drug due to the solidification and gradual crystallization of the solid lipid
molecules [21]. Nanostructured lipid carriers (NLCs) contain a binary combination of
solid and liquid lipid(s), that helps overcome instabilities associated with SLNs [21]. A
colloidal dispersion of NLCs, like the SLNs, improves the ocular bioavailability of the drug
by enhancing corneal permeation. Furthermore, the components used are biocompatible
and nonirritant, and can be administered safely to ocular tissues, thereby improving patient
compliance [15]. Since GTX (as a sesquihydrate) is commercially available at 0.5% w/v, this
concentration was used as the drug load in the formulations. Moreover, lipid nanoparticles
such as SLNs and NLCs are made up of lipids/excipients, which are biocompatible and
biodegradable, rendering them in vivo compatible [22].

Hence, in the current study, we aimed to develop stable dispersions of GTX-SLNs and
GTX-NLCs which exhibit desired physicochemical characteristics, extended release, and
improved transmembrane delivery of GTX, via a hot homogenization method.

2. Materials and Methods
2.1. Materials

GTX (sesquihydrate) was obtained from ThermoFisher Scientific (Hanover Park, IL
USA). Glycerin and Tween® 80 were obtained from Spectrum Pharmaceuticals (Hender-
son, NV, USA). GeleolTM and Precirol® ATO 5 were gifted by Gatefossé. Amicon® ultra
centrifugal filter devices, centrifuge tubes (1.5 mL), glass scintillation vials, HPLC vials,
Slide-A-Lyzer™ MINI dialysis devices, vitamin E-d-alpha-tocopherol polyethylene glycol
1000 succinate (TPGS), and all other chemicals were obtained from Fisher Scientific Hamp-
ton, NH, USA). High-performance liquid chromatography (HPLC) grade solvents were
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used for analysis. Microbial strains of methicillin-resistant Staphylococcus aureus (ATCC
1708) and Pseudomonas aeruginosa (BAA-2018) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). Cation-adjusted Mueller Hinton Broth
2 was obtained from MilliporeSigma (St. Louis, MO, USA). Pel-Freez Biologicals (Rogers,
AR, USA) supplied whole eyes of albino rabbits (New Zealand) shipped overnight.

2.2. Analytical Method

GTX content in all samples was analyzed using a reversed-phase HPLC-UV system
consisting of an Alliance Waters e2695 separations module and a Waters 2489 UV/Vis
detector (Milford, MA, USA). The mobile phase was made up of 18 mM phosphate buffer
containing 0.1% v/v triethylamine (pH 2.8, adjusted with dilute phosphoric acid) and
methanol in a 60:40 v/v ratio. The mobile phase was pumped isocratically at 1.2 mL/min
through a Waters Symmetry® (150 × 4.6 mm, 5 µm) C18 column set at 25 ◦C, with a
detection wavelength (λmax) set at 294 nm. The samples were analyzed using a Waters
chromatography data system coupled with Empower software [23]. The analytical method
was linear over a GTX concentration range of 1–100 µg/mL. The validation of the adopted
analytical method is included in the Supplementary Materials (Table S1).

2.3. Lipid Screening Studies

Various liquid and solid lipids were evaluated for GTX solubility. Nine different
liquid lipids (castor oil, sesame oil, mineral oil, oleic acid, isopropyl myristate, Labrafac®

Lipophile WL 1349, olive oil, and Miglyol® 829) and nine solid lipids (Softisan 154, Precirol®

ATO 5, Compritol® 888 AO, Geleol™, Dynasan™ 114, Dynasan™116, Gelucire™ 44/14,
Gelucire™ 43/01, and Gelucire™ 50/13) were evaluated in the solubility screening studies.
An accurately weighed amount (10 mg) of GTX was added to each liquid or solid lipid
(200 mg) in separate glass vials (3 mL). This mixture was stirred at 2000 rpm under ambient
temperature (80 ± 2 ◦C) for 10 min [23]. After 10 min, stirring was discontinued and the
mixtures were removed from the heat. Upon cooling to room temperature (RT), the vials
were visually examined for deposits of GTX (yellowish precipitation). The lipids which
visually showed no signs of precipitation/deposits were selected for further saturation
solubility studies.

2.4. Saturation Solubility in Liquid Lipids

Excess GTX (200 mg) was added to the lead liquid lipid (1 mL) in glass vials placed in
a reciprocating water bath (PrecisionTM, Waltham, MA, USA) to determine the solubility
of the drug in the lipid. The system was maintained at 25 ± 0.5 ◦C and oscillated at
100 rpm for 48 h. The GTX–lipid combination was then centrifuged for 20 min (Fisher
brand™ AccuSpin 17R) at 13,000 rpm. The supernatant was collected then filtered through
a 0.22 µm nylon membrane filter, and then quantified for GTX content following proper
dilution using HPLC.

2.5. Saturation Solubility in Solid Lipids

Excess drug (200 mg) was added to the lead solid lipid (1 g) in glass vials, which
were placed inside a reciprocating water bath operating at 100 rpm for 48 h (80 ± 0.5 ◦C).
Samples (10 µL) were removed from the upper layer of the GTX–lipid mixture. The
samples were dissolved in methanol (990 µL) and centrifuged for 20 min at 13,000 rpm.
The supernatant was collected, then filtered through a 0.22 µm nylon membrane filter, and
quantified for GTX content following proper dilution using the HPLC method.

