
Citation: Schelz, Z.; Muddather, H.F.;

Zupkó, I. Repositioning of HMG-CoA

Reductase Inhibitors as Adjuvants in

the Modulation of Efflux Pump-

Mediated Bacterial and Tumor

Resistance. Antibiotics 2023, 12, 1468.

https://doi.org/10.3390/

antibiotics12091468

Academic Editor: Jordi

Hernández-Borrell

Received: 29 August 2023

Revised: 15 September 2023

Accepted: 18 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Review

Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants
in the Modulation of Efflux Pump-Mediated Bacterial and
Tumor Resistance
Zsuzsanna Schelz , Hiba F. Muddather and István Zupkó *

Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6,
6720 Szeged, Hungary; schelz.zsuzsanna@szte.hu (Z.S.); hiba.161991@hotmail.com (H.F.M.)
* Correspondence: zupko.istvan@szte.hu

Abstract: Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial
infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms
raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel
chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that
can provide alternatives as adjuvants in treating resistant microbial infections and progressive
cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also
known as statins, are promising agents in this respect. Originally, statins were used in the therapy
of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has
recently been performed to elucidate the functions of statins in bacterial infections and cancers. The
mevalonate pathway is essential in the posttranslational modification of proteins related to vital
eukaryotic cell functions. In this article, a comparative review is given about the possible role of
HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular
research and clinical studies have proven the justification of statins in this field. Further well-designed
clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of
disease progression in bacterial infections and cancerous diseases.

Keywords: drug repositioning; efflux-mediated multidrug resistance; statins; HMG-CoA reductase
inhibitors; mevalonate pathway; isoprenoid synthesis; reversal of multidrug resistance

1. Introduction

Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known
as statins, are drugs used to treat dyslipidemia. The mechanism of action is based on
inhibiting cholesterol synthesis in the hepatocytes. The lower cholesterol output results
in lower circulating atherogenic lipid levels and a reduced risk of cardiovascular diseases,
allowing statins to be commonly used to prevent cardiovascular pathologies [1,2]. Statins
are the most extensively used and investigated lipid-modifying agents; therefore, a ro-
bust amount of data might show an evident relation between the beneficial effects other
than lipid-lowering properties [3]. These pleiotropic effects include anti-inflammatory,
renovascular-protective effects, prevention of thromboembolic events, and neuroprotective
activities [4]. Commonly used statins include atorvastatin, simvastatin, rosuvastatin, and
pravastatin. Statins’ side effects are generally mild and well tolerated. However, statins
rarely cause life-threatening muscle toxicity (rhabdomyolysis), which could be prevented
by closely monitoring the patients during statin therapy.

The mevalonate pathway in humans is present in cells other than hepatocytes; there-
fore, the effect of statins can be observed in various cell types. Isoprenoids are diverse
secondary metabolites of eukaryotic organisms. In fungi, isoprenoid intermediates like
geranylgeranyl-pyrophosphate (GGPP) are essential for synthesizing antibiotics. In plants,
it is a primary constituent in taxol and artemisinin biosynthesis [5]. In human cells, the
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mevalonate pathway is responsible for cholesterol biosynthesis and isoprenoid precursor
production, e.g., the formation of farnesyl-PP (FPP), geranyl-PP (GPP), and GGPP. These
intermediates are essential in the posttranslational modification of proteins involved in
cancer progression and metastasis [6,7]. The synthetic pathways of isoprenoid intermedi-
ates occur widely in the kingdom of unicellular prokaryotic and the domain of eukaryotic
organisms [8]. The mevalonate pathway in bacteria and tumor cells is shown in Figure 1.
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The emergence of antibiotic resistance could be well recognized immediately after
the introduction of the drug group, and an immense therapeutical burden has developed
in a couple of decades, which necessitated profound research to give rise to antibiotics
with higher selectivity and specificity. Plenty of attempts have been made to overcome
antibiotic resistance, but it still poses enormous challenges to science [9,10]. Utilizing
approved old drugs with new indications could be an applicable option to fight bacterial
resistance. Several drug groups originally used in pathologies other than infectious dis-
eases are potential agents to block the molecular steps of bacterial antibiotic resistance,
e.g., antidepressants and neuroleptics [11–13]. The conventional strategies in antibiotic
development are doubtful to keep up with the acquired resistance of bacterial pathogens.
They often cannot provide a reasonable cost–benefit ratio during drug development. The
success rate of receiving regulatory approval for a new antibiotic is very low, even after
investing enormous financial and intellectual costs [14].

On the other hand, cancer is still one of the leading causes of death globally and
is the second leading cause of death after cardiovascular diseases in the USA [15,16].
Applying successful preventative and therapeutic options for cancer is urgently needed [17].
Advanced cancer detection and novel therapies have improved survival in some cancer
types, but in others, scarcely any progress has been made [18,19].

Drug repurposing (also called drug repositioning) is using a drug in another indication
than the one for which it was initially approved and marketed [20]. The drug repurposing
approach has many advantages, including a faster drug development time and a lower
risk of failure because of the already completed preclinical tests, safety assessment, and
substantially lower costs [21,22]. Drug repositioning depends on two scientific bases: First,
through human genome expression, some biological targets are common to some diseases.
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Second, through the concept of pleiotropic drugs [23]. The drug’s repurposing has been
implemented as an alternative to treat numerous human diseases [24–26].

Multidrug resistance (MDR) is a phenomenon in which resistance to one drug is
accompanied by resistance to other drugs whose structures and mechanisms of action
could be completely different. The term was first applied to the area of antibiotic-resistant
bacteria [27] and was soon used in cancer chemotherapy [28]. The determination of mecha-
nisms of MDR in bacteria and human cancer led to the development of therapeutic agents
that may potentially overcome MDR [29,30]. Bacteria and tumor cells share similarities in
efflux-mediated MDR [8]. Therefore, drug repurposing is a promising strategy to overcome
drug resistance in bacterial infections and cancer. MDR mechanisms are summarized in
Figure 2.
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In the current review, we aim to provide an overview of the potential antibacterial
and anticancer mechanisms of statins, the significance of statins in adjuvant bacterial and
cancer therapy, and their efflux pump-modulating activity.

2. Antibacterial Effects of Statins

Since statins possess various pleiotropic effects in different pathologies, even in severe
bacterial infections, it is a matter of great interest how these mechanistic gaps could be
filled with in vitro and molecular investigations. In vitro antibacterial effects of statins were
proven by determining MIC values, and a notable direct antibacterial effect was shown.
The tested bacteria were selected based on the clinical relevance of the caused infectious
diseases and the high rate of resistance occurring in the corresponding clinical isolates.
Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Haemophilus in-
fluenzae, Moraxella catarrhalis, Escherichia coli, and Enterococci were investigated the most
extensively [31–35]. The in vitro studies could show bacteriostatic and bactericidal effects
but in a higher concentration range than the nanomolar concentrations appearing in the
bloodstream during anti-dyslipidemic treatment. S. pneumoniae is a common causative
agent in community-acquired pneumonia, but the emerging resistant variants and vacci-
nation cannot guarantee the prevention of all streptococcal serotypes, which urges new
approaches. Statins could have demonstrated protective effects in the airway epithelial
cells against the streptococcal pore-forming toxin independently from the inhibitory effects
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on the mevalonate production [36]. It was described that bacteria can induce an immune
response in the host by stimulating the synthesis of intermediates of the endogenous meval-
onate pathway. The stimulatory effects were shown in the case of E. coli and S. aureus
infections [37].

Statins have also been tested in animal models. Klebsiella-infected mice were pretreated
with atorvastatin, and a better survival rate was determined with the co-administration of
imipenem [38]. These results might support the possible beneficial outcome of systemic in-
fections with the combination of statins and conventional antibiotics [38]. In several clinical
observational studies, statins showed protective effects, e.g., in community-acquired pneu-
monia or tuberculosis (TB) [39–42]. In K. pneumoniae bloodstream infections, the mortality
rate decreased by prior statin use [43]. There are ongoing clinical trials for assessing the
protective effects of statins in the treatment of TB since emerging evidence shows a higher
susceptibility to TB antibacterial treatment in patients under statin medication. In vitro and
murine models for human TB revealed the beneficial effects of simvastatin by inducing
host protection against TB with increasing phagosomal maturation and autophagy [44,45].

