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Abstract: Optimising antimicrobial usage (AMU) in livestock is pivotal to counteract the emergence of
antimicrobial resistance. We analysed AMU in more than 1000 cattle herds over 11 years (2008–2018) in
the Aosta Valley (Italy), a region where 80% of farms house less than 50 cattle. Dairy cows accounted
for over 95% of AMU. AMU was estimated using the defined daily dose animal for Italy (DDDAit) per
biomass for the whole herd and a treatment incidence 100 (TI100) for cows. Average annual herd-level
AMU was low, with 3.6 DDDAit/biomass (range: 3.2–4.0) and 1.2 TI100 in cows (range: 1.1–1.3).
Third and fourth generation cephalosporins, which are critical for human medicine, represented
almost 10% of usage, and intramammary antimicrobials accounted for over 60%. We detected
significant downward temporal trends in total AMU, as well as a positive relationship with herd size.
The magnitude of such effects was small, leaving scant room for further reduction. However, the
frequent use of critical antimicrobials and intramammary products should be addressed, following
the principles of prudent AMU. Our findings highlight the importance of monitoring AMU even in
low-production, smallholding contexts where a low usage is expected, to identify any deficiencies
and implement interventions for further AMU optimisation.

Keywords: antimicrobial stewardship; dairy cows; critical antimicrobials; dual-purpose breed;
mountain grazing

1. Introduction

Optimising antimicrobial use (AMU) in livestock production is crucial to address
antimicrobial resistance (AMR) within the One Health paradigm [1–3]. Although steadily
decreasing, AMU in Italian animal production is still among the highest in Europe [4].
Monitoring AMU is pivotal to guide and to verify the effectiveness of antimicrobial stew-
ardship (AMS) interventions aimed at reducing and optimising usage [5]. In livestock, AMS
encompasses a series of actions aimed at reducing the risk of infectious disease occurrence
(biosecurity and management), optimising the treatment regime (dosage, duration and
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route) and prudent AMU [6–8]. The latter involves both the veterinarian in the choice of
the appropriate antimicrobial and the farmer in the correct administration of said antimi-
crobial [6]. Choosing the appropriate drug is particularly relevant, since antimicrobials
are not considered of equal importance: international associations, such as the World
Health Organisation (WHO) and the European Medicines Agency (EMA), identify specific
antimicrobial classes that are critical for human medicine and whose use in the veterinary
sector should be limited [9,10]. These antimicrobials can represent life-saving treatments
for humans where therapeutic alternatives are limited; therefore, containing the spread of
AMR for these classes should be a priority to preserve their efficacy.

Different livestock sectors may contribute differently to a country’s AMU, both in
quantitative and qualitative terms (i.e., usage of critical antimicrobials). Currently, detailed
information on AMU by production sector is not yet available for Italy. In countries
with well-established monitoring systems, such as Denmark and the Netherlands, dairy
farming has a lower AMU when compared to other sectors such as pig, poultry or veal calf
production with low to no use of critical antimicrobials [11,12]. However, several studies
in other countries conversely report a frequent administration of critical classes in dairy
cattle [13–18]. Additionally, the potential contribution of farm factors, such as herd size, to
AMU in this livestock sector is still debated [19] and the role of smallholders needs further
clarification. Information on AMU in small Italian cattle herds is limited, with only a
couple of studies reporting an estimation of AMU in small or small-to-medium farms, both
highlighting low usage [20,21]. Although there is no univocal definition of ‘smallholder’, as
its meaning largely depends on production and geographic context [22–26], at European level,
the European Food Safety Authority (EFSA) proposed that all herds with less than 75 cows
can be considered as smallholders as long as they also fulfil at least two of the following
criteria: mainly family-owned, a limited use of concentrates, housing of local breeds and/or
specific certified production (e.g., organic, Protected Designation of Origin) [22].

The present study aims therefore to describe and analyse AMU in a regional-scale
dataset comprising mostly cattle herds that can be classified as smallholder according to
the EFSA definition. In particular, our dataset consists of an 11-year prescription data series
from over 1000 herds located in the Aosta Valley, a mountainous region in the Italian Alps.
This will allow us to identify possible deficiencies in terms of prudent AMU, aiding future
AMS interventions even in a smallholding context, where high AMU is not expected.

2. Results

A total of 1260 different herds were included in the study; 80.2% of these herds housed
fewer than 50 cattle, 16.4% between 50 and 100, and 3.4% more than 100. Regarding cows
specifically, 97.2% of the herds housed fewer than 75 heads (Figure 1).

