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Abstract: The objective of this study was to evaluate collateral sensitivity and cross-resistance of
antibiotic-induced resistant Salmonella Typhimurium to various antibiotics. S. Typhimurium ATCC
19585 (STWT) was exposed to ciprofloxacin, gentamicin, kanamycin, and tetracycline to induce
antibiotic resistance, respectively, assigned as STCIP, STGEN, STKAN, and STTET. The susceptibilities
of the antibiotic-induced resistant mutants to cefotaxime, chloramphenicol, ciprofloxacin, gentamicin,
kanamycin, polymyxin B, streptomycin, tetracycline, and tobramycin were determined in the absence
and presence of CCCP and PAβN. STCIP showed the cross-resistance to tetracycline and collateral
sensitivity to gentamicin (1/2 fold) and kanamycin (1/4 fold). STTET was also cross-resistant to
ciprofloxacin (128-fold) and collateral sensitive to gentamicin (1/4-fold) and kanamycin (1/8-fold).
The cross-resistance and collateral sensitivity of STCIP and STTET were associated with the AcrAB-
TolC efflux pump and outer membrane porin proteins (OmpC). This study provides new insight into
the collateral sensitivity phenomenon, which can be used for designing effective antibiotic treatment
regimens to control antibiotic-resistant bacteria.

Keywords: Salmonella Typhimurium; collateral sensitivity; cross resistance; efflux pump; proton
motive force

1. Introduction

Salmonella is a major foodborne pathogen that causes widespread contamination and
infections [1]. One of the main serovars that cause human and animal salmonellosis is
Salmonella Typhimurium [2]. It has been reported to cause 115 million human infections
and 370 thousand deaths per year on a global scale [3]. Severe Salmonella infections require
antibiotic intervention; however, antibiotic resistance in Salmonella Typhimurium presents
yet another challenge to overcome [2]. Overuse, misuse, and extensive application of
antibiotics in clinics and livestock sectors are putting constant selection pressure on the
bacteria population, thus giving rise to resistance in pathogenic bacteria, including S.
Typhimurium [4,5]. Worryingly, the emergence of antibiotic-resistant bacteria is much more
frequent than the discovery rates of novel antibiotics [6]. In fact, no new class of antibiotics
has been discovered in the last two decades despite substantial efforts. Because of the
limited effective antibiotic options available, a rational application strategy of existing
antibiotics should be considered with a particular emphasis on suppressing or reversing
resistance evolution in pathogenic bacteria [7].

The emergence of cross-resistance in pathogenic bacteria has far-reaching conse-
quences. The cross-resistance occurs when the development of resistance to one antibiotic
causes an increase in resistance to another antibiotic in the same class or even against
different classes of antibiotics [8]. This phenomenon occurs due to acquired resistance
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mechanisms, such as genetic mutations of the target site, reduced uptake of the antibiotics,
and increased efflux pumps, which confer resistance to one antibiotic and can also confer
resistance to other antibiotics with similar structure, function, or target site [9]. The selection
of appropriate therapeutic options is severely constrained by this cross-resistance, which in
turn renders an increasing number of antibiotics ineffective at treating infections [8,10].

The mechanisms underlying cross-resistance in bacteria are diverse and complex,
including efflux pumps, horizontal gene transfer, genetic mutations, and altered target
sites [8]. Efflux pumps play an active role in exporting drugs, thereby preventing the accu-
mulation of drugs within the cell, and may cause resistance to multiple antibiotics. More-
over, the induced resistance under the selection pressure of cefotaxime and azithromycin
has been reported to cause cross-resistance through AcrB, a component of the AcrAB-
TolC tripartite efflux pump system [11]. Similarly, cross-resistance can occur when OmpC
is downregulated, as antibiotics from diverse classes enter bacteria through this outer
membrane porin [12].