Clinical and epidemiological data prove that concomitant use of statins with antibiotic
treatment provides a better prognosis in systemic bacterial infections or pneumonia [46].
Meta-analyses were undertaken to justify the relationship between statin use and a better
outcome for septic patients [47]. Based on observational studies and clinical trials, it was
concluded that statins exert beneficial effects in bacteriemia and severe infections, but the
pieces of evidence are more robust in the observational studies; therefore, prospective
clinical trials are needed to have a more conclusive therapeutical protocol design for the
adjuvant application of HMG-CoA reductase inhibitors [48].

2.1. The Role of HMG-CoA Reductase in Bacteria

The mevalonate pathway is a metabolic pathway that is essential for the synthesis of
bacterial metabolites, such as cholesterol, ubiquinone, and carotenoids, in both eukaryotes
and prokaryotes and for peptidoglycan synthesis in bacteria [37,49,50]. In bacteria, the
mevalonate pathway starts with the condensation of acetyl-CoA and acetoacetyl-CoA,
catalyzed by the enzyme HMG-CoA synthase. The resulting HMG-CoA is then converted
to mevalonate by HMG-CoA reductase, a key enzyme in the mevalonate pathway [51].
There are two major types of HMG-CoA reductases in bacteria that can be distinguished
by their amino acid sequences. Class I. is the eukaryotic type, class II. is considered to be
the archaeal and bacterial type. Class I. type, however, was also isolated from members
of Acinetobacter and Vibrio strains. In class II., the enzyme was first characterized from S.
aureus and later identified in different bacterial isolates (Borrelia burgdorferi, Streptococcus
pyogenes, Enterococcus faecalis, and Listeria monocytogenes) [51]. Isoprenoid synthesis is es-
sential in bacterial physiology, and pathogenesis and can determine whether a strain can
grow under aerobic or anaerobic circumstances [52]. Many virulence factors in bacteria,
such as toxins, adhesins, and siderophores, are synthesized with the contribution of this
pathway. Moreover, the pathway is also involved in regulating membrane fluidity and cell
wall biosynthesis, which are important factors for bacterial survival and virulence [53–55].
In addition to its role in bacterial physiology, the mevalonate pathway has also been impli-
cated in developing antibiotic resistance. One of the major mechanisms of resistance is the
efflux of antibiotics from the bacterial cell. The efflux pumps are membrane transporters
that pump antibiotics out of the cell, thereby reducing their intracellular concentration
and preventing their action [56]. It has been shown that the functions of efflux pumps are
connected to the presence of isoprenoid intermediates and secondary metabolites. Statins
might modulate the functions of efflux pumps in bacteria, thus affecting their resistance
to antibiotics; however, the affinity of statins to the bacterial enzyme is lower than to the
human reductase. Studies have shown that treatment with statins increases the suscep-
tibility of bacteria to a wide range of antibiotics, including β-lactams, fluoroquinolones,
and aminoglycosides [57]. The exact mechanism by which statins might modulate efflux
pump expression is not yet fully understood, but it is believed to involve the mevalonate
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pathway and the downstream synthesis of isoprenoids. Statins, which target the HMG-CoA
reductase enzyme, have been shown to modulate the functions of efflux pumps in bacteria
and increase their susceptibility to antibiotics. Further research is needed to fully clarify this
interaction’s mechanisms and develop new strategies to combat bacterial resistance [58].
Intracellular bacteria exploit the host cell’s enzymes to functionalize their virulence factors.
Host-mediated posttranslational modification can be essential for intracellular pathogens
for anchoring bacterial proteins to the host cytoplasmic membrane [59,60].

2.2. Isoprenoid Intermediates in Bacteria

GGPP is an isoprenoid molecule that plays a key role in synthesizing peptidoglycan
in bacteria. Peptidoglycan is a critical component of the bacterial cell wall, providing
strength and rigidity to the cell and protection from osmotic stress. GGPP is a substrate
for the enzyme undecaprenyl pyrophosphate synthase (UPP synthase), which converts it
into undecaprenyl pyrophosphate (UPP) [61]. UPP serves as a lipid carrier molecule that
shuttles the building blocks of peptidoglycan from the cytoplasm to the cell membrane’s
outer surface, where they are incorporated into the growing peptidoglycan layer [62]. The
importance of GGPP and the mevalonate pathway in peptidoglycan synthesis has led to
the investigation of statins as potential antimicrobial agents. By inhibiting HMG-CoA
reductase and blocking the production of mevalonate, statins can decrease the availabil-
ity of isoprenoid intermediates and inhibit peptidoglycan synthesis, ultimately leading
to bacterial growth inhibition or death [63]. Some studies suggest that statins can also
modulate the expression of genes involved in beta-lactam resistance, further enhancing
their antimicrobial efficacy against resistant bacteria [64].

Statins may have bacterial-targeted and host-based antibacterial effects [58,59]. Some
studies have shown that statins may have antibacterial effects against various bacteria,
including S. aureus, S. pneumoniae, and E. coli [32]. These effects are thought to be due to
the ability of statins to disrupt bacterial cell functions and interfere with bacterial growth
and reproduction [65]. Although the host-related pleiotropic effects are more convincing, a
plethora of evidence has been published about the immunomodulatory effects of this drug
group [46].

Statins are currently not recommended for the treatment of bacterial infections. They
should not be used in place of standard antibiotic therapy, but these drugs might benefit
a patient taking long-term dyslipidemic medication [66]. The mechanism of action of
statins can significantly affect the development of specific inhibitors of Class II. HMG-CoA
reductase enzyme [67].

In bacteria, HMG-CoA reductase plays a similar role to its function in humans and
other animals: it catalyzes a key step in the synthesis of isoprenoid compounds, which
are essential building blocks for a wide range of cellular components, including cell walls,
membranes, and electron transport chains [68]. Isoprenoids are also important for bacterial
virulence and survival, as they are involved in the production of signaling molecules and
the modulation of host immune responses. HMG-CoA reductase inhibitors can inhibit the
activity of bacterial HMG-CoA reductase and thus interfere with isoprenoid biosynthesis,
which may contribute to their antibacterial effects [69]. However, it is important to em-
phasize that the role of bacterial HMG-CoA reductase in isoprenoid synthesis is complex
and varies between bacterial species [51,53]. Some bacteria have alternative pathways
for isoprenoid synthesis that do not involve HMG-CoA reductase MEPK, and some may
be able to compensate for the loss of isoprenoid biosynthesis by upregulating alternative
pathways or by acquiring isoprenoid compounds from their environment [51]. Exogenous
isoprenoids have been found to play a role in the functions of efflux pumps in some bacte-
rial species [70]. However, some endogenous isoprenoids have been shown to modulate the
activity of efflux pumps by binding to regulatory proteins and altering their expression or
activity [71]. Lipid rafts that contain isoprenoids in the bacterial membranes are essential to
the appropriate function of membrane proteins like efflux pumps and can affect the ability
of the bacteria to pump out antibiotics and other compounds and contribute to antibiotic
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resistance [72]. Additionally, some efflux pumps are involved in the transport of isoprenoid
compounds across the bacterial cell membrane [73]. For example, some bacteria use efflux
pumps to export the isoprenoid quinone component menaquinone, which is involved in
electron transport and energy production [74]. Disrupting the activity of efflux pumps can,
therefore, influence the transport and metabolism of isoprenoid compounds in bacteria [61].
The relationship between isoprenoids and efflux pumps in bacteria is complex, multifaceted,
and it varies between bacterial species and environmental conditions. Isoprenoid quinones
like ubiquinone are present in the bacterial membrane and are responsible for membrane
fluidity and stability, thereby providing osmoprotection [75]. Ubiquinone plays an essential
role in the electron transport chain in E. coli. The synthesis is initiated by producing a
benzoquinone head group, and a polyprenyl side chain is attached. This side chain is the
product of the bacterial mevalonate pathway [76].