The average number of monitored herds per year was 808 (range: 693–931). This
corresponds to a mean of 19,781 cows per year (range: 18,895–20,837), 8344 heifers/beef
per year (range: 7633–8895) and 2654 calves per year (2512–2823). Detailed herd data by
year are reported in Table 1.

During the study period, the total number of herds decreased significantly (parameter
estimate ± SE = −27 ± 1 herds/year; p < 0.0001; R2 = 0.98), from 931 in 2008 to 693 in 2018.
The number of cattle in the region decreased as well (−308 ± 37 heads/year; p < 0.0001;
R2 = 0.87), but less strongly: from 31,635 to 29,040 heads. As a result, the average herd
size increased significantly (0.90 ± 0.06 heads/herd/year; p < 0.0001; R2 = 0.96), from
34.0 heads/herd in 2008 to 41.9 heads/herd in 2018.

Overall, average annual herd-level AMU was 3.61 DDDAit/biomass (range: 3.21–4.00)
while usage of WHO’s Highest Priority Critically Important Antimicrobials (HPCIAs) was
0.38 DDDAit/biomass (range: 0.34–0.42). A detailed breakdown of herd-level AMU by
year is reported in Table 2.
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Table 1. Annual descriptive statistics of the cattle herds included in the analysis of antimicrobial
usage in the Aosta Valley (Italy) from 2008 to 2018.

Year Herds Animal Category Heads Mean
(Standard Error)

Median
(Range)

2008 931
Cows 20,086 21.6 (0.63) 15 (2–142)

Heifers/beef 8752 9.4 (0.31) 7 (0–83)
Calves 2797 3.0 (0.11) 2 (0–36)

2009 926
Cows 20,391 22.0 (0.63) 16 (2–159)

Heifers/beef 8895 9.6 (0.30) 7 (0–77)
Calves 2702 2.9 (0.11) 2 (0–31)

2010 907
Cows 20,837 23.0 (0.67) 18 (2–184)

Heifers/beef 8784 9.7 (0.31) 7 (0–89)
Calves 2823 3.1 (0.12) 2 (0–36)

2011 861
Cows 20,361 23.6 (0.69) 18 (2–162)

Heifers/beef 8729 10.1 (0.33) 7 (0–80)
Calves 2675 3.1 (0.12) 2 (0–40)

2012 831
Cows 19,960 24.0 (0.69) 19 (2–124)

Heifers/beef 8233 9.9 (0.31) 8 (0–73)
Calves 2655 3.2 (0.11) 2 (0–26)

2013 814
Cows 19,732 24.2 (0.68) 19 (2–113)

Heifers/beef 8243 10.1 (0.32) 8 (0–90)
Calves 2601 3.2 (0.12) 2 (0–31)

2014 763
Cows 19,635 25.7 (0.74) 20 (2–131)

Heifers/beef 8338 10.9 (0.36) 9 (0–99)
Calves 2600 3.4 (0.12) 2 (0–34)

2015 741
Cows 19,375 26.1 (0.75) 21 (2–111)

Heifers/beef 8349 11.3 (0.36) 9 (0–92)
Calves 2677 3.6 (0.14) 3 (0–43)



Antibiotics 2024, 13, 204 4 of 14

Table 1. Cont.

Year Herds Animal Category Heads Mean
(Standard Error)

Median
(Range)

2016 717
Cows 19,197 26.8 (0.78) 22 (2–112)

Heifers/beef 8134 11.3 (0.37) 9 (0–99)
Calves 2584 3.6 (0.13) 2 (0–29)

2017 699
Cows 19,123 27.4 (0.81) 22 (2–128)

Heifers/beef 7715 11.0 (0.37) 8 (0–94)
Calves 2580 3.7 (0.14) 3 (0–39)

2018 693
Cows 18,896 27.3 (0.78) 23 (2–130)

Heifers/beef 7633 11.0 (0.38) 9 (0–94)
Calves 2512 3.6 (0.13) 3 (0–33)

TOTAL 8883
Cows 217,593 24.5 (0.21) 18.8 (2–183.9)

Heifers/beef 91,805 10.3 (0.10) 7.7 (0–98.9)
Calves 29,204 3.3 (0.04) 2.3 (0–43.2)

Table 2. Annual descriptive statistics on antimicrobial use (AMU) in cattle herds included in the
study expressed as DDDAit per biomass. The use of antimicrobials included in WHO’s Highest
Priority Critically Important Antimicrobials list (polymyxins, quinolones, macrolides, third- and
fourth-generation cephalosporins) was considered critical. AMU was measured as DDDAit per
biomass and the mean was weighted on the farm biomass.