Antibiotic collateral sensitivity is a phenomenon in which resistance to one antibiotic
leads to increased susceptibility or hypersensitivity to a different, often structurally un-
related, antimicrobial agent [13]. Unlike antibiotic cross-resistance, collateral sensitivity
provides a counterintuitive advantage by capitalizing on bacterial vulnerabilities caused
by resistance acquisition [14]. This phenomenon has important implications for antimicro-
bial research and may open up new avenues for novel therapeutic strategies. Antibiotic
collateral sensitivity mechanisms are also diverse and complex [15]. Genetic mutation or
modification of bacterial cellular components that confer antibiotic resistance can make
the pathogen more susceptible to another. These mutations may disrupt cellular func-
tions, metabolic pathways, or efflux pump systems, resulting in a cascade response of
downstream effects that make the bacterium more susceptible to a different antibiotic [14].
Furthermore, changes in bacterial physiology, such as cell membrane permeability or drug
target expression, can influence antibiotic collateral sensitivity [15].

Utilizing the potential role of collateral sensitivity in therapies such as combination
therapy and alternating therapy can potentially be a successful way to suppress the evolu-
tion of resistance or alter the resistance profile [16]. The potential application mechanisms of
collateral sensitivity have been studied on several clinically relevant pathogens, including
Escherichia coli [17–19], Pseudomonas aeruginosa [20,21], Enterococcus faecalis [22], streptococcus
pneumoniae [23], Staphylococcus aureus [24], and Klebsiella pneumoniae [15]. For example, the
induction of aminoglycoside resistance has been reported to cause increased sensitivity to
other classes of antibiotics such as β-lactams, fluoroquinolones, chloramphenicol, tetracy-
clines, and doxycycline [15,19]. However, such a study on S. Typhimurium is very scarce.
Therefore, the study was aimed to evaluate the collateral sensitivity and cross-resistance
of ciprofloxacin-, gentamicin-, kanamycin-, and tetracycline-induced resistant Salmonella
Typhimurium ATCC 19585 to cefotaxime, chloramphenicol, ciprofloxacin, gentamicin,
kanamycin, polymyxin B, streptomycin, tetracycline, and tobramycin (Table 1).

Table 1. Antimicrobial properties of antibiotics used in this study.

Class Antibiotic Target Site Antimicrobial Activity

Cephems Cefotaxime Cell wall Bactericidal
Phenicols Chloramphenicol 50S ribosomal subunit Bacteriostatic
Fluoroquinolones Ciprofloxacin DNA gyrase Bactericidal
Aminoglycosides Gentamycin 30S ribosomal subunit Bactericidal
Aminoglycosides Kanamycin 30S ribosomal subunit Bactericidal
Aminoglycosides Streptomycin 30S ribosomal subunit Bactericidal
Aminoglycosides Tobramycin 30S ribosomal subunit Bactericidal
Glycopeptides Polymyxin B Cell membrane Bactericidal
Tetracyclines Tetracycline 30S ribosomal subunit Bacteriostatic
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2. Results
2.1. Cross-Resistance and Collateral Sensitivity of Antibiotic-Induced Resistant S. Typhimurium

In order to identify cross-resistance and collateral sensitivity, the antibiotic-induced
resistant mutants of S. Typhimurium ATCC 19585 (STWT) were induced by exposure to
ciprofloxacin (CIP), gentamicin (GEN), kanamycin (KAN), and tetracycline (TET), assigned
as STCIP, STGEN, STKAN, and STTET, respectively. The antibiotic susceptibility of the in-
duced resistant mutants was determined using cefotaxime, chloramphenicol, ciprofloxacin,
gentamicin, kanamycin, polymyxin B, streptomycin, tetracycline, and tobramycin (Table 2).
The antibiotic-induced resistant mutants were highly resistant to ciprofloxacin (1024-fold),
gentamicin (8-fold), kanamycin (8-fold), and tetracycline (8-fold), respectively.

Table 2. Minimum inhibitory concentrations (MICs; µg/mL) of selected antibiotics against Salmonella
Typhimurium ATCC 19585 (STWT), ciprofloxacin-resistant S. Typhimurium (STCIP), gentamicin-
resistant S. Typhimurium (STGEN), kanamycin-resistant S. Typhimurium (STKAN), and tetracycline-
induced resistant S. Typhimurium (STTET).