Bacterial membranes contain lipid rafts called functional membrane microdomains
(FMMs) that are rich in isoprenoid molecules. These FMMs assemble proteins related to
bacterial signaling and secretion [73,77]. The integrity of these microdomains is essential to
the proper function of the membrane-associated proteins. Isoprenoid derivatives are part
of these FMMs and belong to the minor membrane lipids. Disruption of these lipid rafts
by inhibiting isoprenoid synthesis seems to be a relatively new approach to overcoming
biofilm-associated resistance since key physiological functions of the bacterial cells are
based on the presence of isoprenoid constituents in the microdomains. Mevastatin and
lovastatin were reported to compromise the squalene synthesis of S. aureus because in Gram-
negative bacteria, HMG-CoA reductase is a key enzyme in isoprenoid biosynthesis [78].

2.3. The Role of Bacterial Efflux Mechanisms in Antibiotic Resistance and the Effects of Statins on
Antibiotic Resistance

Bacterial transporters are proteins involved in transporting molecules and substances
across the bacterial cell membrane. They are essential for bacterial survival and play a
key role in the uptake of nutrients and the efflux of toxic chemicals [56,79,80]. Seven
different efflux pump systems can be distinguished in bacteria: the ATP-binding cassette
(ABC) superfamily; the small multidrug resistance (SMR) superfamily; the multidrug
and toxic compound extrusion (MATE) superfamily; the major facilitator superfamily
(MFS); the resistance nodulation and cell division (RND) superfamily; the proteobacterial
antimicrobial compound efflux (PACE) superfamily; and the p-aminobenzoyl-glutamate
transporter family (AbgT) [81].

The structures and organization of efflux proteins differ in Gram-positive and Gram-
negative bacteria. The mutation of efflux pumps’ regulatory genes leads to the efflux
proteins’ overexpression, thereby resulting in a multidrug-resistant phenotype [82,83]. The
reversal of bacterial resistance by efflux pump inhibitors might be an efficient means of
suppressing antibiotic resistance.

Some studies have shown that statins can inhibit growth and resistance, increasing the
susceptibility of bacteria to antibiotics [65]. These findings suggest that statins could poten-
tially be used as adjuvants to enhance the effectiveness of antibiotics in treating bacterial
infections [84]. There is a lack of direct scientific evidence for the efflux’s inhibitory effect
of statins; however, compromising efflux functions by inhibiting isoprenoid intermediates
might theoretically enhance the activity of the co-administered antibiotics, thereby leading
to improved bacterial killing.

The susceptibility of different bacterial strains to statin treatment may vary depending
on several factors, including the bacterial species, the type and concentration of statin used,
and the mode of action of the statin [65]. Some studies suggest that Gram-positive bacteria,
such as S. aureus and S. pneumoniae, may be more susceptible to statin treatment than
Gram-negative bacteria [51]. Isoprenoids are involved in a variety of cellular processes,
including cell wall biosynthesis, protein modification, energy metabolism, and stress
responses. In Gram-positive bacteria, isoprenoids are synthesized by the mevalonate
pathway, which is the target of statin drugs. Isoprenoids such as menaquinone, a component
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of the electron transport chain, and heme, a cofactor for many enzymes, are essential for
the survival of Gram-positive bacteria [85]. Additionally, some Gram-positive bacteria use
isoprenoids to produce virulence factors that contribute to their pathogenicity. Isoprenoids
are involved in the biosynthesis of several virulence factors in Gram-positive bacteria. For
example, isoprenoids are required for the production of lipoteichoic acids (LTAs), which
are important components of the cell wall and are involved in the colonization of host
tissues by bacteria such as S. aureus and S. pneumoniae or Mycobacterium tuberculosis [86–88].
Isoprenoids are also involved in the activity of exotoxins, such as pneumolysin in S.
pneumoniae, which are inevitable virulence factors that contribute to bacterial pathogenesis
by damaging host cells and tissues. Additionally, isoprenoids are involved in synthesizing
quinolone molecules that act as signaling molecules and are essential for communication
between bacteria and host cells during an infection [89].

Isoprenoids might play a role in the regulation of these efflux systems in an indirect
way. The effects on membrane fluidity, membrane microdomains, and isoprenoid modifi-
cation of important proteins related to bacterial resistance might be behind the possible
modulatory effects of statins on efflux-mediated antibiotic resistance.

2.4. Quorum Sensing: A Possible Target for the Reversal of Efflux-Mediated Resistance

Quorum sensing is a bacterial cell-to-cell communication process that involves the
production, detection, and response of small signaling molecules called autoinducers. This
population-based behavior provides versatile advantages for the bacteria as a community
and is crucial in regulating various bacterial characteristics, including virulence factor pro-
duction, antibiotic resistance, and biofilm formation [90–92]. Biofilm formation is an ideal
environment for pathogenic bacteria to develop multidrug-resistant phenotypes [93,94].
Recent studies have suggested that statins may impact quorum sensing in bacteria. The
researchers found that atorvastatin inhibited quorum-sensing autoinducers’ production
and reduced virulence gene expression in P. aeruginosa, leading to decreased bacterial
virulence [95–97]. Atorvastatin and simvastatin exerted in vitro antibacterial and quorum-
sensing inhibitory effects on plant and human pathogenic bacteria [98]. A novel study
demonstrated that simvastatin and lovastatin could interfere with the quorum-sensing
system of the human pathogen, Bacillus subtilis [99]. It was found that simvastatin reduced
the expression of quorum-sensing-regulated genes and decreased biofilm formation in
L. monocytogenes, suggesting that it could be used as an adjunct therapy to control Listeria
infections. Statins may have potential as a new class of compounds for developing anti-
virulence agents that target bacterial quorum-sensing systems. However, further research
is needed to fully understand the mechanisms underlying the effects of statins on quorum
sensing in bacteria [100].

Efflux systems and quorum sensing are both mechanisms that bacteria use to reg-
ulate their responses to external stimuli, including the presence of antibiotics or other
environmental stressors. The growth rate and gene expression profiles of these bacteria
are different from their planktonic counterparts. Bacteria in the biofilm are embedded
within a matrix built up of polymeric macromolecules, and the behavior of these bacteria
is regulated in a population-density-based manner. Quorum sensing and efflux pumps
can be interconnected (Figure 3). Efflux systems can play a role in the secretion of quorum-
sensing signals, which allows bacteria to communicate with each other and coordinate their
responses to environmental changes [101]. Additionally, some efflux pumps are regulated
by quorum sensing, meaning that the presence of quorum-sensing signals can modulate
the expression and activity of the efflux pump. This mechanism can have important impli-
cations for the development of antibiotic resistance, as the coordinated action of both efflux
systems and quorum sensing can lead to increased resistance and persistence of bacterial
infections [102]. The inhibition of efflux pumps may lead to altered biofilm formation,
forming a less resistant bacterial community.
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The inhibition of quorum sensing by statins has reduced virulence and biofilm forma-
tion in various bacterial species, including P. aeruginosa and S. aureus [95]. The biofilm for-
mation capacity of S. aureus was inhibited by rosuvastatin in combination with levofloxacin
in topical formulations for wound infections caused by resistant bacterial strains [103,104].

2.5. Statins in Managing Specific Bacterial Infections

Mycobacterium tuberculosis poses a great obstacle in antibiotic therapy through the evo-
lutionary development of multidrug-resistant strains, especially in immunocompromised
patients [105]. Due to the adverse effects of long-term combinational antibiotic treatment, it
would be favorable to shorten the chemotherapeutic regimen by applying adjuvants that
enhance the effectiveness of the present treatment protocols. Statins are good candidates
for that purpose in the host-directed approach [106]. Various mechanisms were clarified
in the background of the host-directed approach. In vitro models have proven the higher
resistance of macrophages against M. tuberculosis in the presence of statins, and the host
may also develop a more robust immune response due to the statin treatment by promoting
autophagy, cellular, and humoral immunology [44]. These findings are indirectly proven by
in vitro results that indicated the effectivity of mevalonate pathway products (cholesterol,
GGPP) to rescue statin-mediated antimycobacterial activity, which can also be observed in
cancer cells [107]. In vivo murine models of chronic TB provided convincing evidence of
statin’s effect and mechanism of action—the time to achieve TB-negative lungs under statin
treatment shortened notably [108]. Statins were subjected to clinical trials based on their
suspected in vivo effectivity in TB patients, and these trials showed that statin therapy may
decrease TB incidence among diabetic and non-diabetic patients [109,110].