2.6. Preparation of GTX-NLC and GTX-SLN Formulations

GTX-SLNs and GTX-NLCs were formulated using the hot homogenization–probe
sonication method. The lipid phase in SLNs comprised of GTX in a solid lipid, while the
NLCs incorporated GTX in a blend of solid and liquid lipids. The aqueous phase contained
Tween® 80 (surfactant), glycerin (tonicity adjustment), and TPGS (permeation enhancer) in
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Milli-Q water based on previous studies [1]. Both the phases were allowed to reach ambient
temperature in a hot water bath (80 ± 2 ◦C). In a dropwise fashion, the aqueous phase was
added to the molten lipid phase under constant stirring (2000 rpm), forming an emulsion.
This emulsion was subjected to homogenization at 14,000 rpm at 70 ± 2 ◦C for 5 min using
a T25 digital Ultra-Turrax homogenizer (IKA Works, Inc., Wilmington, NC, USA). Upon
cooling to RT, the emulsion was then subjected to probe sonicated (Sonics Vibra-Cell™,
Newtown, CT, USA) at 40% amplitude for 10 min using a 3 mm stepped microtip (10 s pulse
on; 10 s pulse off), 500 watts power supply, and 115 volts. Placebo formulations (absence of
drug) were prepared and visually examined for excipient–excipient compatibility before
preparing drug-loaded SLNs and NLCs.

2.7. Measurement of Particle Size (PS), Polydispersity Index (PDI), and Zeta Potential (ZP)

SLN and the NLC formulations were analyzed for average PS (d.nm), PDI, and ZP
(mV) using Nano ZS Zen3600 Zetasizer (Malvern Panalytical Inc., Westborough, MA, USA)
in disposable, clear, micro cuvettes. The formulation (SLN or NLC) was diluted (100 times)
with water prior to initiating the measurements (n = 3) at 25 ◦C. After being evaluated for
PS and PDI, the ZP was evaluated by placing these diluted samples in Zetasizer (DTS1070)
cells for measurement (n = 3) at 25 ◦C.

2.8. Assay (GTX Content)

GTX content in the GTX-SLN and GTX-NLC formulations was determined by ex-
traction of the drug in methanol. Briefly, the nanodispersion was diluted 100-fold with
methanol in a volumetric flask. The mixtures were sonicated for 10 min and then cen-
trifuged at 13,000 rpm at 25 ◦C for 20 min. The supernatant was analyzed for GTX content
using the previously mentioned HPLC method.

2.9. Entrapment Efficiency (EE)

The EE (%) of GTX in the nanodispersions was calculated based on the amount
of unentrapped drug in the aqueous phase of the prepared formulations. A total of
300 µL of GTX nano formulation was transferred into Amicon® filter devices (pore size
100 kDa) and centrifuged at 13,000 rpm, following which the filtrate was collected and
diluted with methanol (10 times), and the amount of GTX content was quantified using the
HPLC method. The percentage of GTX entrapped in the lipid phase was calculated using
the formula:

%EE =

[
Amount of GTX quantified in assay − Amount of free GTX

The amount of GTX quantified in assay

]
× 100

2.10. Measurement of pH and Viscosity

The pH was measured (n = 3) using a Mettler Toledo pH meter equipped with an
Inlab® Micro Pro-ISM probe. Prior to the measurement of the samples, the pH meter was
calibrated using standardized buffers of known pH.

The viscosity of the lead GTX-NLC was measured using an Ares G2 strain-controlled
rotational rheometer (TA instruments, Waters LLC, Newcastle, DE, USA) at 25◦ C. The
rheometer was equipped with a stainless steel cone-plate geometry of 40 mm diameter and
a 2◦ cone angle, having a 0.047 mm truncation gap. The sample was loaded on the platform
until it was sandwiched entirely between the geometry and the platform. A flow ramp
over a shear rate range of 0.1–100 s−1 was used to measure the viscosity of the formulation.

2.11. Fourier Transform Infrared Spectroscopy (FTIR)

The infrared spectra of the samples were collected using an Agilent Cary 660 FTIR
Spectrometer (650–4000 cm−1). The bench consisted of a MIRacle Attenuated Total Re-
flection (Pike Technologies) fitted with a single-bounce, diamond-coated ZnSe internal
reflection element. Samples of pure GTX, pure lipid excipients, their corresponding physical
mixture, placebo formulation, and the lead GTX-NLC were analyzed.
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2.12. In Vitro Release-Diffusion Studies

A Slide-A-Lyzer™ dialysis device (10 K molecular weight cut-off) shaped in a cup-like
design was used to evaluate the release. The lead NLC formulation or control (200 µL)
was added to the dialysis device (donor compartment) that was placed at the mouth of
the scintillation vial (receiver compartment). The release solution (20 mL) consisted of
isotonic phosphate-buffered saline (IPBS, pH 7.4) containing 2.5% w/v hydroxypropyl
beta-cyclodextrin (HPβCD) maintained at 34 ± 0.5 ◦C. The study was carried out atop
a magnetic stirrer (IKA™ RT 10, IKA Works Inc.) under continuous magnetic stirring at
100 rpm. The commercial ophthalmic solution of GTX contains 0.5% (5 mg/mL) equivalent
of the active drug (GTX-C) and was used as a control. At scheduled time intervals, samples
were removed from the receptor compartment and replenished with an equal amount of
fresh media maintained at 34 ± 2 ◦C. The withdrawn samples were analyzed using the
HPLC method mentioned above. All studies were carried out in triplicate. The release
profile data were fitted to four mathematical release models using DDSolver for Microsoft
Excel (Office365, 2016), to understand the potential drug release mechanism.

