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Abstract: Phenothiazines have their primary effects on the plasma membranes of 

prokaryotes and eukaryotes. Among the components of the prokaryotic plasma membrane 

affected are efflux pumps, their energy sources and energy providing enzymes, such as 

ATPase, and genes that regulate and code for the permeability aspect of a bacterium. The 

response of multidrug and extensively drug resistant tuberculosis to phenothiazines shows 

an alternative therapy for the treatment of these dreaded diseases, which are claiming more 

and more lives every year throughout the world. Many phenothiazines have shown 

synergistic activity with several antibiotics thereby lowering the doses of antibiotics 

administered to patients suffering from specific bacterial infections. Trimeprazine is 

synergistic with trimethoprim. Flupenthixol (Fp) has been found to be synergistic with 

penicillin and chlorpromazine (CPZ); in addition, some antibiotics are also synergistic. 

Along with the antibacterial action described in this review, many phenothiazines possess 

plasmid curing activities, which render the bacterial carrier of the plasmid sensitive to 

antibiotics. Thus, simultaneous applications of a phenothiazine like TZ would not only act 
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as an additional antibacterial agent but also would help to eliminate drug resistant plasmid 

from the infectious bacterial cells. 

Keywords: phenothiazines; antimicrobial activities; efflux pumps; quorum sensing; 

reversal of antibiotic resistance 

 

1. Introduction 

Antibiotics have been found to be one of humankind’s most imperative weapons in combating 

microbial infections. Although there are highly effective antibiotics to cure nearly all major infectious 

diseases, such health benefits have come under threat, not only because many of these possess toxicity 

but also due to emergence of antibiotic-resistant bacteria. Therefore, the medicines required to cure 

major diseases threaten to erode the medical advances of recent decades. New antibacterial molecules 

and new therapeutic approaches are needed to overcome multi drug resistant (MDR) and extreme drug 

resistant (XDR) states in severe infectious diseases [1–4]. Thus, there is an indispensable need to 

explore newer molecules with lesser degrees of resistance [5]. Since the 1970s, several groups of 

workers independently undertook a systematic study to determine antimicrobial action of drugs 

belonging to various pharmacological classes not recognized as antimicrobials. This resulted in the 

accumulation of a large amount of evidence on many types of drugs possessing moderate to powerful 

antimicrobial action. All such drugs with antimicrobial activity are collectively termed as non-

antibiotics (Kristiansen [6]). After the discovery by Paul Ehrlich [7] of the antimicrobial action of 

methylene blue, the search for drugs with antimicrobial property began. Ultimately the neuroleptic 

phenothiazine chlorpromazine (CPZ) was synthesized in 1950s. With global use of chlorpromazine, 

reports showed that patients receiving chlorpromazine had a lower incidence of bacterial infections [8]. 

After this, there was a boom in search for drugs, such as, antihistamines, anti-inflammatory agents, 

antihypertensives, cardiovascular drugs, antipsychotics and neuroleptics with possibilities of potent 

antimicrobial properties [9]. However, the antihistaminic and antipsychotic agents have been studied 

most extensively for their antimicrobial action both in vitro and in vivo [10–13].  

2. Antimicrobial Action of Phenothiazines  

Phenothiazines proved to be a unique class of compounds with prominent antibacterial activity 

against most of the pathogenic bacteria (Table 1). The MIC values of CPZ (chlorpromazine); Pr 

(promazine); Pz (promethazine); Pc, (prochlorperazine); Md (methdilazine); Fz (fluphenazine); Tm 

(trimeprazine); Tf (trifluoperazine); Tp (triflupromazine); Tz,(thioridazine); and Fp (flupenthixol). 

CPZ, Pr, Md, Fz, Tm, Tf, and Fp with respect to most of the Gram positive bacteria were from  

10 µg/mL level, a few organisms could be inhibited by Md and Fz at 2 to 5 µg/mL level. The 

compound Tf was highly active against Gram positive bacteria as several of them revealed MIC as low 

as 2 µg/mL. Among Gram negative organisms, vibrios were most sensitive to many of the 

phenothiazines. However, several strains of Salmonella spp. and Shigella spp. exhibit greater 

sensitivity than others of the same genera. Klebsiellae, pseudomonads and acenetobacters were highly 
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resistant to almost all of these drugs. Many of these phenothiazines were bacteriostatic, while some 

others were able to kill a pathogen within 6 to 18 h.  