S. aureus infections are often in the background of bacteriemia. In cohort studies,
the concomitant use of statins strengthened the favorable outcome of the antimicrobial
therapy, and a significant decrease in the 30-day mortality rate could be observed [111].
Systemic Staphyloccus infections were investigated in different clinical study designs to
confirm supportive statin effects, and most of the trials could denote the adjuvant impact
of these drugs to enhance the host immune response [63,112,113].

3. Anticancer Effects of Statins

Statins, as a repurposed anticancer drug, have received a lot of research interest since
the 1990s. Pre-clinical data suggest that statins in specific cancer types inhibit tumor growth
and induce apoptosis [114–118]. Since statins are relatively well tolerated, inexpensive,
less toxic than conventional chemotherapeutics drugs, and are available as generic drugs,
they could be considered an immediate approach to overcome drug resistance mechanisms,
such as the overexpression of multidrug efflux pumps.
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3.1. Potential Anticancer Mechanisms of Action of Statins

Statins interfere with the mevalonate pathway through the inhibition of the enzyme
HMG-CoA reductase, leading to a decrease in mevalonate, other isoprenoid intermediates
(including GGPP, FPP, and isopentenyl-PP (IPP)), and downstream cholesterol biosynthesis.
Consequently, the inhibition of posttranslational modification and many key proteins,
such as small monomeric GTPases (e.g., Ras, Rho, Rac, or Rap), is required for several
cellular functions (Figure 1) [6,119–121]. So far, the changes associated with Ras protein
activity in cancer cells have been more extensively studied among proteins of the GTPase
family. Mutations in Ras genes have been observed in approximately 20–30% of human
cancers, leading to a loss of intrinsic GTPase activity [122,123]. These mutations result in
the persistent activation of Ras, which, accordingly, leads to the uncontrolled proliferation
of cells. It was revealed that the inhibition of farnesylation of mutated Ras inhibits its
activity in cancer cells, indicating that the inhibition of farnesylation seems to offer a
vital means of hampering cancer progression [124,125]. On the contrary, interfering with
RhoA-mediated signaling pathways by preventing geranylgeranylation might affect other
cellular processes that are important for cancer progression, such as migration, invasion,
and apoptosis [126,127]. It is reported that statins’ inhibition of the mevalonate pathway
prevents radiation resistance in head and neck cancers, demonstrating that the mevalonate
pathway might be a promising target for overcoming resistance development [128].

Lipophilic statins can diffuse passively through cell plasma membranes, while hy-
drophilic statins often require an OATP1B transmembrane transporter, expressed mainly
in the liver [129,130]. The study found that lipophilic statins have higher pro-apoptotic
activity than hydrophilic statins, which could be explained by differential transmembrane
uptake [131]. Due to these differences, lipophilic statins have a higher cytotoxic potential;
while undesirable in dyslipidemia therapy, this might be advantageous in cancer treatment.

The additional antitumor effect of statins is facilitated through the inhibition of angio-
genesis. The exact effects of statins on angiogenesis are controversial since both inhibition
and stimulation have been illustrated. The pro- or anti-angiogenic effects of statins de-
pend on the exposed cell type, the drug concentration, and the studied model [132–134].
Anti-angiogenic activity is achieved by suppressing cytokine-induced production of the pro-
angiogenic factor vascular endothelial growth factor (VEGF) [134,135]. Moreover, statins
can inhibit angiogenesis via the inhibition of endothelial cell proliferation and impede the
adhesion of endothelial cells to the extracellular matrix [136].

Furthermore, statins reduce the metastatic potential of tumor cells [137,138] by pre-
venting the expression of adhesion molecules such as E-selectin on endothelial cells [139].
These adhesion molecules are essential for attaching tumor cells to the endothelium, which
is one of the first steps for metastases development. An additional mechanism includes
inhibiting the synthesis of mediators inducing the migration of tumor cells to the bone [140].
In an in vitro study, statins prevent metastasis in renal endometrial cancer cells via the
AKT/mTOR, ERK, and JAK2/STAT3 pathways [141]. Atorvastatin has been shown to
inhibit endothelial mesenchymal transition (EMT), a possible mechanism for the statin-
mediated suppression of metastasis [142].

Statins could exhibit their antitumor effects by mevalonate-independent mechanisms.
A study found that the lovastatin–docosahexaenoic conjugate exhibited anti-proliferative
effects on triple-negative breast cancer cells (MDA-MB-231 and MDA-MB-468) and induced
apoptosis [143]. A recent study also suggested a different mechanism of action for atorvas-
tatin anti-invasive proprieties in PTEN-positive prostate cancer cells, inhibiting the Akt
pathway via P2 × 7 and EHBP1 signaling [144]. In both cases, mevalonate could not reverse
the control conditions, confirming independent activity from the mevalonate pathway.

Statins have also been shown to promote immunomodulatory effects. Cholesterol-
enriched tumor microenvironments and tumor-infiltrating CD8+ T cells are associated with
highly expressed immune checkpoint proteins and enhanced T-cell exhaustion, resulting in
the escape of tumor cells’ immune surveillance. Reducing cholesterol levels in CD8+ T cells
restores T-cell antitumor activity [145]. Furthermore, it was reported that the depletion of
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intracellular isoprenoid statins promotes the potent activation of co-cultured IL2-primed
NK cells via IL-18, IL-1β, and caspase-1 activation [146]. Another finding has highlighted
that fluvastatin could impair perforin and granzyme release but not NK FasL- and TNF-α-
mediated cytotoxicity [147]. Additional investigation of the immunomodulatory properties
of statins will open fruitful areas of research with significant clinical implications.

In summary, numerous mechanisms have been proposed for statins to exert antitumor
activity; however, this requires further clarification.

3.2. Statins in Epidemiologic Studies

Several observational population-based studies indicate that statins have potential
anti-neoplastic properties (Table 1). A 15-year large-scale observational study of a Danish
subpopulation indicated a reduction in cancer-related mortality among cancer patients
using statins in 13 cancer types compared with patients who did not use statins [148].
A meta-analysis of 1,111,407 cancer patients revealed that statins were associated with
improved overall survival and cancer-specific survival [149]. However, a large meta-
analysis of 17 randomized studies and 25 observational studies reviewed the effect of
statins on all cancer risk, suggesting no effect on overall incidence in the short term (relative
risk (RR), 0.96; 95% CI, 0.72–1.2) [150]. A meta-analysis of breast cancer studies found that
the general use of statins was associated with lower cancer-specific and all-cause mortality.
In addition, lipophilic statins were associated with lower breast cancer-specific and all-
cause mortality; the protective effect of hydrophilic statins was weak only against all-cause
mortality [151]. Nevertheless, in another meta-analysis of 7858 breast cancer patients at
about 5 years of mean follow-up periods, no correlation between statin use and breast cancer
risk was detected (relative risk (RR), 1.02; 95% CI, 0.89–1.18) [152]. Regarding prostate
cancer, a study of 4204 patients who underwent prostate biopsy proposed that statins users
had a significantly reduced risk of prostate cancer compared with those who did not use
statins (RR, 0.92; 95% CI, 0.85–0.98) [153]. In addition, it had been suggested that statins
users have less frequent high-grade prostate cancer and lower prostate cancer volume.
Another analysis of 1001 men with prostate cancer, where 289 were statin users, reported
a 0.19 hazard ratio (HR) for prostate cancer-specific death among men who used statins
compared to men who did not use statins (95% CI, 0.06–0.56). The study suggested possible
mechanisms could be through statins reduction of mevalonate, circulating cholesterol, and
cholesterol-rich domains in cell membranes, which play a role in intracellular signaling
pathways related to prostate cancer cell survival [154]. On the other hand, the results of a
population-based epidemiologic study of 1001 prostate cancer patients indicated that the
use of statins was not associated with overall prostate cancer risk [155], while the study
has some concerns, including the relatively small sample size and the potential selection
and recall biases. An analysis of pancreatic ductal adenocarcinoma patients found that
using statins was associated with improved patients’ overall survival [156]. Moreover,
statins were associated with improved patient outcomes in 303 advanced adenocarcinoma
pancreatic cancer patients receiving chemoradiation and surgery [157]. A study of colon
cancer patients revealed that the use of statins after disease diagnosis was associated with
a significantly lower risk of death from any cause (adjusted RR, 0.67; 95% CI, 0.51–0.87)
and a lower risk of cancer-related death (adjusted RR, 0.66; 95% CI, 0.49–0.89). Notably,
the effect of statin use was greater for patients with intact bone morphogenetic protein
(BMP) signaling, independent of KRAS mutation status [158]. A recent meta-analysis of
colorectal cancer (CRC) cases reported that statin use was significantly correlated with a
reduction in overall mortality and cancer-specific mortality [159]. In gastric cancer, a cohort
study showed that statins could be related to a reduction in gastric cancer mortality in the
general population but have no association with the incidence of gastric cancer [160]. A
meta-analysis of 59,073 hepatocellular carcinoma (HCC) patients showed that statin use
was significantly associated with a reduced risk of HCC incidence compared to non-users
of statins (RR, 0.54; 95% CI, 0.47–0.61) [161]. A recent prospective observational study of
ovarian cancer patients suggested that the use of lipophilic statins was correlated with an
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increase in patient survival, but the effect was not observed in hydrophilic statins [162].
In cervical cancer, an HR of 0.83 for cervical cancer risk and statin use was reported (95%
CI of 0.67–0.99). In addition, statin use was correlated with reduced total gynecological
cancer mortality (HR, 0.70; 95% CI, 0.50–0.98) [163]. Another study showed that in cervical
cancer patients, the lipophilic statin user had better outcomes compared with the non-user
(progression-free survival: HR, 0.062; 95% CI, 0.008–0.517; overall survival: HR, 0.098; 95%
CI, 0.041–0.459) [164].