2.13. Antimicrobial Efficacy

The antimicrobial activity of the lead GTX-NLC formulation was evaluated against
Pseudomonas aeruginosa (ATCC BAA-2018) and methicillin-resistant Staphylococcus aureus
(ATCC 1708). An adapted version of the Clinical and Laboratory Standards Institute (CLSI)
method was used to perform susceptibility testing. The lead GTX-NLC formulation and
its corresponding placebo were diluted 1:2 fold using cation-adjusted Mueller–Hinton
medium at pH 7.0. Diluted samples (10 µL) of the lead formulation were transferred to
96 well assay plates (n = 3). Inocula was prepared as per CLSI protocol by correcting the
OD630 of microbe suspensions in incubation broth. Alamar Blue™ (5% w/v) was added to
both organisms’ plates. GTX-C was included as a positive control in the microbial assays.
The optical density was determined at 35 ◦C before and after incubation for 24 h, using the
Bio-Tek plate reader. Minimum Inhibitory Concentrations (MICs), described as the lowest
GTX concentration that allows no visual microbial growth, were calculated for the samples.

2.14. Transcorneal Permeation Studies

Permeability of GTX from the lead GTX-NLC and control (GTX-C) formulations were
evaluated using excised rabbit corneas obtained from Pel-Freez Biologicals®. Immediately
upon their receipt, the corneas were excised and washed with isotonic phosphate-buffered
saline (IPBS). Each excised cornea was securely mounted on a vertical Franz diffusion cell
(spherical joint, PermeGear® Inc., Hellertown, PA, USA), with the epithelial side of the
cornea positioned towards the donor chamber containing the formulation (200 µL). The
receiver chamber was filled with 5 mL of receiver medium consisting of 2.5% HPβCD
dissolved in IPBS (pH 7.4) [24]. HPβCD was included to maintain sink conditions, as cy-
clodextrins are known to enhance the solubility of fluoroquinolones through the formation
of inclusion complexes [25,26]. The media was maintained at ocular surface temperature
(34 ± 0.5 ◦C) under continuous stirring [27,28]. Aliquots of 0.5 mL were collected from
the receiver chamber at predetermined time points and replenished with an equal amount
of the receiver medium maintained at the same temperature. The duration of the study
was 3 h. The samples were quantified for GTX content using the HPLC method previously
mentioned. The cumulative amount of GTX permeated (Qn), steady-state flux (Jss), and
permeability coefficient (Peff) across the excised rabbit corneas were calculated.

Qn was calculated based on the following formula:

Qn= VrCr(n) +
x=n

∑
x=1

Vs(x−1)Cr(x−1)

where Vr (mL) is the volume present in the receiver compartment; Cr(n) (µg/mL) is the
GTX concentration in the receiver compartment at the nth time point; n is the time point;
and VS (mL) is the volume of the aliquot withdrawn at the nth time point.
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Jss was calculated using the following formula:

Jss = (dQ/dt)/A

where (dQ/dt) is the rate of transcorneal permeation, calculated using the slope of Qn
plotted against time A is the effective area of transcorneal permeation (0.64 cm2).

(Peff)—transcorneal permeability coefficient was calculated using the formula:

Peff = Jss/C0

where C0 is the initial donor concentration for GTX.

2.15. Stability Studies

The lead GTX-NLC was investigated at three different storage conditions (4 ± 2.0 (RF),
25 ± 2.0 (RT), and 40 ± 2 ◦C (accelerated)). Samples kept at 25 and 40 ◦C were kept inside
an 18 L Heratherme™ compact incubator (Thermo Scientific, Waltham, MA, USA). These
samples were assessed at predetermined time points for any possible changes in PS, PDI,
ZP, pH, GTX content, and EE.

2.16. Scanning Transmission Electron Microscopy (STEM)

STEM analysis was performed using a JSM-7200FLV scanning electron microscope
(JOEL, Peabody, MA, USA) attached to a STEM detector with a 30 KV accelerating voltage.
The samples for imaging were prepped using a negative staining technique. Briefly, 20 µL
of the sample was loaded onto a grid plate. The grid was then washed with distilled water
and the excess was wiped off. This grid was then placed in the staining solution for about a
minute, the excess solution wiped off, and then air dried for a couple of minutes before
being viewed under the microscope.

2.17. Statistical Analysis

A one-way analysis of variance (ANOVA) was used for the statistical analysis of
data (IBM SPSS Statistics 28 software, Armonk, NY, USA). All the results are presented as
mean ± standard deviation. The differences were considered significant at a p-value less
than 0.05 (p < 0.05).