Year Herds Antimicrobial Use Weighted Mean
(Standard Error)

Median
(Range)

2008 931
Total 3.59 (0.07) 3.36 (0.06–18.13)

Critical 1 0.53 (0.03) 0.14 (0–14.04)

2009 926
Total 3.76 (0.08) 3.44 (0.11–22.59)

Critical 1 0.51 (0.03) 0.17 (0–8.10)

2010 907
Total 3.83 (0.08) 3.48 (0.06–21.40)

Critical 1 0.56 (0.03) 0.16 (0–10.45)

2011 861
Total 4.00 (0.08) 3.70 (0.09–17.96)

Critical 1 0.55 (0.03) 0.15 (0–7.82)

2012 831
Total 3.74 (0.08) 3.48 (0.03–17.94)

Critical 1 0.52 (0.03) 0.17 (0–5.83)

2013 814
Total 3.64 (0.08) 3.43 (0.07–20.44)

Critical 1 0.52 (0.03) 0.21 (0–5.22)

2014 763
Total 3.75 (0.08) 3.48 (0.07–18.80)

Critical 1 0.56 (0.03) 0.19 (0–5.64)

2015 741
Total 3.40 (0.08) 3.16 (0.04–19.55)

Critical 1 0.57 (0.03) 0.25 (0–19.55)

2016 717
Total 3.21 (0.08) 2.98 (0.03–14.52)

Critical 1 0.48 (0.03) 0.18 (0–7.98)

2017 699
Total 3.32 (0.08) 3.28 (0.05–18.40)

Critical 1 0.48 (0.03) 0.18 (0–6.08)

2018 693
Total 3.41 (0.08) 3.22 (0.07–20.27)

Critical 1 0.49 (0.03) 0.19 (0–7.04)

TOTAL 8883
Total 3.61 (0.02) 3.35 (0.03–22.59)

Critical1 0.52 (0.01) 0.19 (0–19.55)
1 WHO’s Highest Priority Critically Important Antimicrobials list (polymyxins, quinolones, macrolides, third-
and fourth-generation cephalosporins).
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The five most used classes accounted for 70.3% of the total AMU during the study
period. In detail, rifamycins accounted for 17.0% of AMU, aminopenicillins for 15.3%,
aminoglycosides for 14.0%, beta-lactamase-resistant penicillins for 13.2%, first- and second-
generation cephalosporins for 10.8%. Critical antimicrobials represented 14.5% of total
usage, and in particular, third- and fourth-generation cephalosporins accounted for 9.4% of
AMU, macrolides for 3.9%, fluoroquinolones for 1.1% and polymyxins for 0.1%.

There was a downward trend in the annual average AMU per herd during the study
period (−0.05 ± 0.02 DDDAit/biomass per herd per year; p = 0.014; R2 = 0.45; Figure 2),
while usage of critical antimicrobials remained stationary (p = 0.2; Figure 2).
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Figure 2. Temporal trend of the average annual antimicrobial usage (AMU) per herd in cattle reared in
the Aosta Valley (Italy): total AMU (orange) and usage of critical classes (red) included in the WHO’s
Highest Priority Critically Important Antimicrobials list (i.e., polymyxins, quinolones, macrolides,
third- and fourth-generation cephalosporins). Means were weighted on standardised biomass, and
error bars represent 95% Confidence Intervals.

Among the HPCIA classes, only macrolides showed a slight but significant reduction
during the study period (−0.006 ± 0.002 DDDAit/biomass per herd per year; p = 0.003;
R2 = 0.60). Detailed data on annual AMU distribution by antimicrobial class are reported
in Table 3.

Intramammary products for dry cows were the most used antimicrobials, accounting
for 42.8% of the total AMU over the study period, followed by injectables at 34.3%, intra-
mammary for milking cows at 20.4%, intrauterine at 1.3% and oral products at 1.2%.
Usage of intramammary antimicrobials for dry cows decreased during the study pe-
riod (−0.034 ± 0.008 DDDAit/biomass per herd per year; p = 0.002; R2 = 0.64), from
1.73 DDDAit/biomass per herd in 2008 to 1.45 DDDAit/biomass per herd in 2018.