Table 1. Antibacterial activity of synthetic phenothiazines by in vitro screening. 

Phenothiazine 
MIC µg/mL Bacteriostatic/ 

Bactericidal Gram +ve Gram –ve 

CPZ 10–50 25–100 
Bacteriostatic for Gm −ve, 

Bactericidal for Gm +ve 

Pr 10–50 10–100 Bacteriostatic 

Pz 50–200 100–200 Bacteriostatic 

Pc 25–100 50–400 Bacteriostatic 

Md 10–100 25–200 Bactericidal 

Fz 10–100 10–100 Bactericidal 

Tm 10–100 10–100 Bactericidal 

Tf 10–100 25–200 Bactericidal 

Tp 2–50 2–100 Bactericidal 

Tz 
32–64 

100–800 
Bacteriostatic for Gm –ve, 

Bactericidal for Gm +ve 50–800 

Fp 5–50 10–100 Bacteriostatic 

Please note: The bactericidal effect can be reached with multiple of the MICs. CPZ, chlorpromazine; Pr, 

promazine; Pz, promethazine; Pc, prochlorperazine; Md, methdilazine; Fz, fluphenazine; Tm, trimeprazine; 

Tf, trifluoperazine; Tp, triflupromazine; Tz, thioridazine; Fp, flupenthixol. 

The mechanism by which the phenothiazines act on bacterial cells in vitro has been studied by 

several researchers during the past few years. In 1979, Kristiansen [14] observed that CPZ was 

bacteriostatic to S. aureus at low level, but as the doses of CPZ were increased, it produced 

bactericidal action on the same organism. It was shown further that CPZ was involved in bacterial 

haemolysins, as the erythrocytic membranes of animals were altered in such way that haemolysis of 

the membrane was affected. Therefore, at low concentrations CPZ possibly interfered with the 

transport of potassium through the bacterial membrane much in the same way as it is occurs in 

mammalian tissue [14]. In 1986, Galeazzi et al [15] observed that CPZ was a competent cell 

permeabilizer and was capable of conducting microbial peroxidase and peroxidase like reactions. 

Whenever studied, CPZ increases the permeability of the bacterium to antibiotics, as evident from the 

items presented in this herein review.  

In 1991, Amaral and Lorian [16] observed that when E. coli was grown at the sub-MIC level of 

CPZ, the cells became elongated and filament-like in 5 h, but reverted to rod-like shape after 24 h. It 

was found that the electrophoretic pattern of proteins extracted from the cell envelopes of all forms of 

CPZ treated cells was distinctly different from those of both the untreated cells of E. coli. 

In 2000, Amaral et al [17] observed that CPZ failed to produce any inhibitory effect on cell 

proliferation of Salmonella that were allowed to remain in the sub-inhibitory state of agglutinability 

with the specific O antibody. Thus, the resistance to CPZ was dependent upon changes induced by 

CPZ in the cell wall. It was postulated that CPZ probably was able to bind with 55 KDa protein in the 

cell wall and interfered with the recognition of O antigen by the specific antibody. 
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According to Radhakrisnan et al [18], phenothiazine thioridazine (TZ) proved to be a unique drug, 

as it could induce complete destruction of different Gram positive bacteria within a span of only two 

hours; however, with respect to all the different Gram negative organisms it was observed that 

although there was a gradual decrease in the number of viable cells after addition of Tz in a highly 

multiplying state of the organisms, the cells remained viable up to 18 h, revealing the bacteriostatic 

nature of Tz on such bacteria. It was suggested that the drug was possibly able to penetrate quite easily 

the peptidoglycan layer of the cell wall of Gram positive bacteria, but was unable to have any negative 

effect on the components of the outer membrane of Gram negative cell envelope such as lipoprotein or 

the lipopolysaccharide. 

Since there is no specific drug to cure the sleeping sickness caused by Trypanosoma brucci, Page 

and Lagando [19] investigated the action of Tz on the pellicular membrane complex of the infective 

bloodstream form of the parasite. Although Tz could induce rapid changes in cell shape but failed to 

affect structural integrity of the microtubular complex. However, the drug was successful in damaging 

both the nuclear and the cytoplasmic membranes. In this way like CPZ Tz was also found to have 

action on cell envelopes.  