3. Results and Discussion
3.1. Screening of Lipids

The determination of the solubility of the drug in the lipid is critical in the selection
of the liquid and solid lipid combinations. Drug entrapment and loading efficiency are
directly impacted by the solubility of the GTX in the lipid(s) [29]. Therefore, an initial lipid
screening study was conducted to identify liquid lipids and solid lipids, which would be
capable of solubilizing GTX without forming aggregates upon cooling. This is a crucial
step in the formulation of a stable lipid nano formulation with the maximum/desired drug
loading [30]. From the lipid screening studies, two solid lipids (Geleol™ and Precirol®

ATO 5) and one liquid lipid (oleic acid) were identified as lead candidates (because they
did not show any precipitation after cooling) for the lipid nano formulation development
(Table 1).

3.2. Saturation Solubility Studies

Saturation solubility studies were performed to quantify the amount of GTX soluble
in the selected lead solid and liquid lipids. The studies revealed that 155.0 ± 0.3 mg,
80.0 ± 1.3 mg, and 53.0 ± 1.6 mg of GTX dissolves in oleic acid (l.0 mL), Precirol® ATO 5
(1.0 g), and Geleol™ (1.0 g), respectively (n = 3).
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Table 1. Lipid screening studies for gatifloxacin-loaded lipid nano formulations.

Liquid Oil Solubility Solid Lipids Solubility

Castor oil (−) Precirol® ATO 5 (+)

Sesame oil (−) Compritol® 888 (−)

Oleic acid (+) Dynasan™ 114 (−)

Mineral oil (−) Geleol™ (+)

Capryol® 90 (−) Gelucire™ 43/01 (−)

Labrafac® Lipophile WL 1349 (−) Dynasan™ 116 (−)

Isopropyl Myristate, NF (−) Gelucire™ 50/13 (−)

Olive oil (−) Gelucire™ 44/1 (−)

Miglyol® 829 (−) Softisan 154 (−)
(+): GTX dissolves in the lipid and does not precipitate after cooling to RT. (−): GTX does not dissolve in the lipid,
or dissolves in the lipid but precipitates on cooling.

3.3. Preliminary Studies

Placebo SLNs and NLCs containing the selected solid lipids or a combination of the
selected liquid and solid lipids, respectively, were prepared and examined for physical
incompatibilities, e.g., cracking, creaming, coalescence, or phase separation (Table 2). All
Geleol™-based placebo formulations (P5–P8, P11, and P12) revealed an incompatibility
between Geleol™ and other formulation excipients, hence formulations containing Geleol™
were not pursued. Both nanocarriers (SLNs and NLCs) were prepared successfully with
Precirol® ATO 5 (P1–P4, P9, P10). These placebo formulations were physically stable
for three months (last time point tested) and exhibited no visible signs of aggregation or
cracking at the three storage conditions tested, namely RF, RT, and accelerated. Based on
these preliminary studies, GTX was loaded in nanocarriers containing Precirol® ATO 5.

Table 2. Composition of placebo lipid nano formulations.

Placebo Formulation Precirol® ATO 5 (% w/v) Geleol™ (% w/v) Oleic Acid (% w/v) Visual Examination

NLCs

P1 3.0 - 2.0 NLCs were formed

P2 2.5 - 2.5 NLCs were formed

P3 3.0 - 1.0 NLCs were formed

P4 2.0 - 2.0 NLCs were formed

P5 - 3.0 2.0 Phase separation during the
addition of the aqueous phase

P6 - 2.5 2.5 Phase separation during the
addition of the aqueous phase

P7 - 3.0 1.0 Phase separation during the
addition of the aqueous phase

P8 - 2.0 2.0 Phase separation during the
addition of the aqueous phase

SLNs

P9 5.0 - - SLNs were formed

P10 4.0 - - SLNs were formed

P11 - 5.0 - Phase separation during the
addition of the aqueous phase

P12 - 4.0 - Phase separation during the
addition of the aqueous phase

Note: aqueous phase contains Tween® 80 (3% w/v), Glycerin (2.25% w/v), TPGS (0.002% w/v), and Milli-Q water
(q.s. to 10 mL) for all nanocarriers.
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3.4. Preparation of GTX-Loaded SLNs and NLCs

The physicochemical characteristics and visual observations of different GTX-loaded
SLNs and NLCs are presented below in Table 3.

Table 3. Physicochemical characteristics and visual observations gatifloxacin loaded lipid nano
formulations (mean ± SD, n = 3).

Formulation *
Precirol®

ATO 5
(% w/v)

Oleic
Acid

(% w/v)

Physicochemical Characteristics
Visual

ObservationsPS (nm) PDI ZP (mV) pH Assay (%) EE (%)

NLCs

F1 3.0 2.0 266.8 ± 6.4 0.42 ± 0.05 −32.2 ± 0.5 6.37 ± 0.03 99.2 ± 2.6 87.3 ± 2.0 Milky-white
dispersion

F2 2.5 2.5 216.2 ± 6.8 0.32 ± 0.03 −30.6 ± 1.2 6.37 ± 0.03 98.6 ± 2.1 91.63 ± 1.5 Milky-white
dispersion

F3 3.0 1.0 229.5 ± 3.2 0.16 ± 0.06 −26.3 ±0.9 5.62 ± 0.03 100.5 ± 2.4 73.9 ± 3.2 Milky-white
dispersion

F4 2.0 2.0 209.2 ± 3.2 0.14 ± 0.03 −31.2 ± 1.3 6.24 ± 0.02 102.3 ± 1.1 81.2 ± 1.8 Milky-white
dispersion

SLNs

F9 5.0 - 200 ± 11.0 0.20 ± 0.03 −21.3 ± 0.4 7.17 ± 0.03 101.0 ± 2.5 80.29 ± 2.3
Drug expulsion
at day 15 with
20.3 ± 2.1% EE

F10 4.0 - 182.7 ± 4.3 0.15 ± 0.02 −18.2 ± 0.6 7.12 ± 0.02 97.9 ± 3.1 71.7 ± 2.8
Drug expulsion
at day 15 with
12.2 ± 3.6% EE

* All formulations contained GTX (0.5% w/v). Note: aqueous phase contains Tween® 80 (3% w/v), Glycerin
(2.25% w/v), TPGS (0.002% w/v), and Milli-Q water (q.s. to 10 mL) for all nanocarriers.