Antibiotic STWT STCIP STGEN STKAN STTET

Cefotaxime 0.0625 1 0.0625 0.125 0.5
Chloramphenicol 0.5 32 4 2 16
Ciprofloxacin 0.0156 16 0.0078 0.0156 2
Gentamicin 8 4 64 128 2
Kanamycin 32 8 128 256 4
Polymyxin B 4 4 2 2 4
Streptomycin 32 16 1024 128 16
Tetracycline 2 8 0.5 1 16
Tobramycin 16 8 256 128 8

A heatmap was created to represent the fold change in MICs of STCIP, STGEN, STKAN,
and STTET, highlighting both cross-resistance and collateral sensitivity in relation to the
wild type across diverse classes of antibiotics (Figure 1). STCIP was cross-resistant to cefo-
taxime, chloramphenicol, and tetracycline, STGEN was cross-resistant to chloramphenicol,
kanamycin, streptomycin, and tobramycin, STKAN was cross-resistant to cefotaxime, chlo-
ramphenicol, gentamicin, streptomycin, and tobramycin, and STTET was cross-resistant
to cefotaxime, chloramphenicol, and ciprofloxacin. Surprisingly, STCIP showed increased
susceptibility, and collateral sensitivity, to gentamicin, kanamycin, streptomycin, and
tobramycin, STGEN showed collateral sensitivity to ciprofloxacin, polymyxin B, and tetra-
cycline, STKAN showed collateral sensitivity to polymyxin B and tetracycline, and STTET

showed collateral sensitivity to gentamicin, kanamycin, streptomycin, and tobramycin.
The MIC values of polymyxin B, cefotaxime, ciprofloxacin, and polymyxin B remained
unchanged for STCIP, STGEN, STKAN, and STTET.

2.2. Role of Antibiotic Resistance Mechanisms in Evolving Cross-Resistance and
Collateral Sensitivity

The MIC values of ciprofloxacin, gentamicin, kanamycin, and tetracycline, respec-
tively, against STCIP, STGEN, STKAN, and STTET in the absence and presence of carbonyl
cyanide-m-chlorophenylhydrazone (CCCP) and phenylalanine-arginine-β-naphthylamide
(PAβN) were determined to evaluate the effect of efflux pumps (Table 3). The MIC of
ciprofloxacin against STCIP, gentamicin against STGEN, and kanamycin against STKAN

remained unchanged regardless of the presence or absence of CCCP, while the tetracycline
resistance of STTET was increased in the presence of CCCP. Unlike CCCP treatment, the
susceptibility of STCIP to ciprofloxacin was increased in the presence of PAβN. No changes
in antimicrobial activities of gentamicin, kanamycin, and tetracycline were observed against
STGEN, STKAN, and STTET.
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Figure 1. Heat map of fold changes in MICR of ciprofloxacin-resistant Salmonella Typhimurium
(STCIP), gentamicin-resistant S. Typhimurium (STGEN), kanamycin-resistant S. Typhimurium (STKAN),
and tetracycline-induced resistant S. Typhimurium (STTET) compared to MICWT of S. Typhimurium
ATCC 19585 (STWT). Heat map intensities indicate the fold change in MIC compared to that of the
untreated STWT; [log2 MICR/MICW]. CET, cefotaxime; CHL, chloramphenicol; GEN, gentamicin;
KAN, kanamycin; PMB, polymyxin B; STR, streptomycin, TET; tetracycline; TOB, tobramycin.

Table 3. Minimum inhibitory concentrations (MICs; µg/mL) of ciprofloxacin, gentamicin, kanamycin,
and tetracycline of ciprofloxacin-resistant Salmonella Typhimurium (STCIP), gentamicin-resistant S.
Typhimurium (STGEN), kanamycin-resistant S. Typhimurium (STKAN), and tetracycline-induced
resistant S. Typhimurium (STTET) in the absence and presence of CCCP and PAβN.