Investigations on the structure activity relationships of the phenothiazines containing halogen atoms 

showed that their antimicrobial properties were possibly linked to the methyl-thio substituent at 

position 10 and a halogen moiety at position 2 of the basic phenothiazine ring [20]. As the 

thioxanthene skeleton is similar to phenothiazine except for the absence of a tertiary nitrogen atom at 

position 9, the presence of a trifluoromethyl group at position 2 of the tricyclic ring may be possible 

for rendering the antibacterial property to Fp, producing a structure similar to the anti-inflammatory 

antibacterial agent diclofenac sodium [10]. All these studies revealed that both CPZ and Tz have 

different kinds of action on the cell envelopes of both Gram positive and Gram negative bacteria. 

To evaluate the efficacy of phenothiazines in animal systems, a series of studies were conducted 

with a Swiss strain of male white mice weighing 18–20 g each were taken (Table 2). The naturally 

mouse virulent bacterium Salmonella enterica serovar Typhimurium NCTC 11 and NCTC 74 obtained 

from London served as the challenge strains. Both these strains were simultaneously sensitive to many 

antibiotics and the phenothiazines. Virulence of strains was significantly increased with repeated 

mouse passages and the median lethal dose (MLD or LD50) was determined following standard 

technique [21]. Protective capacity of each phenthiazine was determined by injecting a definite dose of 

the drug followed by challenge with 50 LD50 dose of the virulent salmonella to groups of mice. 

Toxicity levels of the compound were determined at the same time. In a separate experiment, the 

actual bacterial load in various organs was determined in treated and untreated mice. While evaluating 

the effects of phenothiazines in challenged mice it was noted that Pr was the best drug since it could 

offer protection at the level of 2–8 µg/mouse, and Tm was the next in order. However, Pr was much 

less toxic than Tm since the latter produced severe convulsion followed subsequently by death when 

the doses were greater than 16 µg/mouse. The drugs Md, Tf, Tp and Fp were much less toxic and 

offered statistically significant protection at the levels of 15–30 µg/mouse. Since the in vitro MIC of 

Tz in Salmonella enterica 74 was 500 µg/mL 200 µg/mouse was required to protect the challenged 

mice. Higher amounts of Tz also produced convulsion in animals (Table 2). 
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Table 2. Anti-salmonella activity of phenothiazines in vivo. 

Phenothiazine 
Drug (µg/g) per mouse 

Toxic dose Protective dose 

Pr >64 2–8 

Md >320 15–30 

Fz >120 30–60 

Tm >16 4–8 

Tf >60 15–30 

Tf >60 15–30 

Tz >500 200 

Fp >60 15–30 

Pr, promazine; Md, methdilazine; Fz, fluphenazine; Tm, trimeprazine; Tf, trifluoperazine; Tp, 

triflupromazine; Tz, thioridazine; Fp, flupenthixol. 

It is known that phenothiazines are concentrated by macrophages almost up to 100-fold of its 

original amount in a medium in which macrophages are maintained in the laboratory [22,23]. These 

increases of intracellular concentration take place in the lysosome [13,22,23] resulting in reaching the 

bactericidal level of the compound [22–24]. According to Amaral et al [17] a phenothiazine may 

promote loss of 55 KDa virulence protein and hence there is a great possibility that viable cells of 

salmonella lose their virulence inside the phagolysozome. Although a very large number of viable cells 

of S. enterica are retrieved from untreated animals 18h after challenge, there was always statistically 

significant reduction in the number of viable cells recovered from treated animals. From such data, 

however, a definite conclusion cannot be made regarding loss of virulence proteins in the 

phagocytosed salmonellae until the exact mechanism is unveiled and determined. Nevertheless, it is 

now known that a phenothiazine such as TZ affects the activity of genes that play a role in the survival 

of the Gram-negative bacterium [24,25]. The main genes affected by exposure to a phenothiazine such 

as thioridazine are those that code for plasma membrane based proteins that regulate the permeability 

of the cell envelope [25].  

