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Abstract: Escherichia coli, including extended-spectrum β-lactamases (ESBL)-producing strains, poses
a global health threat due to multidrug resistance, compromising food safety and environmental
integrity. In industrial settings, rabbits raised for meat have the highest consumption of antimicrobial
agents compared to other food-producing animals. The European Union is facing challenges in
rabbit farming as rabbit consumption declines and antibiotic-resistant strains of E. coli cause enteric
diseases. The aim of this study was to investigate the antibiotic resistance profile, genetic diversity,
and biofilm formation in cefotaxime-resistant E. coli strains isolated from twenty rabbit farms in
Northern Portugal to address the effect of the pressing issue of antibiotic resistance in the rabbit
farming industry. Resistance to critically antibiotics was observed, with high levels of resistance
to several categories, such as tetracycline, ampicillin, aztreonam, and streptomycin. However, all
isolates were susceptible to cefoxitin and imipenem. Multidrug resistance was common, with strains
showing resistance to all antibiotics tested. The blaCTX-M variants (blaCTX-3G and blaCTX-M9),
followed by the tetracycline resistance genes, were the most frequent resistance genes found. ST10
clones exhibiting significant resistance to various categories of antibiotics and harboring different
resistance genes were detected. ST457 and ST2325 were important sequence types due to their
association with ESBL-E. coli isolates and have been widely distributed in a variety of environments
and host species. The strains evaluated showed a high capacity for biofilm formation, which varied
when they were grouped by the number of classes of antibiotics to which they showed resistance
(i.e., seven different classes of antibiotics, six classes of antibiotics, and three/four/five classes of
antibiotics). The One Health approach integrates efforts to combat antimicrobial resistance in rabbit
farming through interdisciplinary collaboration of human, animal, and environmental health. Our
findings are worrisome and raise concerns. The extensive usage of antibiotics in rabbit farming
emphasizes the urgent need to establish active surveillance systems.
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1. Introduction

Escherichia coli poses a serious threat to human and animal health and compromises
food safety [1]. The emergence of multidrug resistance (MDR) has aggravated the sit-
uation with the emergence and dissemination of strains harboring extended-spectrum
β-lactamases (ESBL) [2,3]. These β-lactamases contribute to antimicrobial multidrug re-
sistance, since the strains that express these enzymes often show simultaneous resistance
to other classes of antibiotics. In addition, the continuous mutations in the genes that
encode β-lactamases, which are a direct response to the overuse of antibiotics, broaden
their spectrum of action [4,5], and their continued mutation is a direct response to the
overuse of antibiotics [6]. The global distribution of ESBLs and MDR E. coli represents a
growing issue that extends beyond medical/healthcare systems and impacts food safety
and environmental contamination [5]. ESBL-producing bacteria can be transmitted among
humans and animals through the food chain and the environment [4].

Frequent use of antibiotics in livestock farming has been criticized for promoting
antibiotic resistance. Factors that influence antibiotic resistance include farm manage-
ment, water treatment, fertilizer handling, and wildlife management [2]. Contamination of
food with antimicrobial-resistant bacteria occurs due to antibiotic use and through cross-
contamination directly intended for human consumption [1,7]. The emergence of antimi-
crobial resistance poses a serious threat to human and animal health, and the widespread
use of antibiotics in food animals has raised global concerns that impact both veterinary
and human medicine. Many of the antibiotics used in humans are also being used in
animal therapy [8]. Rabbits reared for meat in industrial farms exhibit the highest rates of
antimicrobial usage compared to other food-producing animals, leading to alarming rates
of antimicrobial resistance within the industry [9].

The European Union is the second largest producer of meat rabbits in the world, after
China. The Union dominates global imports and exports, accounting for 93% of the market
share, with Germany, Belgium, and Portugal being the main importers. Together, these
countries contribute 14% of the rabbit meat in Europe; however, over the past two decades,
the number of commercial rabbit farms has decreased across the European Union due to
a decline in rabbit meat consumption [10]. E. coli is principally responsible for neonatal
and post-weaning colibacillosis in rabbits, which is frequently accompanied by enteritis
and diarrhea. The RESAPATH surveillance system produced susceptibility data for E. coli
isolates from rabbits in 2020, with the majority coming from digestive pathology cases
in 2018. Of the 277 isolates examined, 70.8% were associated with digestive problems,
and treatment frequently included sulfonamides, fluoroquinolones, and aminoglycosides.
Sulfonamides-trimethoprim had a greater resistance rate, although fluoroquinolone resis-
tance was rare. Only 1% of isolates were resistant to third-generation cephalosporin [11].
Breeding rabbits is a health-risky industry, often suffering from high economic losses due
to enteric diseases caused by E. coli colonization in commercial farms [12].

Antibiotic resistance in rabbits is a pressing issue due to limited research linking clonal
E. coli strains to resistance, mainly in Portugal. High levels of resistance have been observed
in Italian [13] and Chinese [14] studies, with consistent prevalence of β-lactamase genes
like blaTEM and blaCTX-M across studies [7]. Colistin resistance in rabbits is a concern in
Portugal [13], as it is potentially transmitted through rabbit husbandry systems and the
food chain. Common findings include increased resistance to major antibiotics and specific
β-lactamase genes. Common sequence types like ST40 suggest the clonal and zoonotic
potential of antibiotic-resistant E. coli strains [7].

Antibiotic resistance in commensal bacteria from food animals is a global concern, with
research focusing on the effects of antibiotic use on animals and the potential transmission
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of resistant bacteria to humans. The use of antibiotics in food-producing animals has led to
the development of MDR food bacteria like E. coli. While studies have primarily focused
on E. coli’s prevalence in other livestock animals, there is a significant lack of research on
rabbits [4]. Rabbit breeding, despite being a niche farm business, can lead to the spread
of MDR bacteria, and in Portugal, where rabbit meat consumption is common, there have
been no comprehensive studies analyzing a large number of farms to identify any consistent
patterns in the results [15]. Therefore, the aim of our study was to investigate the prevalence
of Cefotaxime (CTX)-resistant E. coli in healthy rabbits from 20 different intensive farms
across northern Portugal, where there is a high concentration of rabbit farms. This work
provides the distribution of antibiotic resistance profiles, virulence, genetic diversity, and
biofilm formation of CTX-resistant E. coli populations in healthy rabbits from various farms
across Portugal and highlights the potential public health implications that affects farmers,
food, the environment, and surrounding crops. E. coli poses a significant threat to rabbit
meat production and, consequently, food safety.