Table 1. Statin use in epidemiological studies.

Statins Cancer Type Study Type No. of
Patients

Combination
Agent Findings Ref.

NR

Breast

Cohort study 17,880 -
The use of statins after diagnosis of breast
cancer reduced breast cancer mortality and
all-cause mortality.

[165]

Lipophilic
statins Cohort study 1811 -

The use of lipophilic statins after breast
cancer diagnosis was related to a reduced
risk of breast cancer recurrence.

[166]

Atorvastatin,
rosuvastatin,
simvastatin,
lovastatin,
pitavastatin,
pravastatin, and
fluvastatin

Meta-analysis 75,684 -

Lipophilic statin use was associated with
improved DFS for patients with breast
cancer. In addition, there was an
improvement in cancer-specific survival
and overall survival.

[167]

Atorvastatin,
simvastatin,
lovastatin,
pravastatin and
rosuvastatin Prostate

Cohort study 44,126 - Statins are associated with a lower risk of
PTEN-null and lethal prostate cancer. [168]

NR Case–control
study 1367 NSAIDs

The use of statins alone or in combination
with NSAIDs had no protective effects on
the risk of advanced prostate cancer.

[169]

NR Colorectal Meta-analysis ~8.2
million -

The study confirmed a modest significant
protective effect of statin use at therapeutic
doses on CRC.

[170]

NR

Ovarian

Cohort study 4419 -
Ovarian cancer patients’ statin use after
diagnosis was not associated with the
reduction in mortality.

[171]

NR Meta-analysis 1,254,501
Statin use was not significantly associated
with risks but reduced mortality in ovarian
cancer patients.

[172]

Atorvastatin,
lovastatin,
simvastatin,
pravastatin,
rosuvastatin and
fluvastatin

Cohort study 958 -
In ovarian cancer, lipophilic statins slightly
improve patients’ survival with no effect
with hydrophilic statins.

[162]

Atorvastatin,
rosuvastatin,
simvastatin,
lovastatin,
pitavastatin,
pravastatin, and
fluvastatin

Endometrial
cancer Meta-analysis ~1,700,000 - Statin use decreases mortality of

endometrial cancer risks. [173]

NR Head and
neck Cohort study 1194 -

Statin use at the time of the diagnosis
improved overall and disease-free survival
of HPV-negative SCC of the larynx,
hypopharynx, and nasopharynx.

[174]
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Table 1. Cont.

Statins Cancer Type Study Type No. of
Patients

Combination
Agent Findings Ref.

Atorvastatin,
rosuvastatin,
simvastatin,
pravastatin, and
fluvastatin

Glioblastoma Case–control
study 27,159 - Statin use was not associated with the risk

of GBM. [175]

Simvastatin,
atorvastatin,
cerivastatin,
fluvastatin,
lovastatin, and
pravastatin

Cohort study 1093 - The use of statins was not associated with
improved OS or PFS in GBM patients. [176]

Atorvastatin,
simvastatin,
lovastatin,
pravastatin, and
rosuvastatin

Lung Cohort study 19,974 -
Statin use in patients with SCC and
adenocarcinoma lung cancer was
associated with a decreased mortality risk.

[177]

Abbreviations: NR, not reported; DFS, disease-free survival; NSAIDs, non-steroidal anti-inflammatory drugs;
CRC, colorectal cancer; GBM, glioblastoma multiforme; OS, overall survival; PFS, progression-free survival; SCC,
squamous cell carcinoma.

The inconsistency in published epidemiological findings regarding statin use and
cancer incidence and mortality could be due to differences in follow-up periods and
other limitations in retrospective and observational study designs. A long enough follow-
up period could be considered to detect the relationship between statin use and cancer
development.

3.3. In Vitro Anticancer Effects of Statins

The antiproliferative effects of statins are powerfully demonstrated by in vitro studies
on cancer cell lines (Table 2). The effect is based on both the inhibition of proliferation
and the induction of apoptosis by modulating the expression and activity of several pro-
teins involved in cell cycle progression. Statins through the depletion of isoprenoids
lead to pro-apoptotic effects in a variety of cancer cells, including CRC cells [178], breast
cancer [179,180], lung adenocarcinoma, glioblastoma cell lines (GBM) [179], ovarian [181],
thyroid [182], cholangiocarcinoma [183], hematopoietic tumor cells [184], and murine
melanoma cells [185]. Concerning cell cycle arrest, statins arrest the cell cycle at the G1
phase, as has been revealed for prostate cancer [186,187], breast cancer cells [185], multiple
myeloma [188], and renal cell carcinoma (RCC) [189].

EMT, which is an effective mechanism of cancer metastasis, is a dynamic multi-gene
programming cycle [190]. In breast cancer stem-like cells, lipophilic statins have been
found to antagonize EMT signaling pathways by inhibiting the mevalonate pathway [191].
Evidence indicates that statins disrupting geranylgeranylation and farnesylation of small
GTPases inhibit tumor metastasis [126,192]. For example, lipophilic statins reduce cell
migration, invasion, and colony formation of metastatic prostate cancer cells [193], and
attenuated rac1 phosphorylation of simvastatin reduces the invasion ability of RCC [194].
Further, a direct effect of lovastatin on tumor cell adhesion was reported in HUVEC cells
treated with a combination of lovastatin and all-trans retinoic acid through the reduction of
E-selectin expression [195].

Moreover, studies revealed that combining statins with conventional anticancer drugs
in various cell lines improved therapeutic effects, as shown in breast cancer, hepato-
cellular carcinoma cancer, ovarian cancer, small-cell lung cancer, acute leukemia, and
GBM [196–202]. A combination of statins and ionizing radiation has successfully sup-
pressed lung tumors [203].
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3.4. In Vivo Anticancer Effects of Statins

To verify the detected in vitro beneficial effects of statins on cancer cells, in vivo stud-
ies have been conducted (Table 2). Studies performed on mice xenografts confirmed the
potential for statin-induced apoptosis in breast cancer [204], prostate cancer [205], and renal
models [194]. Targeting of the MA pathway and intraperitoneal injection of pitavastatin
resulted in the growth inhibition of subcutaneous glioblastoma tumor cells [206]. Sim-
vastatin significantly inhibits tumor growth and bone metastasis, concomitantly reducing
MAPK/ERK activity in a xenograft mouse lung cancer model [207]. Another investigation
confirmed the association between monomeric GTPases and cancer metastasis, in which
atorvastatin inhibited metastasis of RhoC-overexpressed melanoma cells in vivo [192].