Strain Antibiotic
Efflux Pump Inhibitor

No CCCP PAβN

STCIP Ciprofloxacin 16 16 2
STGEN Gentamicin 64 64 64
STKAN Kanamycin 256 256 256
STTET Tetracycline 32 64 32

The relative expression levels of efflux pump- and porin-associated genes were ob-
served in the antibiotic-induced resistant mutants (Figure 2). The relative expression levels
of acrA, acrB, ramA, and tolC were increased in STCIP. The genes acrA, acrB, ompC, ramA,
and tolC, were suppressed more than 10-fold in STTET.
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3. Discussion

Bacterial adaptation to a single antibiotic under antibiotic selection pressure may result
in enhanced sensitivity to other classes of antibiotics, steered by an evolutionary trade-off
between underlying antibiotic resistance mechanisms, termed collateral sensitivity [25].
Collateral sensitivity was first described in the early 1950s by Szybalski and Bryson [26].
The experimentally evolved resistant E. coli isolates were less, equally, or more sensitive to
antibiotics that were not used for the resistance induction [27]. Although cross-resistance
is much more prevalent than collateral sensitivity in antibiotic-resistant bacteria, the phe-
nomenon regarding the collateral sensitivity to antibiotics can provide a possibility of
using antibiotics that increase the susceptibility to other antibiotics [14,15,27]. Therefore,
collateral sensitivity and its underlying mechanisms have recently been studied in vitro
and in vivo levels [15,19,20]. These studies include both Gram-positive bacteria, such as
Staphylococcus aureus and Enterococcus faecium, and Gram-negative bacteria, such as E. coli
and Klebsiella pneumoniae [15,19,28,29]. However, there have been relatively few studies to
evaluate the collateral sensitivity in antibiotic-resistant S. Typhimurium [25,30].

The collateral sensitivity of bacteria is due to an antibiotic resistance mechanism that
can provide a cooperative phenomenon to other classes of antibiotics [31]. For example, the
efflux pump-mediated resistance requires increasing proton concentration as the component
of proton motive force (PMF) in the bacterial periplasm [32]. On the other side, the
penetration of antibiotics such as aminoglycosides into the bacteria is highly dependent
on the transmembrane potential, another component of PMF [33]. Thus, the efflux pump-
related resistance of bacteria to fluoroquinolone requires a reaching strong PMF, which
can induce susceptibility to aminoglycosides. This phenomenon, collateral sensitivity, can
possibly be used for re-sensitizing bacteria to antibiotics by reversing multidrug resistance.
Ciprofloxacin is an appropriate substrate of AcrAB-TolC efflux pump. AcrAB-TolC, a
tripartite resistance-nodulation-division (RND) efflux pump, confers resistance to a broad
range of antibiotics [34]. The periplasmic lipoprotein, AcrA, is classified as a fusion protein
that bridges the outer and inner membranes [35]. The AcrB is a membrane protein located
in the cytoplasmic membrane, and the TolC is an outer membrane protein [36,37]. Together
they form AcrAB-TolC tripartite efflux pump system (Figure 3A). This tripartite efflux
pump actively extrudes toxic substances, including antibiotics, dyes, disinfectants, and
detergents [38]. The efflux pump activity can be reduced by the addition of various natural
and synthetic substances called efflux pump inhibitors (EPIs) [39]. CCCP and PAβN are
most commonly used as EPIs for experimental purposes.
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(B), and proton gradient-induced ATP (C).

STCIP was highly resistant to ciprofloxacin, showing an MIC value of 16 µg/mL
(Table 2). The MICs of ciprofloxacin against STCIP were the same in the absence and
presence of CCCP (Table 3). In a recent report, it is found that CCCP might not always be
an effective EPI [15]. This is in good agreement with our finding that CCCP did not show
reduced efflux pump-mediated resistance (Table 3). Unlike CCCP, the MIC of ciprofloxacin
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against STCIP was decreased in the presence of PAβN (Table 3). PAβN is a synthetic
efflux pump inhibitor that counteracts the activity of RND family efflux pumps [40]. The
modified dipeptide-amide inhibits antibiotic efflux through the AcrAB-TolC system [37].
A computational simulation showed that PAβN binds to AcrB and inhibits efflux pumps
at several residues [41,42]. PAβN binds with the proximal substrate-binding site of AcrB
to interrupt the antibiotic-AcrB complex formation [43]. The increased susceptibility of
STCIP to ciprofloxacin in the presence of PAβN (Table 3) implies that STCIP has an RND
efflux pump (AcrAB-TolC). Furthermore, the expression levels of acrA, acrB, and tolC were
overexpressed in STCIP (Figure 2). The AcrAB-TolC efflux pump could actively extrude
ciprofloxacin out of the bacterial cells, resulting in antibiotic resistance development [37].
The increase in ramA expression contributes to the enhanced efflux pump activity by
regulating the expression of acrA, acrB, and tolC in Salmonella spp. [34]. However, the
relative expression levels of acrA, acrB, ramA, and tolC were significantly decreased in STTET