Overall, 96.4% of all the antimicrobials used during the study period were adminis-
tered to cows, 2.7% to calves and 0.9% to heifers/beef. Average annual TI100 in cows was
1.21 (range: 1.06–1.33). Detailed data on annual AMU in cows are reported in Table 4.
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Table 3. Distribution of antimicrobial classes used on the cattle population of the Aosta Valley (Italy) by
year. Data for each class are expressed as percentage of total antimicrobial use (AMU). Classes included
in the WHO’s Highest Priority Critically Important Antimicrobial list are highlighted in bold.

Antimicrobial Class 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Cephalosporins (1st and 2nd gen.) 4.59 6.20 6.97 7.48 10.86 13.11 12.15 13.44 14.25 16.10 17.35
Rifamycins 17.36 19.16 19.65 17.87 16.69 17.96 17.87 14.06 14.96 14.42 14.96

Penicillins Beta 18.07 13.20 13.95 14.03 12.10 10.08 12.54 12.51 12.75 12.53 13.36
Aminopenicillins 20.90 19.51 15.03 14.32 14.35 13.76 13.43 14.70 14.21 13.87 13.29
Aminoglycosides 10.10 13.16 14.57 16.92 16.44 15.20 13.43 13.48 13.83 13.49 12.77

Cephalosporins (3rd and 4th gen.) 9.14 7.96 9.41 7.97 9.04 9.57 9.56 9.79 10.13 10.77 10.22
Lincosamides 5.18 6.93 7.73 7.41 7.92 8.81 8.33 7.35 6.99 7.16 7.26

Penicillins 4.29 3.53 3.87 5.12 4.89 4.54 4.63 4.51 6.18 6.08 5.29
Macrolides 4.47 4.39 3.99 4.44 3.82 3.45 3.93 4.55 3.44 2.83 3.19

Tetracyclines 2.32 2.26 1.92 1.79 1.37 1.26 1.78 1.61 1.31 1.14 1.03
Fluoroquinolones 1.08 1.08 1.07 1.16 0.91 1.08 1.11 1.88 1.06 0.99 0.78

Sulfonamides 2.12 2.38 1.59 1.32 1.25 0.96 0.99 1.53 0.64 0.61 0.45
Amphenicols 0.20 0.17 0.14 0.10 0.26 0.14 0.02 0.04 0.02 <0.01 0.05
Polymyxins 0.08 0.06 0.11 0.08 0.09 0.07 0.22 0.54 0.22 <0.01 <0.01
Polypeptides 0.08 0 0.02 0 0 0 0 0 0 0 0
Tetracyclines 2.32 2.26 1.92 1.79 1.37 1.26 1.78 1.61 1.31 1.14 1.03

Table 4. Annual descriptive statistics on antimicrobial use (AMU) in dairy cows housed in the Aosta
Valley herds. The use of antimicrobials included in WHO’s Highest Priority Critically Important
Antimicrobials list (polymyxins, quinolones, macrolides, third- and fourth-generation cephalosporins)
was considered critical. AMU was measured as a treatment incidence 100 (TI100) using daily dose
animal for Italy (DDDAit) as metric. The mean was weighted on the standardised biomass of cows
per herd.

Year Herds Antimicrobial Use
(TI100) 1

Weighted Mean
(Standard error)

Median
(Range)

2008 931
Total 1.20 (0.02) 1.12 (0–5.26)

Critical 2 0.16 (0.01) 0.02 (0–1.96)

2009 926
Total 1.25 (0.02) 1.12 (0–6.59)

Critical 2 0.16 (0.01) 0.04 (0–2.28)

2010 907
Total 1.27 (0.03) 1.19 (0–7.42)

Critical 2 0.18 (0.01) 0.05 (0–3.39)

2011 861
Total 1.33 (0.03) 1.23 (0–5.13)

Critical 2 0.18 (0.01) 0.04 (0–2.71)

2012 831
Total 1.24 (0.03) 1.15 (0–5.91)

Critical 2 0.17 (0.01) 0.04 (0–2.74)

2013 814
Total 1.20 (0.03) 1.15 (0–6.51)

Critical 2 0.17 (0.01) 0.07 (0–1.74)

2014 763
Total 1.24 (0.03) 1.16 (0–6.01)

Critical 2 0.18 (0.01) 0.06 (0–2.14)