A couple of earlier investigations have prepared and evaluated GTX-loaded oph-
thalmic formulations. Abul et al. prepared SLNs with 2.0% w/v poloxamer 188, which is
20 times higher than the concentration for topical ocular listed in the FDA inactive ingre-
dient database, which could cause irritation and toxicity [31]. In addition, the authors
used sodium taurocholate and ethanol as the ionic surfactant and co-surfactant, respec-
tively, for ocular delivery, which can also lead to severe irritation and toxicity. Duxfield
et al. developed GTX-loaded cationic polymeric nanoparticles for topical ocular appli-
cation. The authors used acetone as an organic solvent during their nanoprecipitation
method, and they did not discuss removing the residual solvents within their research [14].
Khurana et al. formulated GTX ocular inserts by the solvent casting method [32]. This,
however, raises concerns about potential residual organic solvents, which may be present
within the formulation.

In our study, SLNs and NLCs were prepared using hot homogenization coupled with
a probe sonication method. Precirol® ATO 5 (solid) and oleic acid (liquid) were used as
the lipids, and Tween® 80 was used as a surfactant during the GTX-SLN and GTX-NLC
formulation development. The SLN contained only Precirol® ATO 5, while the NLCs
comprised of both Precirol® ATO 5 and oleic acid. The highest reported concentrations
of Tween® 80 and glycerin in an FDA-approved topical ophthalmic product are 4.0%
and 2.25% w/v, respectively. Hence, in the current study, concentrations up to 4.0% and
2.25% were investigated. TPGS, an FDA-approved adjuvant, possesses activity against free
radicals, thereby exerting a protective role on the biological membrane [33]. It has also been
incorporated in ocular formulations as a permeation enhancer, stabilizer, and emulsifier,
maximizing drug effects while reducing toxicity [33]. TPGS has been reported to act as a
P-gp inhibitor, which could potentially improve the absorption of topically administered
P-gp substrates like GTX [33,34].

GTX-SLNs were stable for only 15 days at RT (Table 3), as indicated by drug deposition
at the bottom of the vial. Drug molecules dissolve in lipids by arranging themselves
between the fatty acid chains or glycerides [35]. However, due to the tendency of solid
lipids to crystallize over time, SLNs show a high probability of elimination of the dissolved
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drug during storage [35]. The NLCs, on the other hand, were stable for over 15 days at
RT and, therefore, the investigation was continued with GTX-NLCs. While there was no
significant (p < 0.05) change in the ZP and assay across the various formulations tested,
increasing total lipids increased PS and PDI from 229.5 ± 3.2 (F3; 4.0% w/v) to 266.8 ± 6.4
(F1; 5.0% w/v) nm, and 0.16 ± 0.06 (F3) to 0.42 ± 0.05 (F1), respectively (Table 3).

The pH of ocular formulations plays a crucial role in developing an effective, non-
irritant drug delivery systems [17]. The pH of human tears is between 6.5 and 7.5; however,
topical ophthalmic formulations within the pH range of 3.0 to 8.6 are well tolerated, due
to the buffering capacity of the tears [36]. All the GTX-SLNS and NLCs formulated were
between a pH of 5.62 and 7.17, well within the tolerated pH range of the eye.

EE (%) also increased significantly (p < 0.05), from 73.9 ± 3.2 (F3) to 87.3 ± 2.0 (F1),
with an increase in total lipids (Table 3). The lipid-to-drug ratio is a crucial factor in NLC
drug loading. Changing the lipid/drug weight ratio from 10:1 (F1 and F2) to 8:1 (F3 and F4)
decreased the entrapped drug found within the lipid matrix. This outcome could be due to
more total lipids being available for encapsulation of the GTX molecules. Moreover, GTX
EE within the GTX-NLC increased on increasing the content of liquid lipid, 91.63 ± 1.5 for
F2 compared to 87.3 ± 2.0 for F1, and 81.2 ± 1.8 for F4 versus 73.9 ± 3.2 for F3. Increasing
the liquid lipid content could add imperfections within the crystallinity of the solid lipid,
which could accommodate more drug and, thus, increase drug loading and EE.

We also varied the amount of total lipids in the formulation (4 or 5% w/v) with
different ratios of solid to liquid lipid (1:1 and 3:2). Formulations prepared with 4% w/v of
total lipids (F3 and F4) showed a lower EE (%) compared to formulations prepared with
5% w/v of total lipids (F1 and F2). When NLC formulations were prepared with a solid-to-
liquid lipid ratio of 1:1 (F2 and F4), a smaller particle size was observed in comparison to
formulations prepared with 3:2 (F1) and 3:1 (F3). Formulations prepared with 5% w/v total
lipids were observed to have a larger particle size in comparison to formulations prepared
with 4% w/v total lipids with respect to the ratio of solid to liquid lipid. The PDI is also
smaller for NLC formulations prepared with 4% w/v of total lipids compared to 5% w/v
total lipids.