2. Results
2.1. Bacteria Isolation

From October 2022 to February 2023, a total of 295 fecal samples were received from
20 different rabbit farms. Cefotaxime (CTX)-resistant E. coli isolates were isolated from
48 samples, and these 48 isolates (16.27%) were obtained from 6 rabbit farms (Farm 2,
Farm 3, Farm 4, Farm 5, Farm 6, and Farm 13).

2.2. Antibiotic Resistance Phenotypes

The study examined the resistance patterns of various antibiotics in both critically im-
portant antimicrobials for the human therapeutic (CIA) and critically important veterinary
antibiotics (VCIA) categories. It found ampicillin, amoxicillin-clavulanic acid, amikacin,
gentamicin, streptomycin, tobramycin, and ciprofloxacin in both categories; ceftazidime,
cefotaxime, aztreonam, and imipenem in CIA categories; and tetracycline in both categories.
The 48 CTX-resistant E. coli isolates showed high rates of resistance to critically important
antibiotics used in both human and veterinary medicine: ampicillin (100%), aztreonam
(97.8%), and streptomycin (93.7%). Among the antibiotics tested, the following resistance
rates were found: amoxicillin + clavulanic acid (54.16%), amikacin (8.3%), gentamicin
(10.41%), tobramycin (64.58%), ceftazidime (14.58%), nalidixic acid and ciprofloxacin (25%),
trimethoprim/sulfamethoxazole (75%), tetracycline (91.6%), and chloramphenicol (72.9%).
The broad-spectrum β-lactam antibiotics cefoxitin and imipenem remain effective against
all isolates. As Figure 1 shows, all 48 CTX-resistant E. coli isolates exhibited MDR profiles to
multiple classes of antibiotics (at least three classes of antimicrobial agents). Eight isolates
were resistant to seven different classes of antibiotics, and twenty-seven isolates were resis-
tant to six different classes of antibiotics. Additionally, four isolates exhibited resistance
to five classes of antibiotics, and six isolates exhibited resistance to three different classes
of antibiotics.

2.3. Molecular Characterization and Multilocus Sequence Typing (MLST)

The ESBL-encoding genes blaCTX-M, blaTEM, blaSHV, and blaOXA were examined
in all isolates according to the phenotypic resistance that they possess, and two different
blaCTX-M variants were detected among our E. coli strains: blaCTX-3G (72.91%) and blaCTX-
M9 (60.41%) (Table 1). The blaTEM was detected in 62.5% of our isolates, blaSHV in 6.25%
of isolates, and blaOXA in none of the isolates. Several other resistance genes were also
detected in our study, with lower prevalence. These genes included tetA (66.6%) and
tetB (33.3%), associated with resistance to tetracycline; and aac(6′)-Ib (18.75%), aac(3)-II
(10.41%), and aac(3)-IV (10.41%), associated with aminoglycoside resistance. The qnrA
(20.83%) and qnrS (20.83%) genes, both associated with resistance to quinolones, were
also identified. The sul3 gene, associated with resistance to sulfonamides, was found in
64.58% of the isolates, sul1 in 35.41%, and sul2 in 29.16% of the CTX-resistant E. coli isolates.
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The cmlA gene, associated with chloramphenicol resistance, was detected in 43.75% of the
isolates. Furthermore, the integrase gene (intI1) was found in 32 isolates, suggesting the
presence of class 1 integrons and their involvement in rearrangement of gene cassettes and
in the development of antibiotic resistance. Genes associated with virulence factors were
widespread, and they were found in all E. coli isolates in this study, including fimA, bfp, aer,
cnf1, papC, and papG-II. In Table 1 it is possible to observe the phenotypic and genotypic
results of 29 strains of CTX-resistant E. coli that were not subjected to analysis by MLST. In
the case of Table 2, we verified the phenotypic and genotypic analysis and sequence types
of the 19 CTX-resistant E. coli isolates chosen for the MLST analysis.
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Table 1. Phenotypic and genotypic characterization of CTX-resistant E. coli isolates that were not
chosen for MLST analysis.

Isolate Farm Resistance Phenotype Resistance Genotype Phylogenetic
Group

Integrase
Gene

Virulence
Genes

PFGE
Pattern

ASC4 3 AMP-S-TOB-CTX-NA-
CIP-SXT-C-TE

sul1-sul3-qnrS-
-strA-strB-

blaCTX-3G-tetB-aac(6)-Ib
A int1 fimA-bfp P9

ASC6 3 ATM-AMP-S-TOB-CTX-
NA-CIP-SXT-C-TE

sul1-sul3-tetA-qnrS-
qnrA—-strA-strB-

blaCTX-3G-tetB-aac(6)-
Ib-blaTEM

A int1 papG-III-fimA P9

ASC7 3
ATM-AMP-AK-CN-S-

TOB-CTX-NA-CIP-SXT-
C-TE

sul1-sul3-tetA-tetB-qnrS-
qnrA- -aac(3)-IV-aac(3)-II-

strA- blaCTX-3G-
aac(6)-Ib-blaTEM

A int1 papG-III-
fimA-bfp P9

ASC8 3 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul3-tetA -strA-
strB-blaCTX-3G B1 int1 fimA P4

ASC11 4 AUG-ATM-AMP-S-
CTX-CAZ-SXT-C-TE

sul2-sul3-tetA- strA-strB-
blaCTX-3G-blaTEM A int1 papG-III-

fimA-bfp P8
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Table 1. Cont.