Combined therapies of statins and current anticancer drugs have been subject to assess-
ment in numerous in vivo models. In an in vivo GBM model, atorvastatin synergistically
enhanced the efficacy of temozolomide to prevent tumor growth via Ras isoprenylation
suppression and downstream Ras, ERK, rS6, and elF4E activation reduction [208]. Further-
more, administering low doses of a combination of atorvastatin and celecoxib in mice was
more effective than each treatment and efficiently prevented prostate cancer progression
from androgen-dependent to androgen-independent [209]. Gemcitabine and fluvastatin
combination therapy in pancreatic cancer xenografts leads to suppression and a delay in
tumor growth relapse [210]. Finally, simvastatin and cetuximab combination therapy in a
murine model significantly reduced the proliferation of xenograft Kirsten rat sarcoma viral
oncogene homolog (KRAS)-mutated CRC tumors compared to cetuximab alone [211].

Table 2. The anticancer effect of statins in preclinical studies.

Statins Cancer
Type Study Type Combination

Agent Findings Ref.

Atorvastatin

Breast

In vitro -
The antiproliferative effects of atorvastatin on breast
cancer cells (MCF-7) are mediated by the induction of
apoptosis and autophagy.

[212]

Simvastatin In vitro -
Simvastatin-induced breast cancer cell apoptosis,
inhibited proliferation, and the deactivation of
PI3K/Akt and MAPK/ERK pathways.

[213]

Simvastatin In vitro Doxorubicin

Simvastatin synergistically acts with the anticancer
agent doxorubicin against breast cancer MCF-7 cells,
probably through a down-regulation of the cell cycle
or induction of apoptosis.

[214]

Lovastatin In vitro -
Lovastatin-mediated MCF-7 breast cancer cell death
involves the activation of
LKB1-AMPK-p38MAPK-p53-survivin cascade.

[215]

Mevastatin In vitro and
vivo

Histone
deacetylase
inhibitors
(HDACi)

Combination treatment inhibited autophagic flux by
preventing Vps34/Beclin 1 complex formation and
downregulating prenylated Rab7, an active form of
the small GTPase necessary for
autophagosome–lysosome fusion in triple-negative
breast cancer cells.

[216]

Lovastatin,
mevastatin,
pitavastatin
calcium, and
simvastatin

In vitro -

Statins possess different anticancer activity in human
breast cancer MDA-MB-231 and MCF-7 cell lines.
Pitavastatin and simvastatin showed the highest
activity in colony formation assay and migration and
reduced the growth of MCF-7 spheroids.

[217]

Atorvastatin
In vitro/ex
vivo and
vivo

- Statins can block the outgrowth of breast cancer
metastases. [218]
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Table 2. Cont.

Statins Cancer
Type Study Type Combination

Agent Findings Ref.

Atorvastatin

Prostate

In vitro - Atorvastatin induces autophagy in prostate cancer
pC3 cells through the activation of LC3 transcription. [219]

Simvastatin
and fluvastatin In vitro -

Statins decrease cell proliferation and induce cell
apoptosis, possibly mediated through the
downregulation of AKT/FOXO1 phosphorylation in
prostate cancer cells.

[220]

Atorvastatin,
mevastatin,
simvastatin
and
rosuvastatin

In vitro -

Lipophilic statins reduce the migration and colony
formation of PC-3 cells in human bone marrow
stroma via inhibiting GGPP production, decreasing
the formation, and the spread of metastatic prostate
colonies.

[193]

Lovastatin Ovarian In vitro and
vivo -

Lovastatin influenced the expression of genes
associated with DNA replication, glycolysis,
Rho/PLC signaling, and cholesterol biosynthesis
pathways.

[221]

Simvastatin,
atorvastatin,
rosuvastatin,
lovastatin,
fluvastatin,
and
pravastatin

In vitro Carboplatin or
paclitaxel

All the tested statins except pravastatin demonstrated
single-agent activity against monolayers. Statins
exhibited conflicting effects on the autophagy
pathway.

[222]

Atorvastatin In vitro -

The antiproliferative activity of atorvastatin was
connected with the induction of apoptosis, autophagy,
cellular stress, and cell cycle G1 arrest through the
inhibition of AKT/mTOR and the activation of the
MAPK pathways. In addition, atorvastatin inhibited
cell adhesion, invasion, and decreased the expression
of VEGF and MMP 9. c-Myc was downregulated in
ovarian cancer,

[223]

Atorvastatin,
fluvastatin,
and
simvastatin

Cervical In vitro -
Statins exert antitumor effects on cervical cancer via
the inhibition of cell proliferation and the induction of
cell death and oxidative stress.

[224]

Simvastatin Gastric In vitro -

Simvastatin inhibited the proliferation and migration
of intestinal (NCI-N87) and diffuse (Hs746T)
metastatic gastric tumor cell lines by reducing
mevalonolactone, FPP, and GPP.

[225]

Simvastatin

Colorectal

In vitro -

Simvastatin prompts the apoptosis of human colon
cancer cells and inhibits IGF-1-induced ERK and Akt
expression via the downregulation of IGF-1R
expression and pro-apoptotic ERK activity.

[226]

Atorvastatin In vitro and
vivo Nobiletin

Co-treatments of nobiletin and atorvastatin
synergistically induced growth inhibitory effects,
extensive cell cycle arrest, and apoptosis on the colon
cancer cells. In addition, the combination
synergistically enhanced chemopreventive activities
against colon carcinogenesis in rats.

[227]
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Table 2. Cont.

Statins Cancer
Type Study Type Combination

Agent Findings Ref.

Atorvastatin

Liver

In vitro -
Atorvastatin induces microRNA-145 expression in
hepatic cancer cells HEPG2 through regulation of the
PI3K/AKT signaling pathway.

[228]

Pravastatin
and fluvastatin In vitro PBR ligands

Statins induced G1/S cell cycle arrest and apoptosis
in hepatocellular carcinoma cells, and the efficacy of
treatment with statins was synergistically enhanced
by ligands of the peripheral benzodiazepine receptor
(PBR).

[229]

Pitavastatin In vitro and
vivo -

Pitavastatin inhibited growth and colony formation
and induced arrest at the G1 phase of liver cancer
Huh-7 and SMMC7721 cells. It also promoted
caspase-9 and caspase-3 cleavage. Pitavastatin
reduced tumor growth and improved the survival of
tumor-bearing mice.

[230]

Simvastatin Lung In vitro and
vivo -

Simvastatin inhibits proliferation and osteolytic bone
metastases of lung adenocarcinoma cells in vitro and
in vivo. Its mechanism might be linked with
regulating the CD44, P53, and MMP family and
inactivating the MAPK/ERK signaling pathway.

[203]

Pitavastatin
and fluvastatin In vitro Erlotinib

Statins/erlotinib combination’s induced cytotoxicity
is synergistic, can overcome erlotinib resistance in
K-ras-mutated NSCLC, and depends on apoptosis.

[231]

Simvastatin
and Lovastatin

Melanoma
and
neuroblast-
oma

In vitro
TRAIL
sodium
arsenite

Treatment of melanoma cells with statin enhanced
TRAIL-induced apoptosis due to suppression of the
NF-κB and STAT3-transcriptional targets (including
COX-2) and downregulation of cFLIP-L (a caspase-8
inhibitor) protein levels. Moreover, co-treatment with
sodium arsenite and TRAIL or simvastatin and
TRAIL efficiently induced apoptotic commitment in
human neuroblastoma cells.

[232]

Lovastatin,
atorvastatin,
simvastatin,
pravastatin,
and fluvastatin

Melanoma In vitro -

Pravastatin was the least effective cytotoxic of the five
tested statins on melanoma cells. Lovastatin produces
apoptosis in multiple melanoma cell lines through a
geranylation-specific mechanism via
caspase-dependent signaling.

[115]

Simvastatin

Head and
neck

In vitro Celecoxib

Simvastatin and celecoxib alone and in a combined
treatment significantly reduced head and neck SCC
viability, proliferation, and the secretion of IL-6 and
IL-8.

[233]

Simvastatin In vitro
Monocarboxylate
transporter 1
(MCT1)

Simvastatin induces metabolic reprogramming in
head and neck squamous cell carcinoma mice,
reducing lactate production and promoting cancer
sensitivity to MCT1 inhibitors.