2015 741
Total 1.09 (0.03) 0.99 (0–6.52)

Critical 2 0.17 (0.01) 0.07 (0–6.52)

2016 717
Total 1.06 (0.03) 1.02 (0–4.71)

Critical 2 0.15 (0.01) 0.06 (0–2.20)

2017 699
Total 1.24 (0.03) 1.21 (0–6.9)

Critical 2 0.19 (0.01) 0.06 (0–2.28)

2018 693
Total 1.13 (0.03) 1.05 (0–5.8)

Critical 2 0.16 (0.01) 0.06 (0–2.05)

TOTAL 8883
Total 1.21 (0.01) 1.12 (0–7.42)

Critical 2 0.17 (0.01) 0.05 (0–6.52)
1 Treatment index 100. 2 WHO’s Highest Priority Critically Important Antimicrobials list (polymyxins, quinolones,
macrolides, third- and fourth-generation cephalosporins).
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Total AMU in cows showed a small but significant decrease over the study period
(−0.008 ± 0.001 TI100/year; F1,7621 = 41.3; p < 0.0001; Figure 3) and was positively influenced
by herd size (0.0004 ± 0.0002 TI100/cow; F1,7621 = 5.3; p = 0.021).
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Figure 3. Median antimicrobial usage from 2008 to 2018 in cows housed in Aosta Valley cattle farms,
expressed as treatment incidence 100 (TI100). Error bars represent the interquartile range.

On any given year, roughly half of the herds in the area employed some critical
antimicrobials on cows (min—41.1% in 2008, max—50.5% in 2015). The probability of using
critical antimicrobials was positively affected by herd size (χ2

1 = 849.3; p < 0.0001): a 10-cows
increase led to a 50% increase in the odds of using HPCIAs (OR = 1.50; 95% CI = 1.47–1.54).

3. Discussion

We analysed regional-scale AMU data in cattle in the Aosta valley, an area of North-
ern Italy characterised almost entirely by smallholders, describing the AMU trends in
terms of total usage, usage of critical antimicrobials and administration routes over an
11-year period.

To estimate AMU, we have used two different standards, the DDDAit/biomass and the
TI100, to ensure comparability with previous Italian studies carried out in different bovine
production settings [15,27,28]. Indeed, comparison of AMU data collected in different
settings is often made difficult by the lack of a common metric and the widespread use of
different standards [5,29].

In terms of production, from 2008 to 2018, we observed a progressive reduction in
the number of herds in the region and a parallel increase in herd size, which is in line
with the national trend [30]. This trend may be due to changes in production and market
conditions that favour larger herds, which are potentially more cost-effective. Although
the investigated farms are classified as mixed operations, they can be considered akin to
dairy farms. Even though a few males are usually kept for meat production, dairy cows
make up the bulk of the herds. Even though wide differences among herds were found in
terms of overall AMU, more than 95% of antimicrobials were administered to cows. This
result suggests that this animal category should be the first target in case of stewardship
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interventions and confirms the importance of tracking AMU in the animal categories within
a herd.

The average herd-level AMU in the area decreased significantly (p < 0.0001) over the
study period, both when considering the herd as a whole and when considering only cows.
However, the effect size was rather small, with an annual average reduction around 1%.
Overall, AMU was generally low for the Italian context: the median DDDAit/biomass
reached a value of 3.2 in 2018, which is 33% lower than the 4.8 reported in another Italian
study on dairy farms carried out using the same standards but in a different geographic
area [15]. This result could be explained by the different farming conditions. Indeed, our
sample consisted almost entirely of smallholders housing low-yielding dairy cows, while
in the other study, larger farms (i.e., with a median number of cows almost seven times
higher) housing high-yielding breeds were considered [15]. In cows, the average TI100 was
1.2, which is 33–40% lower than the values reported in Italian studies on beef cattle that
used the same metrics [27,28]. These results are in contrast with another study in Central
Italy [31] that found a higher consumption in dairy cattle than in beef cattle. Nevertheless,
in this case, the discrepancies could be explained by the different AMU standards and
farming conditions (e.g., larger herds, different climates). A moderately higher average
AMU (around 16%) in dairy cattle when compared to non-dairy cattle was also reported
in the Netherlands [32]. However, also in this case, the results could be influenced by the
different production systems.