Isolate Farm Resistance Phenotype Resistance Genotype Phylogenetic
Group

Integrase
Gene

Virulence
Genes

PFGE
Pattern

ASC12 4 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul2-sul3-tetA-strA-strB-
blaCTX-3G-blaTEM A int1 papG-III-

fimA-bfp P8

ASC13 4 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul2-sul3-tetA- strA-strB-
blaCTX-3G-blaTEM A int1 papG-III-

fimA-bfp P8

ASC14 4 AUG-ATM-AMP-S-
CTX-SXT-C-TE

sul2-sul3-tetA- strA-strB-
blaCTX-3G-blaTEM A int1 papG-III-

fimA-bfp P8

ASC15 4 AUG-ATM-AMP-S-
CTX-SXT-C-TE

sul1-sul2-sul3-tetA- tetB-
strA-strB- blaCTX-3G-

blaTEM
A int1 papG-III-

fimA-bfp P8

ASC16 4 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul3-tetA-cmlA
-strA-strB- blaCTX-3G-

blaCTX-M9-blaTEM
A int1 papG-III-

fimA-bfp P8

ASC17 4 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul3-tetA-cmlA- strA-strB-
blaCTX-3G-blaCTX-M9-

aadA5-blaTEM
A int1 papG-III-

fimA-bfp P8

ASC19 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul3-tetA-cmlA-
strA-strB- blaCTX-M9 B1 int1 papG-III-fimA P3

ASC20 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul3-cmlA- strA-strB-
blaCTX-3G-blaCTX-M9-

aadA5-blaTEM
B1 int1 papG-III P2

ASC22 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul3-cmlA -strA-strB-
blaCTX-M9-blaTEM B1 int1 papG-III P2

ASC23 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul2-sul3-cmlA-strA-
blaCTX-M9-aadA5-

blaTEM
B1 - papG-III P3

ASC25 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul2-sul3-tetA-cmlA-
blaCTXM-strA-strB-

blaTEM
B1 int1 papG-III P3

ASC26 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul2-sul3-cmlA-
strA-strB-

blaCTX-M9-blaTEM
B1 int1 papG-III P2

ASC27 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul2-sul3-tetA-cmlA-
strA-strB-

blaCTX-M9-blaTEM
B1 int1 papG-III P2

ASC28 5 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul3-tetA-cmlA-strA-
strB- blaCTX-M9-blaTEM B1 int1 papG-III P2

ASC32 6 ATM-AMP-S-TOB-CTX-
CAZ

sul3- strA-strB-blaCTX-
3G-blaCTX-M9 B1 - papG-III P5

ASC33 6 ATM-AMP-S-TOB-CTX-
SXT-CAZ

sul3-strA- blaCTX-3G-
aadA5-blaTEM B1 - - P5

ASC35 13 ATM-AMP-S-CTX-NA-
CIP-SXT-C-TE

qnrS-qnrA-parC-cmlA-
tetA-

blaCTX-3G-blaCTX-M9-
aac(6)-Ib-aadA5-blaSHV

D int1 papG-III P1

ASC38 13 ATM-AMP-S-CTX-C-TE cmlA-tetA- tetB-blaCTX-
M9-blaTEM-blaSHV A - papG-III-bfp P7

ASC41 13 ATM-AMP-S-CTX-NA-
CIP-SXT-TE

qnrS-qnrA-tetA-
blaCTX-M9 blaCTX-3G-

aac(6)-Ib-blaTEM
A int1 papG-III-fimA P6

ASC42 13 ATM-AMP-S-CTX-NA-
CIP-SXT-TE

qnrA -tetA-
tetB-blaCTX-M9 blaCTX-

3G-aac(6)-Ib-blaTEM
A int1 papG-III-

fimA-bfp P7

ASC43 13 ATM-AMP-S-CTX-NA-
CIP-SXT-TE

qnrS-qnrA- tetA-tetB
blaCTX-3G-aac(6)-Ib-

aadA5
A int1 papG-III-fimA P6
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Table 1. Cont.

Isolate Farm Resistance Phenotype Resistance Genotype Phylogenetic
Group

Integrase
Gene

Virulence
Genes

PFGE
Pattern

ASC44 13 ATM-AMP-CTX-TE tetB-blaCTX-M9-blaCTX-
3G A - papG-III-

fimA-bfp P7

ASC45 13 ATM-AMP-CTX-TE tetB-blaCTX-M9-blaCTX-
3G-blaTEM A - papG-III-

fimA-bfp P7

ASC47 13 ATM-AMP-S-TOB-CTX-
TE

tetB-blaCTX-M9-blaCTX-
3G A - papG-III-

fimA-bfp P7

Legend: PFGE—Pulsed-field gel electrophoresis; AUG—amoxicillin–clavulanic acid; ATM—aztreonam; AMP—
ampicillin; AK—amikacin; CN—gentamicin; S—streptomycin; TOB—tobramycin; CTX—cefotaxime; CAZ—
ceftazidime; NA—nalidixic acid; CIP—ciprofloxacin; SXT—trimethoprim-sulfamethoxazole; C—chloramphenicol;
TE—tetracycline.

Table 2. Characterization of 19 CTX-resistant E. coli isolates that were chosen by PFGE for the analysis
of clonal lineages by MLST.

Isolate Farm MLST Resistance
Phenotype Resistance Genotype Phylogenetic

Group
Integrase

Gene
Virulence

Genes
PFGE

Pattern

ASC1 2 ST10
AUG-ATM-AMP-S-
TOB-CTX-CAZ-NA-

CIP-SXT-C-TE

sul2-sul3-tetA-cmlA
-strA-strB-

blaCTX-3G-tetB-aac(6)-Ib
A intI1 fimA-bfp P10

ASC2 3 ST1611 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul3-tetA -strA-strB-
blaCTX-3G B1 intI1 papG-III-

fimA P4

ASC3 3 ST8470
AUG-ATM-AMP-S-
TOB-CTX-NA-CIP-

SXT-C-TE

sul1-sul3-tetA-qnrS-
qnrA-strA-strB-

blaCTX-3G-aac(6)-Ib-
blaTEM

A int1 papG-III-
fimA-bfp P9

ASC5 3 ST1611
AUG-ATM-AMP-
CN-S-TOB-CTX-

SXT-C-TE

sul1-sul3-tetA-aac(3)-IV-
aac(3)-II- strA-strB-

blaCTX-3G
B1 - papG-I-

fimA II P4

ASC9 3 ST8470
AUG-ATM-AMP-S-
TOB-CTX-NA-CIP-

SXT-C-TE

sul1-sul3-tetA-qnrS-
qnrA- strA-strB-

blaCTX-3G-tetB-blaTEM
A - fimA-cnf1 P9

ASC10 4 ST10 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul1-sul2-sul3-tetA-
strA-strB-