Formulations with a 1:1 ratio of solid to liquid lipids, F2 (5% w/v of total lipids) and
F4 (4% w/v of total lipids), show a similar pH of around 6.3. When comparing F2 (5% w/v
of total lipids) and F4 (4% w/v of total lipids) with regard to EE (%), F2 has a higher EE (%)
suggesting the increase in lipid content increased the amount of GTX encapsulated. F2 (5%
w/v of total lipids) shows a slightly higher particle size in comparison to F4 (4% w/v of
total lipids), which could be attributed to the increase in the total amount of lipids used.

3.5. Effect of Tween® 80 Concentration on GTX-NLCs

Additionally, the effect of varying Tween® 80 concentrations on PS, PDI, ZP, and EE,
and the physical stability of GTX-NLC formulations, was investigated (Table 4).

The key role of the surfactant in the NLC formulation is the stabilization of the nanocar-
riers in the colloidal systems and minimization of PS growth during storage [37]. The effect
of increasing Tween® 80 concentrations, 2.0, 3.0, and 4.0% w/v, on the physicochemical
characteristics of GTX-NLCs, based on a 1:1 solid-to-liquid lipid ratio with different total
lipid concentrations, is shown in Table 4. When the surfactant concentration increased from
2 to 4%, a significant decrease (p < 0.05) in the PS and PDI was observed without affecting
the zeta potential. The decrease in PS and PDI with an increase in Tween® 80 concentration
can be attributed to the substantial decline in interfacial tension between the lipid matrix
and the suspending aqueous phase [37].

Nanocarrier formulations with PDI value ≤ 0.1 indicates uniform dispersion with
narrow PS distribution, with 0.1–0.4 indicating moderate dispersed distribution, while
PDI value > 0.4 indicates a highly polydisperse system [38,39]. Therefore, the investigated
nanocarriers showed good PDI values (0.13 ± 0.02–0.38 ± 0.04). ZP beyond ±30 mV
(absolute value) indicates good physical stability for nanoparticulate formulations, and
the stability improves with ZP values closer to ±60 mV [40]. The absence of the effect
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of the surfactant on the ZP is due to the non-ionic character of this surfactant. The assay
of all prepared GTX-NLC formulations were between 98.6 ± 2.1–102.3 ± 1.1% of the
theoretical value.

Table 4. Effect of Tween® 80 concentration on particle size, polydispersity index, zeta potential, drug
content, and entrapment efficiency of gatifloxacin-loaded nanostructured lipid carrier formulations
(mean ± SD, n = 3).

Formulations * Tween® 80
(% w/v)

Physicochemical Characteristics Visual
ObservationsPS (nm) PDI ZP (mV) pH Assay (%) EE (%)

NLCs

F2 # 3.0 216.2 ± 6.8 0.32 ± 0.03 −30.6 ± 1.2 6.37 ± 0.03 98.6 ± 2.1 90.4 ± 1.5 Milky-white
dispersion

F5 # 2.0 239.5 ± 7.1 0.38 ± 0.04 −29.3 ± 0.5 6.42 ± 0.01 99.5 ± 2.6 70.6 ± 2.5 Milky-white
dispersion

F6 # 4.0 200.3 ± 2.4 0.18 ± 0.02 −30.2 ± 0.3 6.39 ± 0.01 100.2 ± 2.2 96.9 ± 2.0 Milky-white
dispersion

F4 @ 3.0 209.2 ± 3.2 0.14 ± 0.03 −31.2 ± 1.3 6.24 ± 0.02 102.3 ± 1.1 83.1 ± 1.8 Milky-white
dispersion

F7 @ 2.0 226.4 ± 5.4 0.25 ± 0.03 −29.4 ± 0.7 6.44 ± 0.01 98.7 ± 4.0 77.5 ± 2.1 Milky-white
dispersion

F8 @ 4.0 183.4 ± 5.6 0.13 ± 0.02 −28.9 ± 1.0 6.35 ± 0.01 99.3 ± 3.1 87.1 ± 2.9 Milky-white
dispersion

* All formulations contained GTX (0.5% w/v). # Total lipids (5% w/v); Precirol® ATO 5: oleic acid (1:1). @ Total
lipids (4% w/v); Precirol® ATO 5: oleic acid (1:1).

The EE (%) values of all prepared NLC formulations were above 70.9 ± 2.5%. The EE
(%) of the nanoparticles increased significantly with an increase in the surfactant concentra-
tion (p < 0.05). This is consistent with earlier reports that show a similar trend in the EE of
solid lipid matrices with respect to surfactant concentration [40]. The increased EE is likely
due to adequate surfactant molecules being present to surround the lipid, stabilize it, and
prevent its coalescence [37]. This phenomenon ensures the retention of the encapsulated
drug molecule within the NLC matrix [37,40]. At higher concentrations, an adequate
amount of surfactant is available to surround the lipid, resulting in the stabilization of the
suspended particles by preventing coalescence. Therefore, high concentrations of Tween®

80 help maintain the encapsulation of the drug within the nano lipid carrier [37]. This was
made evident by F6 and F8 formulations, each containing 4% Tween® 80, which showed
the highest EEs at 5% and 4% w/v lipids, respectively.