Comparing the results of this study with those in other countries is challenging due
to the lack of a common standard for estimating AMU in veterinary medicine. Indeed,
even DDD-based standards may differ considerably among countries due to different
antimicrobial dosages, combination products, standard animal weights, etc. [29,33]. A step
towards a more harmonised approach to estimating AMU in livestock was taken by the
EMA in 2016, when the agency published the defined daily doses for animals (DDDvet)
for cattle, pigs and poultry [34]. However, such units of measurement are still incomplete,
as they are not available for dry cow intramammary products [34], which were the most
commonly used in the farms involved in this study, and for some other antimicrobials.
For example, a study on Italian beef farms found that only 75% of the AMU measured
by DDDAit could also be measured by DDDvet [28]. In humans, a common standard
has been available and well established for years. In this case, DDDs are assigned by the
WHO on the basis of the Anatomical Therapeutic Chemical (ATC) code and the route of
administration (https://www.who.int/tools/atc-ddd-toolkit/about-ddd, accessed on 13
February 2024). Although arguably complex and costly, a similar approach could be used
in future for the veterinary sector too, ideally managed by the World Organisation for
Animal Health (WOAH) assisted by other agencies with expertise on the subject (e.g., the
WHO, EMA). A Belgian study on adult cows reported, on average, a higher AMU than the
present study (2.1 vs. 1.2) [18]. Although both studies considered very similar standards,
the Belgian farms involved were larger, with an average number of cows per herd almost
three times higher. Two US studies on even larger herds, one set in Wisconsin and one in
Ohio and California, reported, respectively, a higher AMU (33%) [13] and a very similar
AMU [35] to that found for the cows included in this study. Nevertheless, the former
study considered a higher-risk weight (680 vs. 600 kg) [13] while the latter used a very
different standard for intramammary dry products [35], which—leads to a lower estimate
of these antimicrobials (about a quarter for the same amount of products administered).
A Japanese study reported higher AMU values in cows (3.9) while considering a slightly
higher standard weight (635 kg) [36]. However, also in this case, the average herd size was
almost 50% larger.

The usage of critical antimicrobials was frequent and generally stable over the study
period, with only macrolides showing a limited downward trend. In particular, third-
and fourth-generation cephalosporins accounted for almost 10% of the overall AMU.
These findings are consistent with several previous studies on dairy farms [13–18] and
are particularly worrying considering the importance of these antimicrobials for human

https://www.who.int/tools/atc-ddd-toolkit/about-ddd
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medicine. Usage of macrolides was relatively frequent as well, representing 4% of total
AMU. The categorisation of this antimicrobial class is still under debate: the WHO classifies
macrolides as HPCIAs [10], while the EMA considers them a lower-priority class (category
C) [9]. One of the prioritisation factors that led to the inclusion of macrolides in the HPCIAs
is the emergence of resistant Campylobacter spp. from non-human sources [10]. Nevertheless,
milk and dairy products seem to be a less important source of Campylobacter spp. when
compared to other animal food products such as poultry meat [37]. The use of other critical
antimicrobials was less concerning, with an infrequent administration of fluoroquinolones
(1% of the total AMU) and an almost null consumption of polymyxins (0.1%). Awareness
campaigns among farmers and veterinarians could be a first step to address the frequent
use of some critical classes, promoting the prescription of critical antimicrobials only in the
absence of viable alternatives, as also recommended by the Italian guidelines on prudent
AMU in animal production [38], which may have contributed to the general reduction in
sales of these classes in Italian livestock occurring in recent years [4].

Mastitis and dry cow therapy are considered the main cause of AMU in dairy pro-
duction [39–43]. We were unable to obtain information on the reasons for treatment, but
intramammary products accounted for more than 60% of the overall AMU. These findings
confirm that even in small herds with low production, it is essential to promote mastitis
control, udder health and, where possible, selective dry cow therapy. In this context, the
downward temporal trend in the usage of intramammary products for dry cows, although
limited, may suggest a growing awareness of the matter.