blaCTX-3G-blaTEM
A int1 papG-III-

fimA-bfp P8

ASC18 5 ST2825
AUG-ATM-AMP-

AK-CN-S-TOB-CTX-
SXT-C-TE

sul1-sul2-aac(3)-IV-
aac(3)-II-cmlA-strA-strB-
blaCTX-3G-blaCTX-M9

B1 int1 papG-III-
fimA P2

ASC21 5 ST2825 AUG-ATM-AMP-S-
TOB-CTX-SXT-C-TE

sul2-cmlA-strA-strB-
blaCTX-M9-blaTEM B1 int1 papG-III-

fimA P3

ASC24 5 ST2825
AUG-ATM-AMP-
CN-S-TOB-CTX-

SXT-C-TE

sul2-sul3-tetA-aac(3)-IV-
aac(3)-II-cmlA-

strA-strB-blaCTX-3G-
blaCTX-M9-aadA5-

blaTEM

B1 int1 papG-III P3

ASC29 5 ST2825
AUG-ATM-AMP-

AK-CN-S-TOB-CTX-
SXT-C-TE

sul1-sul3-tetA-aac(3)-IV-
aac(3)-II-cmlA

strA-strB-blaCTX-M9-
blaTEM

B1 int1 papG-III P3

ASC30 6 ST8823 ATM-AMP-S-TOB-
CTX-CAZ

sul3-strB-blaCTX-3G-
blaCTX-M9 B1 - - P5



Antibiotics 2024, 13, 376 7 of 19

Table 2. Cont.

Isolate Farm MLST Resistance
Phenotype Resistance Genotype Phylogenetic

Group
Integrase

Gene
Virulence

Genes
PFGE

Pattern

ASC31 6 ST8823 ATM-AMP-S-TOB-
CTX-CAZ

sul3-
strA-strB-blaCTX-3G B1 - papG-III P5

ASC34 13 ST457 ATM-AMP-S-CTX-
NA-CIP-SXT-C-TE

tetA-qnrA -qnrS-cmlA-
blaCTX-3G-aac(6)-Ib-

aadA5-blaTEM
D int1 papG-III-

bfp P1

ASC36 13 ST2325 ATM-AMP-CTX-TE tetB-blaCTX-3G-
blaCTX-M9-blaTEM A - papG-III-

bfp P7

ASC37 13 ST2325
ATM-AMP-S-CTX-
CAZ-NA-CIP-SXT-

TE

tetA-qnrS-qnrA-blaCTX-
M9-blaSHV A int1 papG-III P6

ASC39 13 ST2325 ATM-AMP-S-CTX-
TE tetB-blaCTX-M9-aadA5 A - papG-III-

bfp P6

ASC40 13 ST2325 ATM-AMP-S-CTX-
C-TE

cmlA-tetA-tetB-blaCTX-
M9-blaCTX-3G-aadA5 A - papG-III-

bfp P6

ASC46 13 ST2325 ATM-AMP-S-TOB-
CTX-C-TE

cmlA-tetA-
tetB-blaCTX-M9 A - papG-III-

fimA-bfp P6

ASC48 13 ST2325 ATM-AMP-S-CTX-
C-TE

cmlA-tetA- blaCTX-M9-
blaCTX-3G-blaTEM-

blaSHV
A - papG-III-

fimA-bfp P7

Legend: MLST—Multilocus sequence typing; PFGE—pulsed-field gel electrophoresis; AUG—amoxicillin–
clavulanic acid; ATM—aztreonam; AMP—ampicillin; AK—amikacin; CN—gentamicin; S—streptomycin; TOB—
tobramycin; CTX—cefotaxime; CAZ—ceftazidime; NA—nalidixic acid; CIP—ciprofloxacin; SXT—trimethoprim-
sulfamethoxazole; C—chloramphenicol; TE—tetracycline.

Phylogenetic group A was the most prevalent (56.25%), followed by group B1 (37.5%)
and group D (2.08%). The 48 isolates analyzed belonged to 10 different pulsotypes (Figure 2).
The sequence types (ST) were determined among 19 E. coli strains (at least one strain per
PFGE pattern) using the MLST method. Seven different ST were observed: ST10, ST457,
ST1611, ST2325, ST2825, ST8470, and ST8823.

2.4. Quantification of Biofilm Formation

A microtiter plate assay was used to measure the biofilm production in all 48 CTX-
resistant E. coli strains isolated. All isolates showed biofilm formation. To ensure consis-
tency, the results were normalized against E. coli ATCC 25922. Figure 3 shows the biofilm
formation of each isolate grouped by resistance phenotype (seven different classes of antibi-
otics, six classes of antibiotics and three/four/five classes of antibiotics). Strains belonging
to three/four/five classes of antibiotics had a significantly higher average biofilm formation
rate (p < 0.001) and showed the highest biofilm production, followed by those belonging
to six classes of antibiotics (p < 0.05) and those belonging to seven classes of antibiotics
(p < 0.001). The strain with the highest biofilm formation belonged to the group resistant to
three/four/five classes of antibiotics, and the strain that produced the least biofilm mass
belonged to the group resistant to 7 classes of antibiotics.
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Figure 2. PFGE dendrogram of CTX-resistant E. coli strains from different rabbit farms in the north of
Portugal. Braces indicate classification in the corresponding PFGE cluster or pulsotype. Isolates were
included in the same pulsotype if their similarity indices were ≥80%. The strains selected to perform
the MLST are highlighted in red.
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3. Discussion

The industrial production of rabbits for meat, despite being limited to a few countries,
is unsustainable due to the global threat of antimicrobial resistance, high antibiotic levels,
and potential sharing of MDR genotypes between farm workers and rabbits [16]. Oral
medication, commonly administered to rabbits, potentially leads to under-dosing of large
groups of animals in a herd and contributes to antimicrobial resistance development.
Economic factors, particularly the costs associated with antimicrobial treatment, play
a significant role, especially in less profitable livestock productions like rabbit meat [17].
Compared to other food-producing animals, rabbits raised for meat in industrial settings are
the most abundant consumers of antimicrobial agents [16]. The study of E. coli antimicrobial
resistance provides insights into the reservoir of resistant bacteria in healthy animals and
their food, potentially facilitating the transfer of resistance between animal populations
and humans [18].