[234]

Pitavastatin In vitro -
Pitavastatin activates the FOXO3a/PUMA apoptotic
axis via regulation of nuclear translocation of FOXO3a
through Akt/FOXO3a or AMPK/FOXO3a signaling.

[235]

Atorvastatin In vitro and
vivo -

Atorvastatin significantly reduced the active form of
RhoC in vitro and diminished cell motility, invasion,
proliferation, and colony formation. A significant
decrease in p-ERK1/2 and p-STAT3 in
atorvastatin-treated cell lines was observed. In vivo,
experiments have shown the inhibition of
angiogenesis and lung metastases.

[236]

Abbreviations: GGPP, geranylgeranyl pyrophosphate; TRAIL, TNF-related apoptosis-inducing; FPP, farnesyl py-
rophosphate; GPP, geranylgeranyl pyrophosphate; NSCLC, non-small cell lung cancer; VEGF, vascular endothelial
growth factor; MPP, matrix metalloproteinase; SCC, squamous cell carcinoma.
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3.5. Clinical Trials of Statins

In recent years, in light of achieving promising preclinical results, the potential an-
ticancer effects of statins in clinical studies have been evaluated for several cancer types,
either as a single agent or combined with chemotherapeutic agents used in standard
treatment protocols (Table 3).

A prospective study designed to determine biomarkers of statin responsiveness in
postmenopausal women at increased risk of breast cancer revealed that 24–28 weeks
of use of simvastatin significantly decreased lipid profiles, high-sensitivity C-reactive
protein, and estrone sulfate levels [237]. However, another study in women at high risk
for breast cancer failed to prove significant modulation of the breast cancer biomarker
after 6 months of lovastatin therapy [238]. Neoadjuvant fluvastatin for breast cancer
patients with a high grade at a high dose (80 mg/day) reduced breast tumor proliferation
and increased apoptosis compared with a lower 20 mg/day treatment [239]. Moreover,
neoadjuvant fluvastatin (80 mg/day) treatment for 4–12 weeks before radical prostatectomy
is associated with apoptosis induction in localized prostate cancer patients [240]. Another
study found that simvastatin might improve the efficacy of gefitinib in gefitinib-resistant
non-small cell lung cancer (NSCLC) patients [241]. Further, the addition of lovastatin to
thalidomide and dexamethasone in the treatment of patients with relapsed or refractory
multiple myeloma improved overall survival and progression-free survival [242]. A phase
I clinical trial was performed to investigate the safety and to recommend the dose of
rosuvastatin in patients with advanced solid malignancies, in which an escalating dose of
rosuvastatin (1–8 mg/kg/day) in combination with the standard erlotinib dose was used.
The combination has resulted in a disease stabilization rate of 25%; meanwhile, a high level
of muscle toxicities has been detected, limiting the use of this combination [243]. In the
phase II clinical trial, the safety and efficacy of simvastatin combined with cetuximab were
evaluated in metastatic CRC patients with KRAS mutations who had previously received
fluoropyrimidine, oxaliplatin, and irinotecan-based treatment regimens. The clinical data
revealed that only 4 out of 18 (22.2%) patients were free from progression at the primary
end, with 20.3 to 47 weeks of progression [244].

Overall, clinical trial findings regarding statin use in cancer have been inconclusive.
Therefore, additional well-designed clinical trials are needed to confirm statins’ safe and
effective use.

Table 3. Statin use in anticancer clinical trials.

Statins Cancer
Type Phase No. of

Patients
Combination
Agent Findings Ref.

Fluvastatin

Breast

II 40 3–6 months statin
perioperative

After statins use, Ki67 was reduced and caspase 3
increased. [239]

Simvastatin III 60 FAC
Simvastatin combined with FAC shows
improvements in objective response rate and
pathological response in patients with LABC.

[245]

Atorvastatin II 42 -
Atorvastatin decreased breast cancer
proliferation via cell cycle regulatory effects
through cyclin D1 and p27.

[246]

Pravastatin

Liver

II 83

Transcatheter
arterial
embolization
(TAE) followed
by 5-FU

Median survival was 18 months in the
pravastatin group compared to 9 months in
controls (p = 0.006).

[247]

Pravastatin II 312 Sorafenib
A combination of sorafenib and
pravastatin did not improve overall survival
compared to sorafenib alone.

[248]
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Table 3. Cont.

Statins Cancer
Type Phase No. of

Patients
Combination
Agent Findings Ref.

Simvastatin

Gastric

III Capecitabine–
cisplatin

Adding simvastatin to capecitabine–cisplatin
does not increase PFS. [249]

Pravastatin II 30 ECC
The addition of pravastatin to ECC in patients
with advanced gastric cancer did not improve the
outcome.

[250]

Simvastatin Colorectal III 269 FOLFIRI/XELIRI
Adding simvastatin to the XELIRI/FOLFIRI
regimens did not improve PFS in patients with
previously treated metastatic colorectal cancer.

[251]

Abbreviations: FAC, fluorouracil, adriamycin, and cyclophosphamide; LABC, locally advanced breast cancer;
PFS, progression-free survival; ECC, epirubicin, cisplatin, and capecitabine; FOLFIRI, fluorouracil, irinotecan, and
leucovorin; XELIRI, capecitabine and irinotecan.

3.6. Drug Efflux Pumps in Cancer and Modulating Efflux Pumps in Cancer with Statins

Cancer chemoresistance is associated with tumor relapse and metastases and remains
a major health challenge [252,253]. Several cellular and non-cellular pathways have been
suggested as hypothetical mechanisms behind MDR, such as removing hydrophobic drugs
from cells through an increased energy-dependent efflux [254,255]. ABC proteins are
members of the membrane transport system superfamily; they are responsible for the
translocation of numerous substrates (e.g., ions, sugars, amino acids, peptides, lipids, and
xenobiotics) using energy derived from the hydrolysis of ATP [256,257]. ABC transporters
are expressed naturally in diverse tissues and protect the body from xenobiotics [258,259].
Forty-nine different ABC transporter genes are found in the human genome, categorized
into seven distinct subfamilies. Among them, three subfamilies commonly involved in
cancer MDR are P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP 1 or ABCC1),
and breast cancer resistance protein (BCRP or ABCG2) [260,261].

ABCB1 transporter overexpression in cancer cells results in developing resistance
to several chemotherapeutic drugs, including doxorubicin, daunorubicin, vinblastine,
vincristine, docetaxel, paclitaxel, actinomycin-D, teniposide, and etoposide [262]. P-gp
is the best-described efflux pump that facilitates MDR in malignancy [263]. Subcellular
expression of P-gp may play a crucial role in MDR in several cancers [27,264–266].

MRP1 or ABCC1 is structurally related to P-gp [267]. ABCC1 transports anticancer
drugs such as methotrexate, etoposide, epirubicin, doxorubicin, and vincristine [268].
Although there is high expression of ABCC1 in almost all cancer types, there has been no
evidence for an association between its expression and drug resistance [269].

ABCG2, also named BCRP, is expressed in many biological tissues and numerous solid
tumors as well as hematological malignancies [270]. ABCG2 transports many chemothera-
peutic agents, including mitoxantrone, topotecan, SN-38, tyrosine kinase inhibitors, and
doxorubicin [271].