Although statistically significant (p = 0.021), the observed relationship between AMU
and herd size (i.e., a TI100 increase below 0.05 every 100 cows) can be considered negligible,
at least in a smallholding context. Studies investigating the relationship between AMU and
herd size in dairy production reported contrasting results. A significant positive effect of
herd size on AMU was described in Danish [44] and Pennsylvanian [16] farms. This effect
was also reported by a recent Canadian study, but it was mostly determined by the use of
ionophores [45], which are usually not considered in AMU studies. On the other hand, no
such relationship was found in Italy [15], Japan [36] and Argentina [46]. A German study
reports an association between AMU and farm size only for dairy calves [47], while another
Canadian study reported this relationship only for some specific classes but not for overall
AMU [17]. Finally, it should be emphasised that the abovementioned studies were carried
out on dairy farms of widely different sizes but in all cases larger than the average herd
in the Aosta Valley. Our results suggest that herd size is not necessarily a risk factor for
high AMU and that other factors (e.g., farming conditions, low- or high-yielding breeds)
may play a relevant role in combination with herd size. The size of the herd also had a
significant effect (p < 0.0001) on the probability of administering HPCIAs, suggesting that
larger herds may be more focused on increasing production and therefore may select what
are believed to be the most effective antimicrobials on the market.

Overall, although we observed some downward temporal trends in usage and some
associations between AMU and herd size, the magnitude of such effects was rather small
because of the generally low AMU. Indeed, this specific production context can be consid-
ered low risk for AMU in quantitative terms, with scant room for further improvement.
However, the frequent use of critical antimicrobials detected through our analysis was
unexpected and deserves further attention.

Although our study included data from a large number of herds and over a long
period of time, it has some relevant limitations. First of all, we investigated only a specific
geographical area, and although this peculiar cattle production is common to several Alpine
regions, our results may not be representative of other smallholding contexts. Furthermore,
it was not possible to validate the data with an external source; thus, some of the prescribed
antimicrobials may not have been used and we cannot fully rule out data entry errors.
In particular, we cannot exclude that some injectable antimicrobials registered on cows
were actually used in other animal categories. In addition to multi-year trends and the
effect of farm size, it would have been interesting to investigate why the vast majority
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of antimicrobials were prescribed to cows and if other animal categories were somehow
neglected. Finally, other factors that we could not take into account, such as seasonality,
pasturing, milk quality and animal welfare, may have influenced the AMU and should be
therefore investigated in the future with further ad hoc studies.

4. Materials and Methods
4.1. Geographical Background

The Aosta Valley is an Italian administrative region located in the northwest of
the country, amidst the Alps (Figure 1). With a territory of 3263 square kilometres and
125,666 inhabitants, it is both the smallest and the least populated of the 20 Italian regions.
Similarly to other Alpine areas, cattle farming in this mountainous region consists of family-
owned smallholder mixed herds, housing a local dual-purpose breed (Valdostana), where
dairy cows are the most represented animal category and mountain grazing is practised
during the summer. Milk is used primarily for dairy products with a Protected Designation
of Origin. Milk production is low, considering a population of around 19,000 cows and a
total yearly milk yield of about 28,000 tonnes [48].

4.2. Data Sources and Management

In Italy, the national veterinary service is an integral part of public health, and each
administrative region manages public health independently within their territorial jurisdic-
tion. This study is the result of the collaboration between the local authorities of the Aosta
Valley and the national authorities, represented by the Italian Ministry of Health and the
Istituti Zooprofilattici Sperimentali (IZSs). An estimation of AMU was performed for all the
herds housing at least two cows. The 2008–2018 data on drugs prescribed on the bovine herds
in the Aosta Valley were collected through two channels: (i) data for the 2008–2014 period
were digitised by local authorities from paper prescriptions, an activity once included in
the regular pharmacosurveillance controls; (ii) subsequent data (2015–2018) were extracted
directly from the regional electronic prescription system, established by local authorities
a few years before the national one. Over-the-counter antimicrobials for livestock are not
available in Italy, and farmers can only purchase them when prescribed by a veterinarian.
Some of the WHO’s HPCIAs (third- and fourth-generation cephalosporins, macrolides,
fluoroquinolones and polymixins) [10] are registered for use in livestock but recommended
only in the absence of viable alternatives [38].

Herd data regarding the same period were provided by the local authorities. For every
year included in the analyses, complete data were obtained for at least 90% of all the cattle
farmed in the region. All these data were imported into the national surveillance system,
ClassyFarm (www.ClassyFarm.it, accessed on 19 January 2024), which is owned by the
Italian Ministry of Health and managed by IZS della Lombardia e dell’Emilia Romagna.
The system began receiving full national data on AMU only during the second half of 2019,
when the Italian electronic veterinary prescription system became mandatory. However,
ClassyFarm also allows the submission of retrospective data for research purposes: in
this case, the AMU is calculated automatically, and the resulting data can be extracted for
further analysis. An estimation of AMU was performed by the system, and AMU data
were then exported and managed using Microsoft Access and Microsoft Excel (Microsoft
Corp., Redmond, WA, USA). The AMU was calculated at the herd level and also, for each
herd, at the animal category level, using the ClassyFarm standards for this type of mixed
cattle farming: calves (birth to 6 months), heifers/beef (6 to 24 months) and dairy cows.
Figure 4 shows the location and size of all the herds included in the study.

www.ClassyFarm.it
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which at least one year of antimicrobial usage data between 2008 and 2018 was available. Dot size is
proportional to herd size as defined in the map legend. Map created using QGIS 3.22 software.