3.1. Antibiotic Resistance in Rabbit Farm Environments

In our study, we performed an analysis of rabbit fecal samples, obtaining 15 samples
per farm from 20 different rabbit farms located in the Trás-os-Montes, Alto Tâmega, and
Minho regions. Among the 20 farms investigated, 48 CTX-resistant E. coli strains were
isolated in samples from only six different farms (Farm 2, Farm 3, Farm 4, Farm 5, Farm
6 and Farm 13). None of these farms were related to each other, nor were they located in
the same proximity. Additionally, we found that the positive samples (16.27%) exhibiting
growth were detected in the Ave and Cávado regions, with no detection of CTX-resistant
E. coli strains in the Trás-os-Montes, Alto Tâmega, or Douro regions. The locations where
the samples tested positive for E. coli CTX-resistance were in closely populated areas,
particularly in the immediate neighborhoods of major cities such as Braga, Barcelos, Vila
Nova de Famalicão, and Guimarães. Additionally, three of these farms were located near
livestock industries, including cattle and poultry farms. In contrast, all other farms where
CTX-resistant E. coli strains were not detected were in remote areas, far from human
settlements and residential areas. This represents a compelling example of the One Health
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approach and underscores the need to be vigilant of this pathogen in order to reduce the
potential for zoonotic transmission and disease outbreaks. Several studies [19] have shown
that E. coli isolated from rabbits can be considered a potential zoonotic transmission in pet
rabbits, farm rabbits, and wild rabbits. Rabbits can serve as reservoirs for antimicrobial
resistance genes, potentially spreading them to surrounding ecosystems, and may spread
pathogenic bacteria in the environment [19]. Regarding domestic rabbits and pet rabbits,
the dissemination of resistant bacteria can occur in different ways. In pet species, the
close human–animal interface poses a potential public health risk for the transmission of
zoonotic diseases from rabbits to their owners, particularly when good hygiene practices
are not followed [20]. In meat rabbits, transmission can occur from rabbit to human and
from rabbit to other animal through bacterial transmission (and vice versa) if biosecurity
practices are poor. Regardless of farm size, the risk of disease transfer is significantly
increased not just between rabbits, but also between rabbits and humans [21]. Regarding
the results shown in our study, we found that farms located in urban areas have CTX-
resistant E. coli, which could happen due to the zoonotic potential that E. coli has and
due to the contamination, that can occur through soil, air, and water. Direct contact with
environments contributes to contamination with antibiotic-resistant bacteria [22] The One
Health approach emphasizes understanding the connections between human, animal, and
environmental microbiota. Transmission of antibiotic resistance genes between livestock
and humans can occur through direct and indirect contact. Soil and airborne transmission
are also concerns [23].

The study examined seven antibiotics listed as both critically important antimicro-
bials for human therapeutics (CIA) and critically important veterinary antibiotics (VCIA),
including ampicillin, amoxicillin–clavulanic acid, amikacin, gentamicin, streptomycin,
tobramycin, and ciprofloxacin. Four were exclusively in the CIA category: ceftazidime, ce-
fotaxime, aztreonam, and imipenem. Additionally, a few antibiotics, such as cefoxitin, chlo-
ramphenicol, and -trimethoprim/sulfamethoxazole, were included in the highly important
antibiotics (HIA) list by the World Health Organization (WHO). Furthermore, tetracycline
was listed in both the HIA and VCIA categories [24]. Our findings reveal alarming levels
of resistance to several critically important antibiotics used in both human and veterinary
medicine: tetracycline (91.6%), ampicillin (100%), aztreonam (97.8%), streptomycin (93.7%),
tobramycin (64.58%), trimethoprim/sulfamethoxazole (75%), amoxicillin–clavulanic acid
(54.16%), and chloramphenicol (72.9%). Nevertheless, some broad-spectrum β-lactam
antibiotics (cefoxitin and ceftazidime), as well as nalidixic acid, remain effective, with low
rates of phenotypic resistance (25%), as well as imipenem, for which no resistance was
observed. The β-lactams are rarely used in rabbits due to drug-related diarrhea, leading
to E. coli isolates being almost wild-type for CTX [16]. However, in this study, we found
that antibiotics belonging to this class of antibiotics have high levels of resistance. Despite
chloramphenicol having been banned in food-producing animals for 20 years, nearly one
in four E. coli indicators showed reduced susceptibility to this drug, and occurrence has
also been reported in other food-producing animals [16].