(Figure 2).
Tetracycline resistance was less mediated by the AcrAB-TolC efflux pump system

than other antibiotic resistance in S. Typhimurium [44]. Conversely, the upregulation of
AcrAB-TolC was associated with the development of tetracycline resistance in Klebsiella
pneumoniae [15]. This implies the induction of cross-resistance to ciprofloxacin and tetra-
cycline in antibiotic-resistant S. Typhimurium. AcrAB-TolC efflux pump requires PMF
as an energy source to extrude antibiotics and other toxic components [39]. The increase
in PMF contributed to the increase in bacterial susceptibility to kanamycin, an aminogly-
coside antibiotic [45]. On the contrary, the reduced expression of cytochrome oxidases,
which plays a vital role in the creation of PMF, induced low membrane potential, and high
aminoglycoside resistance [15]. Cytochrome oxidases transport protons from cytoplasm to
periplasmic space in the electron transport chain that oxidizes terminal electron acceptors
such as oxygen to create PMF [46]. This may explain the increased susceptibility of STCIP

to gentamicin and kanamycin in this study. In Gram-negative bacteria, tetracycline acts as
an Mg2+ chelator by diffusing through OmpC and/or OmpF [47] (Figure 3B). The major
outer membrane porin proteins, OmpC and OmpF, contribute to the accumulation of
tetracycline inside the bacterial cells, leading to increased antibiotic susceptibility [48]. In
this study, the decreased expression of ompC in STTET might be involved in the increase in
tetracycline resistance (Table 2). The ciprofloxacin resistance was also associated with the
low expression level of ompC in S. Typhimurium [49]. Furthermore, tetracycline-resistant
Gram-negative bacteria were also sensitive to aminoglycosides, which is in good agreement
with the finding of this study [15,19].

PMF consisting of transmembrane electrical potential (∆ψ) and transmembrane pro-
ton gradient (∆pH) plays a major role in aminoglycoside internalization into bacterial
cells [33,50]. Bacteria maintain the electrochemical potential balanced by ∆ψ and ∆pH in
the cytoplasmic membrane [50,51]. Thus, the perturbation of PMF may result in compen-
satory phenomena in bacteria [52]. The membrane potential-uncoupling antibiotics may
collapse PMF due to the dissipation of ∆ψ or ∆pH [52]. Unlike ATP-binding cassette (ABC)
transporter, the multidrug efflux pump families such as RND, small multidrug resistance
(SMR), multidrug and toxic compound extrusion (MATE), and major facilitator superfamily
(MFS) require PMF that is generated by cellular metabolism [53–55]. The perturbation of
PMF can cause a decrease in the activity of PMF-dependent efflux pumps and result in
an increase in antibiotic susceptibility [19]. A protonophore, CCCP, disrupts the PMF to
reduce/abolish the activity of efflux pumps [40] (Figure 3C). The decrease in membrane po-
tential, consequently PMF, is responsible for the increased resistance to aminoglycoside [15].
The cross-resistance of STGEN and STKAN to gentamicin and kanamycin and collateral
sensitivity to ciprofloxacin and tetracycline may be attributed to PMF dissipation. The
decreased PMF in STGEN and STKAN might decrease the activity of AcrAB-TolC, leading to
increased sensitivity to ciprofloxacin and tetracycline.