4.3. Estimation of Antimicrobial Usage

The AMU was estimated at the herd level using the defined daily dose animal for Italy
(DDDAit) as a standard metric [15,49]. Briefly, DDDAit represents the standard amount of
active ingredient, in milligrams, administered per kg of live weight per day (mg/kg/d),
as stated by the summary of the product characteristics. A detailed description of the
standard considered in peculiar cases (e.g., range of dosages, antimicrobial combinations,
intramammary products, etc.) has been reported in previous studies [15,49].

Annual AMU was calculated for each herd as the total DDDAit per Kg of standardised
biomass (DDDAit/biomass) for all active ingredients prescribed and, for each animal
category within a herd, as a treatment index 100 (TI100).

The DDDAit/biomass standard has been described in detail in a previous study [15]
and was calculated according to the following formula [15]:

DDDAit/biomass = (mg of active ingredient prescribed/DDDAit)/(cows × weight at risk + heifers/beef ×
weight at risk + calves × 2 × weight at risk)

(1)

The ‘weight at risk’ for cows, heifers/beef and calves have been set in ClassyFarm
at 600, 300 and 100 kg, respectively. Since AMU was considered on an annual basis, and
calves include animals up to six months of age, the average number of housed calves was
multiplied by two [15].

The TI100 was calculated for each year, herd and animal category within the herd
(cows, heifers/beef, calves) using the same standards of weight used for DDDAit/biomass,
according to the following formula [49,50]:

TI100 = [(mg of active ingredient prescribed/DDDAit)/(heads × weight at risk × days at risk)] × 100 (2)

The ‘days at risk’ for cows and heifers were set at 365 days, while for calves, they were
set at 180 days. The TI100 can be interpreted in three manners [50]: as the percentage spent
under treatment by an animal during its production cycle, as the number of days under
treatment per 100 days of production, or as the number of animals under treatment every
100 animals housed in the farm on any given day.

Usage of antimicrobials classified as HPCIAs by the WHO (i.e., third- and fourth-
generation cephalosporins, macrolides, polymyxins and quinolones) [10] was consid-
ered “critical”.
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4.4. Statistical Analysis

Firstly, we explored the variation in the total number of herds, heads and the average
number of heads per herd during the study period through linear regressions. Temporal
trends in annual average AMU per herd, usage of HPCIAs (total and by class) per herd and
administration routes per herd (all expressed as DDDAit/biomass) were also explored by
means of linear regressions. Subsequent analyses were focussed on cows’ data, since 96% of
all the antimicrobials and 94% of HPCIAs were prescribed to this animal category. The tem-
poral variation in cows’ AMU at herd level (expressed as log-transformed [ln(x + 1)] TI100)
was analysed through a mixed linear model, while the probability for a herd of using (y/n)
critical antimicrobials was explored through a mixed logistic regression. In both models,
year and herd size were included as explanatory variables and herd ID was included as
a random term to account for repeated measures of the same herd in different years. The
presence of influential observations and the normality of residuals were assessed visually,
by means of Cook’s D plots and QQ plots, respectively. Statistical significance was set at
α = 0.05. All average AMU data are presented as means weighted on standardised biomass.
Statistical analyses were performed in SAS/STAT 9.4 software (SAS Institute Inc., Cary,
NC, USA).

5. Conclusions

The results of our study highlight the importance of monitoring AMU even in a
smallholding, low-production context. Indeed, even though the overall consumption was
low, usage of critical antimicrobials was rather common and should be the first target of an
awareness campaign. The differences among herds and animal categories in terms of AMU
confirm the relevance of tracking usage at different levels, and the frequent administration
of intramammary products corroborates the importance of promoting udder health as well
as mastitis control. Finally, this work also represents a positive example of cooperation
between local and central authorities.
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