In our study, high resistance to this antibiotic was reported in our isolates. Limited
studies have evaluated antibiotic resistance in domestic rabbits, but existing research
suggests higher levels of resistance to tetracycline and ampicillin in other rabbit farms.
A study in China [14] found increased levels of resistance to tetracycline and ampicillin
(78.2% and 65.5%, respectively). However, our study found even higher levels of resistance
compared to the study in China. Another study in Tunisia [12] reported similarly high rates
of antibiotic resistance to tetracyclines, with the highest resistance being 95%. However,
ampicillin showed the highest resistance rate in our study. High levels of tetracycline
resistance have also been reported in rabbit farms worldwide due to the widespread
use of tetracyclines for controlling and preventing rabbit diseases. The frequent use in
both the veterinary and human health sectors has been cited as a contributing factor
to the emergence and spread of tetracycline-resistant bacteria [25]. While our research
focused on intensive rabbit farms, similar studies on wild rabbits in Europe have found
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resistance to E. coli. A study in northern Portugal [26] found that 57.1% of the samples
tested positive for E. coli isolates with resistance patterns to antibiotics such as ampicillin,
sulfamethoxazole/trimethoprim, and tetracycline. This resistance differs from higher levels
reported in food-producing animals. Another study in wild rabbits in Azores [27] found
E. coli isolates resistant to common antibiotics, suggesting that wild rabbits act as reservoirs
of antimicrobial-resistant genes, similarly to those used for consumption. The presence
of MDR strains poses a potential threat to public health, and the use of antibiotics in
livestock production leads to the development of MDR and ESBL E. coli strains, making
them difficult to treat, as well as a significant reservoir of resistance genes [7,14]. In
our study, all E. coli isolates showed MDR, with eight isolates being resistant to seven
different antibiotics classes, twenty-seven to six different classes, four to five different
classes, and six to three different classes. The detection of MDR strains on all farms
highlights a growing concern about rabbits as production animals. MDR pathogens pose
a significant threat because they can cause severe and long-lasting infections, raising the
possibility of a global pandemic [28]. Studies worldwide consistently show high rates of
MDR among E. coli isolates, which often exhibit resistance to various antibiotics, indicating
broad-spectrum antimicrobial agents [7]. This study examined antibiotic resistance genes
in CTX-resistant E. coli isolates, analyzing β-lactamase genes and non-β-lactams resistance.
The study found two groups of blaCTX-M in E. coli, blaCTX-3G (72.91%) and blaCTX-M9
(60.41%), among ESBL-producing E. coli. The emergence of ESBL-producing E. coli in
food-producing animals is a major concern due to reduced treatment efficacy and increased
morbidity and mortality rates. Studies have confirmed the presence of these bacteria in
livestock, highlighting the need for a One Health strategy to combat antibiotic resistance [7].
Tetracycline resistance in E. coli isolates is facilitated by active efflux from tetA and tetB
genes [27], which, in our study, had high rates of resistance. Aminoglycoside resistance
genes (aac(6)-Ib, aph(3), acc(3)-II, and acc(3)-IV), quinolone resistance genes (qnrA and qnrS),
sulfonamide resistance genes (sul2 and sul3), and chloramphenicol resistance genes (cmlA)
exhibited a significant prevalence among isolates resistant to the antibiotics for which they
provide resistance. blaTEM is a β-lactamase gene and the primary cause of ampicillin
resistance in E. coli. It is found in food sources, humans, and healthy animals in Spain [14].
In this study, 62.5% of E. coli isolates carried this gene. Previous studies of rabbit farming
have found a similar prevalence of resistance genes to our study, as demonstrated by
studies in Italy [13], China [14], and Portugal [29]. These studies reported a significant
presence of genes conferring resistance to β-lactams, such as blaTEM and blaCTX, as well
as genes related to tetracyclines, sulfonamides, and aminoglycosides. The study conducted
in Portugal identified the mcr-1 gene [22]; the presence of this gene was not detected in any
E. coli isolates in our study. The rise in antibiotic resistance in E. coli isolates from intensive
rabbit farms is consistent with similar trends in other animals used for consumption, such as
swine, poultry, and cattle. Factors contributing to this resistance include population growth
and increased meat production globally. Although antibiotics were banned for growth
promotion in food-producing animals in 2006 to combat resistance and eliminate residues
in meat, the industry continues to be a significant contributor to antibiotic resistance.
Livestock, particularly poultry, swine, and dairy cattle, account for 50–80% of antibiotic use,
resulting in high resistance to antibiotics like tetracyclines, sulfonamides, and penicillins [7].
This research suggests that the high levels of resistance in intensive rabbit farms reflect an
overall trend of antibiotic resistance in various food-producing animals worldwide.

3.2. Genetic Diversity of CTX-Resistant E. coli in Rabbit Farms

The study analyzed 48 isolates from 10 different pulsotypes, and some isolates were
clonally related. The study found that Farm 2 displayed the P10 cluster and Farm 3
had the highest clonal diversity among the farms, with eight isolates distributed across
three distinct clusters (P1, P4, and P9). Farm 4 and Farm 6 each had a single cluster
associated, the P8 and P5 clusters, respectively, while Farm 5 had 12 isolates divided into
2 distinct clusters (P2 and P3), and Farm 13 had isolates divided into two distinct clusters
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(P6 and P7). In all cases, similarities existed only between CTX-resistant E. coli strains
isolated within each farm, and not between CTX-resistant E. coli strains from different
farms. MLST analysis and clonal lineages were assessed using at least one strain per PFGE
pattern. Seven different STs were observed among 19 E. coli strains: ST10, ST457, ST1611,
ST2325, ST2825, ST8470, and ST8823. The study found high genetic diversity in six rabbit
farms. Farm 2 and Farm 4 had the same clonal lineage, ST10, but the strains belonged to
different pulsotypes. For Farm 2, the ST10 clone showed remarkable antibiotic resistance
across seven classes and several resistance genes, indicating a significant genetic diversity
in these farms. Phylogenetically, it fit into group A and contained virulence-associated
genes like fimA and bfp. The other ST10 clone exhibited resistance to six different classes
of antibiotics, but unlike the clone belonging to Farm 2, it did not exhibit resistance to
the quinolones. Phylogenetically, it fit into group A and contained virulence-associated
genes such as papG-III, fimA, and bfp. The identification of MDR E. coli ST10 clones as
persistent One Health clones underscores the interconnection between humans, animals,
and environmental health and has been documented across multiple hosts and sources,
including high-risk pandemic lineages. Infections caused by high-risk strains are frequently
resistant to most commercially available antibiotics, including antibiotics used as the last
resort. These results emphasize the need for coordinated efforts to mitigate the spread of
antimicrobial resistance strains across different sectors [30]. Regarding Farm 3, we selected
four strains for analysis and confirmed the presence of two different STs, two strains of
ST1611 (P4) and two strains of ST8470 (P9), which phylogenetically belong to B1 and A,
respectively. These isolates have very complex resistance profiles: resistance to six and
seven different classes of antibiotics, respectively. ST1611 has been reported in several
livestock and food product studies in Italy [31], Poland [32], and China [33]. One of the
studies involved rabbits in Italy [13]. Regarding ST8470, it is important to highlight that it
belongs to clonal complex 10, such as ST10. According to Enterobase, it was detected in
2014 in a sample of humans in Denmark, and there is no further record of this ST in any
other environment. This confirms its ubiquitous distribution between different reservoirs
and the clonal cross-species transmission of E. coli in livestock animals and humans. On
Farm 5, four different isolates were analyzed, all of which detected the ST2825 clonal strain,
but the strains belonged to different pulsotypes (P2/P3). Studies conducted in livestock
have found no evidence of this clonal lineage. However, this ST was first detected in
marine sediments along the Adriatic coast, where MDR E. coli strains were isolated [34].
Regarding the isolates analyzed on Farm 6, we confirmed the presence of clonal lineage
ST8823 in the two selected isolates. EnteroBase records demonstrate the presence of this
ST in wildlife, environment, and poultry research geographically in Gambia, the United
Kingdom, Kenya, the United States, and the United Arab Emirates from 2019 to 2013.
Since this ST was detected only in poultry in 2023, we can conclude that this is the case,
and since this ST was also found in rabbit breeding, is already widespread in livestock
(https://enterobase.warwick.ac.uk (accessed on 6 February 2024)). Farm 13 was the last
rabbit farm where CTX-resistant E. coli was isolated, with seven strains analyzed for MLST.
Two ST types were detected, ST457 and ST2325, with ST2325 being the most common.
The ST457 has been described as an emerging extraintestinal pathogenic E. coli mainly
found in wildlife and in food-producing animals [35]. It has a wide host range with global
distribution, indicating that ST457 has been reported from different sources in studies on
all continents [35]; it is found in marine environments and bloodstream infections, and has
been reported in healthy and sick humans, poultry, cattle, swine, wild animals, livestock,
companion animals, water, and food [35–37]. This E. coli sequence, type ST457, showed
a remarkable ability to capture mobile elements that carry and transmit genes encoding
resistance to clinically important antibiotics [35]. ST2325 is the most widespread in our
study, and has so far been detected in a variety of environments, including livestock [38],
stray dogs [39], food products (meat), and the environment (soil) [40]. It is primarily
associated with ESBL-E. coli isolates.