ABC transporters are located in the lipid rafts, plasma membrane domains rich in
cholesterol and glycosphingolipids. Studies have revealed that membrane cholesterol is
essential in regulating the activity of ABCB1 and ABCG2; accordingly, lipid-lowering drugs
can potentially overcome drug resistance [272,273]. Glodkowka-Mrowka et al. reported
that statin-induced depletion of cellular cholesterol in leukemic cells inhibited ABCB1
and ABCG2 multidrug transporters [274]. Moreover, it has been published that statins
inhibit the activity of ABCB1 in resistant human tumor cell lines [275]. Another study
on colon cancer cells combined with statins and flavonoids showed that statins can also
affect cholesterol biosynthesis by inhibiting HMG-CoA reductase. Still, they can also act
through different mechanisms [276]. A similar concept has been previously implemented
by Staedler et al., who demonstrated increased growth inhibitory effects of atorvastatin
when combined with other cholesterol-lowering agents in human glioblastoma cells [277].
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Simvastatin was found to induce a glutathione (GSH)-mediated reduction of ABCG4
levels, which is responsible for intracellular doxorubicin and cisplatin efflux, increasing
the sensitivity of prostate cancer cells to both doxorubicin and cisplatin. Interestingly,
simvastatin and doxorubicin combined significantly reduced tumor growth and size with-
out clear doxorubicin-induced cardiotoxicity [278]. Another study was performed in
which simvastatin and mevastatin effectively revert doxorubicin resistance in human ma-
lignant mesothelioma through inactivation of the ABC transporter P-gp via nitric oxide
(NO)-dependent nitration in the tyrosine residue of P-gp, responsible for the efflux of
doxorubicin [279]. Moreover, simvastatin and mevastatin, combined with flavonoids, sup-
pressed doxorubicin resistance in colon cancer cells [280]. Simvastatin and phenothiazine
derivative combinations reverse resistance to doxorubicin in colon cancer cells by suppress-
ing the expression of ABCB1 (P-gp) and inflammation markers Cox-2 [281]. Furthermore,
simvastatin-reversed doxorubicin mediates resistance in unmated chronic lymphocytic
leukemia (CLL) cells via upregulating Ras/ERK1-2, RhoA/RhoA kinase, Akt, HIF-1, and
P-gp activities [282]. The inhibition of drug efflux mediated by P-gp transporter in the
presence of statins has been reported in human neuroblastoma cells [283]. Statins have
also been revealed to bind directly to P-gp, facilitating doxorubicin transport in cancer
cells [275].

As previously mentioned, repurposing statins could be a logical way to overcome
cancer’s multidrug resistance.

4. Conclusions

Statins are HMG-CoA reductase inhibitors belonging to a class of lipid-lowering drugs
originally developed to treat cardiovascular disease. In recent decades, statins have been
widely recognized as pleiotropic drugs.

Since developing novel chemotherapeutic drugs requires large investments, drug
repurposing offers a new approach that can provide alternatives as adjuvants in treat-
ing resistant microbial infections and progressive cancerous diseases with overexpressed
efflux pumps.

There are some similarities between the effects of statins on bacteria and tumor cells.
In both cases, statins can affect cell proliferation and survival by modulating key signaling
pathways. Statins can inhibit the mevalonate pathway, which is important for synthesizing
cholesterol and isoprenoids, leading to downstream effects on cellular processes such as cell
membrane formation, signal transduction, and protein prenylation. This property can result
in antitumor effects in tumor cells by reducing cell proliferation and promoting apoptosis.
Similarly, statin-mediated inhibition of the mevalonate pathway in bacteria can lead to
decreased bacterial growth and increased susceptibility to antibiotics. Bacteria express
different subtypes of the HMG-CoA reductase enzyme, and the role of the mevalonate
pathway in the antibacterial effect should be investigated in more detail. Molecular docking
to study the interactions between statins (fluvastatin, cerivastatin, and rosuvastatin) and
HMG-CoA reductase and to evaluate their binding efficiency with HMG-CoA reductase
indicates that fluvastatin binds strongly with amino acids at the active site of HMG-CoA.
In contrast, rosuvastatin has a comparatively weaker interaction [284]. On the other hand,
some natural compounds, such as rutin, amentoflavone, and ganomycin I, were reported
to bind to HMG-CoA reductase with high docking scores [285,286]. In silico studies were
performed to reveal the possible bacterial protein targets of statins other than HMG-CoA
reductase. These molecular targets are structural and enzymatic proteins essential for
bacteria’s survival and proliferation. Simvastatin, rosuvastatin, and fluvastatin had good
binding interactions with various microbial structures [287]. Further computer-aided
drug identification of target–ligand interaction at the molecular level between statin and
HMG-CoA reductase is warranted to give a deeper insight for further optimization of the
statin molecules.

A similarity between the bacterial and cancer-related effects of statins is the potential
for statins to modulate immune responses. In the presence of tumor cells, statins have
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been shown to have immunomodulatory effects by reducing inflammation and promoting
antitumor immune responses. In bacterial infections, statins may also have immunomodu-
latory effects by enhancing host immune responses and reducing the severity of infections.
The mechanisms of action may differ between tumor cells and bacteria, but there are some
resemblances in how statins can provide inhibitory effects against these two types of cells.

In conclusion, statins might potentiate antibacterial and anticancer therapy, as was
published in epidemiological and clinical studies. However, well-designed clinical trials
are required to transfer this to patients’ standards of treatment.
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Phenothiazines and Statins Strongly Affects Doxorubicin-Resistance, Apoptosis, and Cox-2 Activity in Colon Cancer Cells. Int. J.
Mol. Sci. 2019, 20, 955. [CrossRef]

282. Rigoni, M.; Riganti, C.; Vitale, C.; Griggio, V.; Campia, I.; Robino, M.; Foglietta, M.; Castella, B.; Sciancalepore, P.; Buondonno, I.;
et al. Simvastatin and Downstream Inhibitors Circumvent Constitutive and Stromal Cell-Induced Resistance to Doxorubicin in
IGHV Unmutated CLL Cells. Oncotarget 2015, 6, 29833–29846. [CrossRef]

283. Sieczkowski, E.; Lehner, C.; Ambros, P.F.; Hohenegger, M. Double Impact on P-glycoprotein by Statins Enhances Doxorubicin
Cytotoxicity in Human Neuroblastoma Cells. Int. J. Cancer 2010, 126, 2025–2035. [CrossRef] [PubMed]

284. Toppo, A.L.; Yadav, M.; Dhagat, S.; Ayothiraman, S.; Satya Eswari, J. Molecular Docking and ADMET Analysis of Synthetic
Statins for HMG-CoA Reductase Inhibition Activity. Indian J. Biochem. Biophys. 2021, 58, 127–134.

285. Suganya, S.; Nandagopal, B.; Anbarasu, A. Natural Inhibitors of HMG-CoA Reductase—An In Silico Approach Through
Molecular Docking and Simulation Studies. J. Cell. Biochem. 2017, 118, 52–57. [CrossRef] [PubMed]

286. Marahatha, R.; Basnet, S.; Bhattarai, B.R.; Budhathoki, P.; Aryal, B.; Adhikari, B.; Lamichhane, G.; Poudel, D.K.; Parajuli, N.
Potential Natural Inhibitors of Xanthine Oxidase and HMG-CoA Reductase in Cholesterol Regulation: In Silico Analysis. BMC
Complement. Med. Ther. 2021, 21, 1. [CrossRef] [PubMed]

287. Gupta, M.; Sharma, R.; Kumar, A. Comparative Potential of Simvastatin, Rosuvastatin and Fluvastatin against Bacterial Infection:
An In Silico and In Vitro Study. Orient. Pharm. Exp. Med. 2019, 19, 259–275. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/jm300256z
https://doi.org/10.1002/mc.22996
https://doi.org/10.1002/ijc.21832
https://doi.org/10.1016/j.biopha.2018.10.169
https://doi.org/10.3390/ijms20040955
https://doi.org/10.18632/oncotarget.4006
https://doi.org/10.1002/ijc.24885
https://www.ncbi.nlm.nih.gov/pubmed/19739078
https://doi.org/10.1002/jcb.25608
https://www.ncbi.nlm.nih.gov/pubmed/27216569
https://doi.org/10.1186/s12906-020-03162-5
https://www.ncbi.nlm.nih.gov/pubmed/33386071
https://doi.org/10.1007/s13596-019-00359-z

	Introduction 
	Antibacterial Effects of Statins 
	The Role of HMG-CoA Reductase in Bacteria 
	Isoprenoid Intermediates in Bacteria 
	The Role of Bacterial Efflux Mechanisms in Antibiotic Resistance and the Effects of Statins on Antibiotic Resistance 
	Quorum Sensing: A Possible Target for the Reversal of Efflux-Mediated Resistance 
	Statins in Managing Specific Bacterial Infections 

	Anticancer Effects of Statins 
	Potential Anticancer Mechanisms of Action of Statins 
	Statins in Epidemiologic Studies 
	In Vitro Anticancer Effects of Statins 
	In Vivo Anticancer Effects of Statins 
	Clinical Trials of Statins 
	Drug Efflux Pumps in Cancer and Modulating Efflux Pumps in Cancer with Statins 

	Conclusions 
	References