It is important to recognize some limitations in our study of induced cross-resistance
and collateral sensitivity in S. Typhimurium. First of all, whole-genome sequencing was
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not performed, which could have given a thorough understanding of the genetic basis
of the observed changes in sensitivity and resistance. Due to this reason, the precise
genetic mutations or modifications in metabolic pathways that may be responsible for these
phenomena could not be addressed in this article. In addition, not all known potential
resistance mechanisms were examined in the study. Numerous genetic, biochemical, and
physiological factors may play a role in the complex process of antibiotic resistance in
S. Typhimurium and can lead to the emergence of cross-resistance as well as collateral
sensitivity. While some well-known mechanisms have been explored, there might be other
potential mechanisms that were not investigated in this study. Despite the limitations, this
study provides new useful information on antibiotic-induced cross-resistance and collateral
sensitivity in S. Typhimurium. The results may serve as the foundation for follow-up
research, which may include whole-genome sequencing and a thorough examination of
antibiotic resistance mechanisms to gain a better understanding of the complexities of
antibiotic resistance in S. Typhimurium. These studies would aid in the development
of effective anti-antibiotic resistance strategies and enhance the treatment options for
Salmonella infections.

4. Materials and Methods
4.1. Strain and Culture Conditions

Salmonella Typhimurium ATCC 19585 (STWT) was purchased from American Type
Culture Collection (ATCC, Manassas, VA, USA). The strain was cultured for 18 h at 37 ◦C in
trypticase soy broth (TSB; BD, Becton, Dickinson and Co., Sparks, MD, USA) supplemented
with 0.1% yeast extract (TSBY). The culture was collected by centrifugation at 6000× g for
10 min at 4 ◦C. The harvested cells were then washed twice with phosphate-buffered saline
(PBS, pH 7.2) prior to use.

4.2. Preparation of Antibiotic Stock Solutions

The antibiotics used in this study (Table 1) were purchased from Sigma Chemical Co.
(St. Louis, MO, USA). The stock solutions of cefotaxime (water), chloramphenicol (ethanol),
ciprofloxacin (glacial acetic acid), gentamicin (water), kanamycin (water), polymyxin B
(water), tetracycline (ethanol), streptomycin (water), and tobramycin (water) were prepared
by dissolving in appropriate solvents at a concentration of 10.24 mg/mL.

4.3. Induction of Antibiotic-Resistant Salmonella

STWT was used to induce antibiotic resistance to ciprofloxacin (STCIP), gentamicin
(STGEN), kanamycin (STKAN), and tetracycline (STTET) according to a previous method [56]
with slight modification. In brief, STWT was cultured in TSBY with 1/2×MIC of the above-
mentioned antibiotics individually for the first passage. After 24–72 h of incubation at
37 ◦C, the cultures (200 µL each) were transferred to TSBY with A 2-fold increase in the
concentration of the same antibiotic and then serially incubated at the same condition. This
procedure was continued until no growth was observed after 72 h of incubation.

4.4. Antibiotic Susceptibility Assay

The effects of efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN)
and protonophore carbonyl cyanide-m-chlorophenylhydrazone (CCCP) on antibiotic sus-
ceptibility of STWT, STCIP, STGEN, STKAN, and STTET, were evaluated using a broth mi-
crodilution susceptibility assay according CLSI guideline [57]. In brief, approximately
105 CFU/mL of STWT and the antibiotic-induced resistant mutants were inoculated in the
96-well plates containing serially diluted (1:2) stock solutions from 1024 µg/mL in TSBY.
The prepared plates were incubated at 37 ◦C for 18 h to determine MICs of antibiotics in
the absence and presence of PAβN and CCCP.
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4.5. RT-qPCR Assay