https://enterobase.warwick.ac.uk
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The identification of distinct STs, including high-risk and pandemic clones, highlights
the potential public health implications of antimicrobial resistance in agricultural settings.
It also emphasizes the interconnectedness of human, animal, and environmental health, as
evidenced by the widespread distribution of certain STs across multiple reservoirs. The
detection of the same STs in different environments and host species demonstrates their
ability to adapt and spread widely, posing a significant threat to global health security.

3.3. Biofilm Formation in MDR E. coli Isolated from Rabbit Farms

E. coli biofilm production ability may pose a significant threat to food processing
and production, as it increases bacterial resistance to disinfectants, increasing the risk of
cross-infection and causing harm to consumer health [41]. In our study, we analyzed the
biofilm formation of 48 CTX-resistant E. coli-grouped antibiotic resistance phenotypes.
Strains showing resistance to three/four/five different categories had higher average
biofilm formation rates and the highest biofilm production, followed by those in the six
and seven classes. Several studies have aimed to determine the relationship between MDR
profiles and their ability to form biofilms. In our study, all the strains were MDR, and we
tried to relate the number of classes they would be resistant to with their ability to form
biofilms. The results showed that the number of classes of resistance did not affect biofilm
production, since resistance to seven classes was the category that resulted in lower biofilm
production when compared to the others. Regarding other studies, there is no information
concerning biofilm formation in E. coli strains isolated from rabbit farms. However, our
results can be compared with other studies conducted on livestock and food products. A
study in China found that 25.39% of E. coli strains from poultry meat formed biofilms, with
high-producing strains found in beef [42]. Stronger biofilm-forming strains were also found
in poultry isolates [43]. In Bulgaria, isolates from three industrial farms formed strongly
adherent biofilms, indicating the presence of E. coli in various meat products [44]. The
presence of resistance to commonly used antimicrobials, coupled with the occurrence of
MDR strains and strong biofilm formation ability, is alarming. However, in our study, we
were unable to verify that the number of antibiotic classes to which the strains are resistant
influences biofilm formation. The antimicrobial treatment of biofilms leads the formation
of persister cells that can tolerate high levels of antibacterial compounds, which continue
to form biofilms even after treatment has finished, transmitting between reservoirs and
infecting humans [45].

The rational use of and reduction in antibiotics in rabbit farms is hindered by antibiotic
administration laws, economic constraints, a lack of biosafety standards, consumer demand,
and inadequate training. The rabbit industry lacks biosecurity measures, leaving rabbits
vulnerable to health risks. MDR strains are disseminated and classified as pandemic and
high-risk clones, making them more susceptible to infections that could lead to mortality.
There is growing demand, but less pressure from consumers, for rabbit meat products to
meet specific standards to reduce antibiotic use [9]. The European Food Safety Authority
(EFSA) emphasizes the need for measures to reduce antimicrobial use, including improving
farmers’ understanding of herd hygiene and promoting different attitudes towards herd
health management in different livestock sectors [17].

4. Materials and Methods
4.1. Sample Collection, Isolation, and Identification of Escherichia coli Isolates

A total of 295 fecal samples were collected from 20 rabbit farms in the Trás-os-Montes,
Alto Tâmega, Douro, Ave and Minho regions between October 2022 and February 2023
(Figure 4). At each farm, 15 samples were collected from different locations in the rabbit
hutch area to ensure significant samples and to cover the entire rabbit farm.
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From each fecal sample, a 5 g aliquot was homogenized and diluted in brain heart
infusion (BHI) broth and incubated at 37 ◦C for 24 h under aerobic conditions. After
incubation, samples were plated on Chromocult® Coliform Agar (ChromoCult, Fontenay
sous Bois, France) supplemented with 2 µg/mL of cefotaxime. The plates were then
incubated at 37 ◦C for 24 h. One colony per sample with the morphological aspect of E. coli
was selected and inoculated onto eosin–methylene blue agar (EMB) and MacConkey agar
plates at 37 ◦C for 24 h. Colonies presumed to have morphological characteristics consistent
with E. coli were collected (1 colony per sample) and subjected to standard biochemistry
including IMViC reactions (indole, methyl red, Voges–Proskauer, and citric acid). Matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS,
MALDI Biotyper®, Bruker Daltonik, Bremen, Germany) was used to confirm the species-
level identification of bacterial isolates. The isolated E. coli strains were stored at −80 ◦C
for subsequent characterization.