3. Antimicrobial Action Phenothiazine-Like Compounds from Plants 

In a study of determination of antimicrobial potentiality of different plant extracts Dastidar et al. [26] 

observed that a prenylflavonone labeled as YS06 procured from the root of Sophora plant was active 

both in vitro and in vivo (Table 3). The in vitro MIC values were between 25 and 200 µg/mL level of 

the pure compound; it was bactericidal and could ably protect mice infected with S. enterica at doses 

of 40–80 µg/mouse. Such a phenomenon was further confirmed by determining reduction in the 

number of viable cells in mice receiving both prenylflavonone and the challenge when compared to the 

set of animals that were given the challenge only. Subsequently an isoflavonoid compound (YS19) 

derived from the same plant revealed that this was a bacteriostatic agent and could inhibit bacterial 

growth at 25–200 µg/mL level and successfully protected mice at an amount of 30–60 µg/mouse [27]. 

Subsequent animal experiments showed that much like YS06, YS19 could also reduce number of 

viable salmonellae in spleen, liver and heart blood of mice receiving both the agent and organism.  
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Table 3. Antibacterial action of plant derived compounds. 

Compound of plant origin 
MIC (µg/mL) 

Type of action 
Animal protection  

dose / mouse Gm +ve Gm –ve 

Prenylflavonone YS06 25–100 25–100 Bactericidal 40–80 µg 

Isoflavonoid YS19 25–200 25–200 Bacteristatic 30–60 µg 

Mesua ferrea flower extract  50–100 Bactericidal 50–100 µg 

Flavonone from Butea frondosa bark 50–200 50–200 Bacteristatic 50–200 µg 

Mazumder et al. [28] observed that the flower extract of M. ferrea possessed potent in vitro 

bactericidal action on salmonellae, and that the extract was able to offer significant protection to mice 

challenged with virulent salmonellae. In 2008, Mishra et al. isolated a flavonone from the bark of  

Butea frondosa and detected powerful antibacterial action both in vitro and in vivo. Many other 

antimicrobial compounds have been isolated [29–33]. Thus microorganisms are not the only source of 

antibacterial agents like antibiotics, but various other studies further strengthen the possibilities of 

procuring and securing from many types of natural sources. 

4. Special Aspects and Activities of Phenothiazines 

The majority of medicinal compounds in use today owe their origin to a given phenothiazine [34]. 

This is not surprising since these compounds have activities on the plasma membrane of bacteria [35–37], 

protozoa [38], eukaryotes [39]; in short, all living cells. The following sections discuss specific aspects 

of phenothiazine activities inasmuch as these activities have potential for the development of new 

medicinal compounds for therapy of infections and cancers. The reader is encouraged to visit reference 

32 for a comprehensive presentation of the evolution of phenothiazines as antimicrobial agents. 

Phenothiazines and the Plasma Membrane 

In general, phenothiazines are electron donors and bind by charge transfer complexes (CTC) 

formation to target molecules when an electron is supposed to go from the highest filled molecular 

orbital to the lowest empty orbital of the acceptor molecule on the target. When the phenothiazine acts 

as an electron donor at the surface of the plasma membrane of the cell or within the lipid bilayer of the 

plasma membrane, then the electron transfer on the outside will result in depolarization of the 

membrane. Because this depolarization reduces the activity of the plasma membrane (conductivity, etc.), 

the phenothiazine has been referred to as a membrane-stabilizing agent. However, when the 

phenothazine acts as an electron donor on the cytoplasmic side of the plasma membrane, 

hyperpolarization results and membrane-linked processes are inhibited. If the biological activity is 

actually due to charge transfer complex formation, we expect pharmacological activity from electron 

donation by the phenothiazine (there are some exceptions to this rule: CPZ- sulfon- or, sulphoxydes 

and methylene blue, where due to the asymmetric distribution of charge distribution main cause for 

ineffective activity). In general, one may say that the activity of the phenothiazine on the medial side 

of the plasma membrane is dependent upon a very high concentration of the compound. These 

concentrations are clinically irrelevant since they cannot be safely achieved in the patient but can be 

readily achieved in vitro. Therapeutically, a phenothiazine such as CPZ is administered at far lower 
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concentrations that limit the activity of the agent to the surface of the plasma membrane (i.e., electron 

acceptor). It should be noted that a variety of agents can obviate the surface activity of CPZ such as 

caffeine [40]. In vitro caffeine forms precipitates with CPZ therefore reducing the neuroleptic effects 

of the agent. At the level of the plasma membrane they can disperse CPZ from its binding sites of the 

neuron hence patients who are managed with CPZ must take care not drink excessively caffeine rich 

liquids such as tea and coffee. 