Total RNAs in STWT and the antibiotic-induced resistant mutants were extracted
by using the RNeasy Protect Bacteria Mini kit (Qiagen, Hilden, Germany). The RNA
extracts were mixed with 1 mL of RNAprotect Bacteria reagent (Qiagen) to prevent RNA
degradation, centrifuged at 5000× g for 10 min, and then lysed by TE buffer containing
lysozyme (1 mg/mL). The lysates were mixed with ethanol to purify RNA using an RNeasy
mini column (Qiagen). The RNAs were quantified using a NanoDrop spectrophotometer.
Complementary DNA (cDNA) was synthesized by transcribing RNA templates through
QuantiTect Reverse Transcription kit (Qiagen). In brief, the purified RNA was reacted
with a Wipe buffer to eliminate genomic DNA (gDNA). The reactants were mixed with a
Reverse Transcriptase (RT) Master mix containing RT Buffer, RT Primer Mix, and Reverse
Transcriptase. The mixtures were reacted for 15 min at 42 ◦C and inactivated at 95 ◦C for
3 min. The PCR mixture (20 µL) was prepared by mixing 2 µL of cDNA with 1.2 µL of
reverse and forward primers, 10 µL of SYBR Green, and 5.6 µL of Nuclease-free water and
reacted through a QuantStudio™ 3 Real-Time PCR System (Applied Biosystems™, MA,
USA). The thermal cycling conditions for the qPCR assay were set at 45 cycles. The PCR
mixture was denatured at 95 ◦C for 5 s, annealed at 55 ◦C for 20 s, and extended at 72 ◦C for
15 s. The primers, including reference gene, multidrug efflux pump, outer membrane porin,
and transcriptional activator-associated genes, are listed in Table 4. The gene expression
was relatively estimated by comparing Ct values according to the comparative method [58].
The expression levels of target genes (acrA, acrB, ompC, ompF, ramA, and tolC) in the
antibiotic-induced resistant mutants relative to STWT cells were estimated and calculated
using the formula; ∆∆Ct = ∆Cttreatment − ∆Ctcalibrator. The ∆Cttreatment is the Ct values for
the antibiotic-induced resistant mutants were normalized to 16S rRNA (Cttreatment − Ct
[16S rRNA]treatment), and the ∆Ctcalibrator is the Ct values for the STWT cells normalized
to 16S rRNA (Ctcalibrator − Ct [16S rRNA]calibrator). The comparative ∆∆Ct method was
validated by the amplification efficiencies of the respective target genes (acrA, acrB, ompC,
ompF, ramA, and tolC) and the reference gene (16S rRNA).

Table 4. Primers used for real-time RT-PCR analysis.

Gene Molecular Function Primes Sequence References

16s rRNA Reference gene F: AGGCCTTCGGGTTGTAAAGT
R: GTTAGCCGGTGCTTCTTCTG [59]

acrA Multidrug efflux pump F: AAAACGGCAAAGCGAAGGT
R: GTACCGGACTGCGGGAATT [59]

acrB Multidrug efflux pump F: TGAAAAAAATGGAACCGTTCTTC
R: CGAACGGCGTGGTGTCA [59]

ompC Outer membrane porins F: TCGCAGCCTGCTGAACCAGAAC
R: ACGGGTTGCGTTATAGGTCTGAG [60]

ompF Outer membrane porins F: CGGAATTTATTGACGGCAGT
R: GAGATAAAAAAACAGGACCG [60]

ramA Transcriptional activator F: CCAGAAGGTGTATGATATTTGTCTCAAG
R: GGTTGAACGTGCGGGTAAA [60]

tolC Multidrug efflux pump F: GCCCGTGCGCAATATGAT
R: CCGCGTTATCCAGGTTGTTG [59]

5. Conclusions

Collateral sensitivity has important clinical implications and may transform the ap-
proach to antibiotic therapy. By strategically combining antibiotics with collateral sensitivity,
it is possible to induce the enhanced susceptibility of bacteria to antibiotics, enhancing
bacterial eradication and lowering the risk of resistance development. This concept has
great potential not only in human medicine but also in veterinary and agricultural settings,
where multidrug-resistant pathogens pose a significant threat to animal health and food
production. This study describes cross-resistance and collateral sensitivity in STCIP, STGEN,
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STKAN, and STTET in association with the induction of antibiotic resistance. The most signifi-
cant finding of this study was the collateral sensitivity of STCIP and STTET to gentamicin and
kanamycin. STKAN showed no collateral sensitivity to ciprofloxacin. The efflux pumps, and
outer membrane porin proteins were linked to the collateral sensitivity and cross-resistance.
These results can be useful for designing effective antibiotic treatments, such as alternating
and combination antibiotic treatments for infections caused by antibiotic-resistant bacteria.
Further study is needed to investigate whole genome sequencing of the antibiotic-induced
resistant mutants to elucidate the exact genetic alteration responsible for increased antibi-
otic susceptibility. In addition, a gene knockout and complementation study is underway
in our lab to validate the mechanisms associated with collateral sensitivity.
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