4.2. Antimicrobial Susceptibility Testing

The Kirby–Bauer disk diffusion method was used to assess antibiotic susceptibility on
Mueller–Hinton (MH) agar according to the European Committee for Antimicrobial Sus-
ceptibility Testing (EUCAST) guidelines (2022) [46]. A total of 16 antibiotics (µg/disc), cate-
gorized as human therapeutic (CIA) and critically important veterinary antibiotics (VCIA),
were tested for their relevance to human and animal health: ampicillin (10 µg), amoxicillin–
clavulanic acid (AMC) (20 + 10 µg), cefoxitin (30 µg), ceftazidime (30 µg), aztreonam (30 µg),
imipenem (10 µg), gentamicin (10 µg), amikacin (30 µg), tobramycin (10 µg), streptomycin
(10 µg), nalidixic acid (30 µg), ciprofloxacin (5 µg), trimethoprim/sulfamethoxazole (SXT)
(1.25/23.75 µg), tetracycline (30 µg), and chloramphenicol (30 µg). Incubation was carried
out aerobically at 37 ◦C for 24 h. The classification of isolates as susceptible or resistant
was determined based on the diameter of the zone of inhibition around the antibiotic disk
according to the EUCAST breakpoints [46]. One isolate per stool sample was selected for
further investigation.

4.3. Characterization of Antimicrobial Resistance Genes and Virulence Genotyping

Genomic DNA from E. coli isolates was extracted using the boiling method, and the
presence of antibiotic resistance genes in cefotaxime-resistant isolates was investigated.
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The presence of b-lactamase genes was analyzed by PCR: blaCTX-M of different groups
(groups 3 and 9), blaTEM, blaSHV, and blaOXA. Additionally, PCR was used to identify
genes associated with non-beta-lactam resistance, including tetracyclines (tetA, tetM, and
tetB), sulfonamides (sul1, sul2 and sul3), streptomycin (strA and strB), chloramphenicol
(cmlA), aminoglycosides (ant(2), aph(3), aac(3)-II, aac(3)-IV, aadA1 and aac(6′)-Ib), quinolones
(qnrS and qnrA), and colistin (mcr-1). The presence of intI1 and intI2 genes encoding class 1
and 2 integrases was also tested using PCR [47].

PCR assays were used to identify genes associated with virulence factors in E. coli
isolates, including fimA (type 1 fimbriae), papGIII (adhesin PapG class III), hlyA (hemolysin),
cnf1 (cytotoxic necrotizing factor), papC (P fimbriae), aer (aerobactin iron uptake system),
eae (Intimin), and bfp (Type IV bundle forming pili) [47].

4.4. Phylogenetic Diversity and Clonal Relationship

The identification of major phylogenetic groups (A, B1, B2, or D) among the E. coli
isolates was established using PCR, incorporating a set of three genes (chuA, yjaA, and
TspE4.C2), as outlined by Clermont et al. [48].

The clonal relationship between the different isolates was studied by pulsed-field
gel electrophoresis (PFGE) using XbaI enzyme to digest genomic DNA, as previously
reported [49]. The PFGE conditions were 6 V cm−2, 14 ◦C, and pulse time ranging from
1 s to 30 s over the course of 19 h using the CHEF-DR III system (Bio-Rad Laboratories
Inc., Hercules, CA, USA). PFGE patterns were analyzed using the Java program GelJ v2
using the Dice coefficient [50]. Isolates with ≥80% of identity were classified as belonging
to the same epidemiological clonal group [51]. At least one isolate per PFGE pattern was
typed using multilocus sequence typing (MLST) with the Achtman scheme, involving PCR
amplification of seven housekeeping genes. Subsequently, all amplicons were sequenced
and compared against MLST database sequences to identify specific allele combinations
and determine the sequence type (ST) [52].

4.5. Biofilm Formation

The biofilm formation assay was performed according to a previously outlined proto-
col [23], with some adjustments. Briefly, two fresh colonies from a culture were transferred
into tubes containing 3 mL of tryptic soy broth (TSB, Oxoid, Basingstoke, UK) and incu-
bated at 37 ◦C for 16 ± 1 h with continuous shaking at 120 rpm using a shaker incubator
(ES-80 Shaker, Grant Instruments, Cambridge, UK). After this incubation, the bacterial
suspension was standardized to an optical density equivalent to 1 × 106 colony-forming
units (CFUs), and then 200 µL of each isolate was added to individual wells of a 96-well
flat-bottom microplate. E. coli ATTC 25922 served as a positive control and fresh, sterile
medium as a negative control. The plates were incubated at 37 ◦C for 24 h without shaking,
with seven technical replicates prepared for each experiment. Biofilm mass was evalu-
ated using the crystal violet (CV) staining method, following the procedure described by
Peeters et al. (2008) [53] with some modifications. After incubation, each well was washed
twice with 200 µL of distilled water to remove non-adherent bacterial cells. The plates
were air-dried at room temperature for approximately 2 h, and then 100 µL of methanol
(VWR International, Carnaxide, Portugal) was added to fix the microbial biofilm, then
allowed to react for 15 min. Subsequently, methanol was removed, and the plates were
air-dried for 10 min at room temperature. Following this, 100 µL of 1% (v/v) CV solution
was added to each well and allowed to sit for 10 min. Excess CV solution was removed by
washing the plates twice with distilled water. To dissolve CV, 100 µL of 33% (v/v) acetic
acid was added, and absorbance was measured at 570 nm using a microplate reader (Bio
Tek elX808U, Winooski, VT, USA) [54]. Biofilm formation results for each isolate were
presented as a percentage of the results obtained for the reference strain.
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5. Conclusions

The emergence of CTX-resistant E. coli recovered from healthy rabbits from 20 different
intensive farms across north Portugal highlights a concerning prevalence of antibiotic
resistance in rabbit-farming environments and the spread of MDR bacteria. The increase in
resistance to antibiotics frequently used in veterinary and human healthcare settings, such
as tetracycline, ampicillin, aztreonam, and streptomycin, underscores the growing threat to
public health and poses a significant challenge to One Health. The detection of MDR strains
on all farms, including the identification of various high-risk and pandemic clones (ST10,
ST457, and ST2325), coupled with their great ability to form biofilms, poses a substantial
threat to food safety and consumer health and reflects the broad host adaptability and wide
geographical spread of these organisms, which suggests the possibility of cross-species
transmission and widespread distribution of genes conferring antimicrobial resistance. This
study underscores the need for One Health strategies to address antimicrobial resistance in
rabbit farming. Regulatory measures and consumer awareness campaigns are crucial for
promoting sustainable practices and reducing antibiotic use, and, with these strategies, will
ensure long-term sustainability, adaptability, public health, and environmental well-being
in rabbit farming.
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