The main mechanism of action of most phenothiazines that have a variety of effects on the activity 

of the plasma membrane involves the inhibition of calcium binding to calcium dependent enzymes [41]. 

However, because of the differentiation of cells, the constituents on the surface of the plasma 

membrane determine whether a specific phenothiazine will have activity on that given cell type [42]. 

This means that various members of the phenothiazine group may present with specific activities; e.g., 

neuroleptics chlorpromazine and flupentazine and the phenothiazine derived antihistamines 

methdilazine and trimeprazine the tranquilliser promethazine. Nevertheless, although the major 

mechanisms may differ, whenever studied, most phenothiazines have activity against bacteria albeit at 

in vitro concentrations which are clinically irrelevant  

Among the activities reported for phenothiazines are those that affect the activity of efflux pumps of 

bacteria, mycobacteria and cancer cells that express a multi-drug resistant phenotype [43]. Efflux 

pumps extrude noxious agents that penetrate into the cell and therefore afford protection from those 

agents. To the bacterium or cancer cell, antibiotics and anticancer agents are noxious agents that must 

be expelled prior to reaching their intended targets. Although all living cells have these efflux pumps at a 

basal level, they can be rapidly over-expressed when the concentration of an agent is increased [44–48]. 

Moreover, other proteins that regulate permeability of the cell envelope such as porins, are down-

regulated [45,46]. 

With respect to bacteria, serial exposure to increasing concentrations of an antibiotic results in 

progressive increases in resistance to the given antibiotic. Serial exposure of pansusceptible 

Mycobacterium tuberculosis to progressive increases of isoniazid (INH) increases resistance to the 

drug [49]. Similar exposure of antibiotic susceptible Escherichia coli to increasing concentrations of 

tetracycline promote progressive increases of resistance to the antibiotic that is accompanied by 

increased expression of genes that regulate and code for various efflux pumps of the organism [50].  

If at any one point during the latter study the last concentration of tetracycline is serially maintained, 

further increases in the expression of efflux pump genes takes place and accompanied with 

accumulation of mutations in genes that code for proteins sensitive to beta-lactams, streptomycin and 

gyrase A. As prolonged exposure to a constant concentration of tetracycline, the expression of efflux 

pump genes is reduced to base-line levels [51,52]. These results have been interpreted to indicate that 

the organism follows the 2nd law of thermodynamics inasmuch as the energy needed for maintenance 

of an over-expressed efflux pump system is great, and given the unchanging environment containing a 

high level of the noxious agent (antibiotic), it can conserve energy by activating a mutator gene that 

promotes mutations in essential proteins, as predicted by Chopra et al. [53]. In all studies so far 

conducted, including those involving other Gram-negatives [25] and Gram-positives [54–56] and 

mycobacteria [49,57–59] phenothiazines such as chlorpromazine and thioridazine reverse the 

antibiotic induced resistance.  
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The mechanism by which a phenothiazine reverses efflux pump mediated resistance to an antibiotic 

appears to be indirect. Firstly, depending on the environmental pH, the source of energy that drives the 

efflux pump differs. At pH lower than 7, the phenothiazine does not inhibit the efflux of a noxious 

agent whereas at pH above 7, inhibition of efflux results from exposure to a concentration of the 

phenothiazine that is devoid of antibacterial activity [60]. These results are interpreted to indicate the 

possibility that the phenothiazine inhibits the generation of hydronium ions from the hydrolysis of 

ATP by ATP synthase activity, and therefore, the maintenance of the proton motive force is affected. 

Because at low pH of the environment, the hydronium ions that are bound at the surface of the cell 

envelop [61,62] create the proton motive force, the needed energy for efflux is independent of 

metabolism and therefore not affected by then phenothiazine. Lastly, phenothiazines are well known 

inhibitors of the proton motive force at pH ca. 7 [63,64], therefore the interpretation of the pH 

dependent effects of the phenothiazine on the efflux pump of bacteria receives support. 