Cationic polymeric nanoparticles developed by Duxfield et al. were above 400 nm in
size, and only encapsulated about 46.0% of GTX [14]. However, in this study, the EE (%)
values of all prepared NLC formulations were above 70.9 ± 2.5%. EE (%) values of more
than 60% indicate the successful encapsulation of the drug into the lipid particles during
the preparation method [41]. Furthermore, the slow release of GTX from these cationic
nanoparticles failed to reach effective concentrations necessary to suppress microbial
growth [14].

F8 (containing 4.0% total lipids and 4.0% w/v Tween® 80) exhibited similar physic-
ochemical characteristics to F2 (containing 5.0% total lipids and 3.0% w/v Tween® 80);
however, F8 exhibited smaller particle size and PDI. The smaller particle size exhibited in
F8 can be attributed to the increase in Tween® 80 concentration present in the formulation
while containing less total lipids present [42,43]. The excess surfactant concentration in F8
could result in the accumulation of excess surfactant molecules on the NLC particles or the
formation of micellar particles, which would cause irritation and toxicity to the eye [44–46].
While non-ionic surfactants are widely used in ocular nanoparticle formulations, it is
suggested to keep the concentration level of surfactants at the lowest possible.

The increase in total lipid content from 4 (F8) to 5% (F2 and F6) increased the amount
of oleic acid, which improves the transcorneal permeation [47]. The increase in liquid
lipid (oleic acid) improves the solubilization of the drug, which incorporates more drug
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into the lipid matrix, thereby improving the formulation stability by reducing the particle
crystallinity [48]. Thus, formulations F2 and F6 were selected for further evaluation.

3.6. In Vitro Drug Release-Diffusion Test

The in vitro release-diffusion profiles of GTX from F2, F6, and GTX-C were obtained
by the release-diffusion method (data illustrated in Figure 1). The cumulative percentage
of GTX released from F2 and F6 were 100.9 ± 1.8% and 92.5 ± 2.2%, respectively, in 24 h.
In contrast, GTX-C released 100% GTX within 1 h. Thus, both F2 and F6 NLC formulations
extended the release of GTX compared to the commercial GTX-C eyedrops.
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The NLCs F2 and F6 released about 41% and 26%, respectively, in 2 h. The extended
drug release profiles from the GTX-NLCs is likely due to the slowed release rates of the
entrapped GTX from the solid crystalline lipid matrix [49]. However, F2, containing 3%
Tween® 80, showed a faster drug release compared to F6, which contained 4% Tween®

80. This could be due to the higher amount of GTX present in the surrounding aqueous
phase available to diffuse in case the of F2 (lower EE), as compared to F6 (higher EE).
Also, a higher Tween® 80 concentration may lead to a more stabilized crystalline lipid
matrix, which could lead to better entrapment of the drug and, thus, slower release [40].
Thus, although higher Tween® 80 concentrations improved EE, it slowed down the rate of
GTX release.

Each of the three release models (Korsmeyer–Peppas, Higuchi, and first-order), and
regression analysis were carried out for each formulation profile to assess the best fit based
on its coefficient of determination (R2) [23]. The release model with the highest R2 was
chosen as the best model to describe release kinetics (Table 5). The release profiles of both
F2 and F6 followed the Korsmeyer–Peppas model (based on mathematical model fitting).
According to the calculated slope values (n = 0.6), a non-Fickian (0.5 < n < 1.0) GTX release
profile, indicating both erosion and diffusion release mechanisms, was suggested. Based
on the above data, GTX-NLC formulation F2 was selected for further studies.
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Table 5. Mathematical model fitting for release kinetics of gatifloxacin-loaded nanostructured lipid
carrier formulations (mean ± SD, n = 3).

Formulation
Korsmeyer–Peppas Higuchi First-Order

R2 n

F2 0.9999 0.9094 0.9895 0.6

F6 0.9976 0.9515 0.982 0.6
Korsmeyer–Peppas model: log% drug released vs. log time, Higuchi model: % drug released vs. square root
of time; first-order model: amount of drug remaining vs. time; zero-order is not relevant, hence excluded from
the table.

3.7. Viscosity

Viscosity is a crucial parameter, with values up to 50 cP facilitating easy ocular appli-
cation of topical products [49]. The mean viscosity of the lead F2 formulation was 11.29 cP
between sheer rates of 60–100 s−1. Furthermore, formulations with viscosity values to-
wards the lower end are likely to be well-accepted due to minimal blinking pain upon
administration [50].

3.8. FTIR

The FTIR spectra of GTX, oleic acid, Precirol® ATO 5, physical mixtures of GTX and
the excipients, lead NLC formulation (F2) and its corresponding placebo, were collected to
identify any interaction between the drug and excipients (Figure 2). GTX peaks were not
visible in any of the physical mixture spectra as peaks indicating solubility and entrapment
of GTX in the solid–lipid composition [1,51]. The FTIR spectrum of F2 and its placebo
possessed a similar broad peak at 3200–3600 cm−1 due to O-H bond stretching (aqueous
external phase) [12]. Characteristic peaks of the drug were absent in the placebo and the F2
formulations, likely overshadowed by the excipient peaks, indicating no interaction but
rather a dispersion of GTX within the lipid matrix.
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3.9. Transcorneal Study

Abul et al. used goat corneas for their permeation studies, which are less similar to
human corneas in comparison to rabbit corneas [52], while Khurana et al. used a Millipore
membrane filter to mimic the corneal epithelial barrier, which estimates any improvement
in transcorneal permeation difficult [32]. In our study, transcorneal delivery of GTX from
the lead NLC formulation was evaluated using rabbit corneas due to their close similarity
to human corneas [12]. As shown in Figure 3, the transcorneal flux and permeability
of GTX from the F2 were 5.5- and 6-fold higher, respectively, in comparison to GTX-C
(control). About 9.16% of the drug permeated across the isolated rabbit cornea within 3 h.
NLCs create a film on the corneal surface after topical application [49], wherein the lipid
core mimics a drug depot interacting with the tear film’s lipid layer [15]. This property
causes the nanocarriers to be retained on the ocular surface [53], thereby increasing ocular
bioavailability, while providing sustained release, compared to an aqueous solution which
is washed away quickly, thus requiring frequent administration [29]. A receptor-mediated
endocytosis uptake mechanism helps internalize lipid particles below 250 nm and across
corneal cell membranes, thus enhancing transcorneal delivery [54,55]. The non-ionic
Tween® 80 surfactant further improves corneal penetration, allowing the drug to reach the
intraocular tissues [56,57].
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Figure 3. Transcorneal flux and permeability of GTX from commercial solution eyedrops (GTX-C)
and lead GTX-NLC formulation (F2) across isolated rabbit cornea (mean ± SD, n = 4). * significantly
different at p < 0.05.

3.10. Stability Studies

The lead NLC colloidal dispersion (F2) was analyzed at scheduled time intervals for
any changes in PS, PDI, ZP, pH, assay, and EE (%) on storage (Figure 4).
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efficiency of GTX-NLC (formulation F2) over three months of storage at 4, 25, and 40 ◦C (mean ± SD,
n = 3).

Overall, the formulation exhibited a good stability profile across the three storage
conditions tested. There was no visual evidence of cracking, expulsion, change in color, or
drug sedimentation from the nanocarrier lipid matrix. Kalam et al. observed progressive
crystallization and solidification of the lipids in the formulated SLNs at 20 ◦C, causing a
decrease in EE from 89.2% to 85.1% over a span of 3 months [31]. In our studies, the assay
and EE values of the lead F2 formulation were 99.6 ± 2.3% and 97.0 ± 1.3%, including
the samples stored at 40 ◦C, indicating good chemical stability. There were no statistically
significant (p < 0.05) differences in the PS, PDI, ZP, and pH values, even after 90 days,
indicating excellent physical stability. Therefore, it can be concluded that the lead NLC
formulation (F2) was stable at all tested storage conditions.

3.11. Antibacterial Activity Testing

Antibacterial studies were conducted to determine the antimicrobial efficiency of
the lead formulation against GTX-C. F2 was chosen as the lead formulation over F6, as
it had a desired release profile while maintaining similar physiochemical characteristics.
The antimicrobial efficiency was evaluated against the two commonly isolated leading
pathogens in ocular infections, MRSA and P. aeruginosa. Post-operative and nosocomial
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ocular infections due to MRSA have also been observed, with P. aeruginosa being the most
frequent isolate among Gram-negatives [4]. In-house antibacterial studies showed a MIC
of 6.25 µg/mL against MRSA and P. aeruginosa for both the lead formulation as well as
GTX-C (Table 6). Moreover, this experimental MIC was achieved at all release time points
samples during the study (0.5 to 24 h). The antibacterial activity is due to the GTX present
in the formulations, as the placebos did not show any such activity.

Table 6. MIC90 values for the control, F2, and placebo formulations against methicillin-resistant
Staphylococcus aureus and Pseudomonas aeruginosa.

Formulation
MIC90 (µg/mL)

Methicillin-Resistant Staphylococcus aureus Pseudomonas aeruginosa

GTX-C 6.25 6.25

F2 6.25 6.25

Placebo F2 Not achieved Not achieved
F2—gatifloxacin loaded nanostructured lipid carrier formulation.

3.12. STEM

The STEM images of the lead F2 formulation confirmed the presence of (spherical)
lipid droplets, as shown in Figure 5.
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4. Conclusions

GTX-NLC formulations were successfully prepared and characterized. The lead NLC
(F2) was physiochemically stable for over three months at the three tested storage condi-
tions. The formulation showed an extended GTX release profile, over a 12 h period, and
demonstrated similar antibacterial activity as the GTX-C eyedrops. Moreover, the MIC90
against the tested microorganism was attained with the very first time-point tested. Ex vivo
transcorneal permeation studies showed significant improvement in GTX permeation from
the GTX-NLC formulation, compared to the commercial ophthalmic solution eyedrops.
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Overall, the GTX-NLC formulation developed in the current investigation could reduce the
frequency of dosing, by improving treatment outcomes, thereby increasing patient com-
pliance compared to commercial GTX eyedrops. Future in vivo research could reveal the
difference in ocular surface residence time and biodistribution after topical administration.
In conclusion, the NLC formulations could provide an efficient GTX delivery platform for
the management of conjunctivitis as well as various other ocular bacterial infections.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12081318/s1, Table S1. HPLC chromatographic conditions
for gatifloxacin.
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