5. Therapy of MDR/XDR/TDR TB 

Since the 1950s, as a consequence of extensive use of chlorpromazine for therapy of psychosis, 

sporadic reports appeared suggesting that this neuroleptic could cure a pulmonary tuberculosis 

infection [8]. However, it was the advent of multi-drug resistance world-wide during the late 1980’s 

that the use of chlorpromazine for therapy of tuberculosis was seriously considered and immediately 

dismissed due to the severe toxicity produced by this neuroleptic. Moreover, the concentrations of 

chlorpromazine needed were in the range of 15 to 30 mg/L, and this was far greater than that which 

could be safely achieved in the patient (maximum plasma concentration clinically achieved safely is 

ca. 0.5 mg/L). Nevertheless, interest in chlorpromazine as an anti-tubercular drug continued and when 

Crowle and his group [65] showed that clinically relevant concentrations of chlpromazine in the 

medium could promote the killing of intracellular Mycobacterium tuberculosis [65], interest in this 

agent was increased. Soon thereafter, the milder neuroleptic thioridazine was shown to have activity 

against all encountered antibiotic resistant strains of Mycobacterium tuberculosis (mono-resistant; 

multi-drug resistant and extensively drug resistant strains of Mycobacterium tuberculosis) [66]. Later 

studies demonstrated that thioridazine promoted the killing of intracellular multi-drug resistant [67] and 

extensively drug resistant strains [68] of Mycobacterium tuberculosis and could cure the mouse infected 

with antibiotic susceptible [69] and multi-drug resistant [70] strains of Mycobacterium tuberculosis. 

These studies laid down the foundation for the first demonstration that thioridazine in combination 

with antibiotics to which the Mycobacterium tuberculosis was initially resistant, could cure rather 

quickly, patients infected with extensively drug resistant Mycobacterium tuberculosis [71]. The 

mechanism by which these cures have been achieved involves the activation of lysosomal hydrolases 

resulting from the inhibition of potassium efflux from this organelle [72–74] and by inhibition of the 

source of energy needed for adequate function of the efflux pump system that afforded a multi-drug 

resistant phenotype of the infecting organism [72–74]. It should also be mentioned that the use of 

thioridazine as monotherapy of the extensively drug resistant tuberculosis patient results in rapid 

improvement in the quality of life in that the patients regain their appetite, put on weight, night sweats 

are reduced and even obviated, and because of the neuroleptic activity of thioridazine, stress that 

results from this infection is markedly reduced [75]. These latter studies have been expanded by 
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Utwadia et al. [76], and as a result, thioridazine has been recommended for use as a “salvage drug” for 

therapy of the extensively drug resistant TB patient [75]. 

6. Concluding Remarks 

Antipsychotics block D2 receptors in the dopamine pathway of brain such that dopamine released in 

this pathway has a lesser effect. The tricyclic compound phenothiazines are used as antidepressant and 

anxiolytic and antipsychotic agents. They accumulate in the brain provoking blockade of dopamine 

receptors inasmuch as excess release of dopamine in the mesolimbic pathway has been linked to 

psychotic experiences. High potency antipsychotic drug like haloperidol can be applied in doses of a 

few milligrams causing sleepiness and a calming effect in patients within minutes, while low potency 

antipsychotics like CPZ or TZ require doses of several hundred milligrams to produce the same action. 

These have a much greater anticholinergic and antihistaminic actions that can counteract dopamine 

related side effects. Most of the antimicrobial phenothiazines are of this order.  

Phenothiazines have their primary effects on the plasma membranes of prokaryotes and eukaryotes. 

Among the components of the prokaryotic plasma membrane affected are efflux pumps, their energy 

sources, energy providing enzymes, such as ATPase and genes that regulate and code for the permeability 

aspect of a bacterium. The response of multidrug and extensively drug resistant tuberculosis to 

phenothiazines shows an alternative therapy for treatment of these dreaded disease that is claiming 

more and more lives every year throughout the world. Many phenothiazines have shown synergistic 

activity with several antibiotics thereby lowering the doses of antibiotics administered to patients 

suffering from specific bacterial infections. Trimeprazine is synergistic with trimethoprim [77]. Fp has 

been found to be synergistic with penicillin [78] and CPZ plus some antibiotics are also synergistic [16]. 

Along with antibacterial action described in this review, many phenothiazines possess plasmid 

curing activities, which render the bacterial carrier of the plasmid sensitive to antibiotics [55,77–81]. 

Thus simultaneous applications of a phenothiazine like TZ would not only act as an additional 

antibacterial agent but also would help to eliminate drug resistant plasmid from the infectious  

bacterial cells. 
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