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Abstract: Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion
in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to
develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of
biocides and antibiotics, which can impose health, safety, and environmental concerns. This review
examines an alternative approach to this problem. This is achieved by reviewing the role of quorum
sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases
of SRBs are mined to look for putative QS systems and homologous protein sequences representative
of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use
of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the
implementation of this approach.
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1. Introduction

The increasing scarcity of freshwater has resulted in the increasing use of seawater as a source
for various industrial water applications. Examples of such usage include seawater cooling tower
systems and seawater injection for enhanced oil recovery. Across all industrial sectors, metal pipelines
are commonly used because of their ductility, strength, and high heat conductivity. However, metallic
pipelines are prone to corrosion. This is especially exacerbated by the use of seawater as the high
chloride, sulfate, and oxygen content in seawater can speed up corrosion rates through scaling and
microbial induced corrosion (MIC) [1,2]. Internationally, one ton of steel turns into rust every 90 s [3]
and the associated costs of metal corrosion have been estimated to range between 2% and 3% of the
gross domestic product (GDP) of developed countries like the US [4].

MIC is believed to account for 20% of the damage caused by corrosion [5]. Although scaling
plays a comparatively larger role in corrosion, it is relatively more well-understood compared to MIC,
which was only recognized to increase corrosion rates by several orders of magnitude a few decades
ago [6]. Approaches to mitigate the role of scaling in corrosion have been put in place (e.g., utilizing a
once-through seawater cooling tower, the addition of water softeners to control alkalinity, and acid
treatment). Another commonly used strategy to tackle corrosion in seawater pipelines includes the
deaeration of seawater. In aerated seawater, oxygen concentration gradients on the pipeline surface
can cause pitting and/or crevice corrosion at localized sites. Once pitting is initiated, the propagation
rate is accelerated with increasing dissolved oxygen (DO) content [7]. Deaeration is thus performed
to remove DO from the seawater. Deaeration can be accomplished by chemical treatment, vacuum
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deaeration, or countercurrent gas stripping. Vacuum deaeration and countercurrent gas stripping
are commonly followed by oxygen scavenging by reacting residual oxygen with sulfite ions in the
presence of a suitable catalyst.

However, deaeration and oxygen scavenging of injection water with sulfite ions creates anaerobic
environments in the water, favoring the proliferation of sulfate-reducing bacteria (SRB) and subsequent
SRB-mediated MIC. SRB damage metal pipelines through a corrosive chemical agent known as
hydrogen sulfide, which is formed during biological sulfate reduction (i.e., chemical microbially
influenced corrosion; CMIC). On the other hand, certain SRB can also attack metal pipelines via the
direct extraction of electrons (i.e., electrical microbially influenced corrosion; EMIC) [6].

The conventional approach to tackling MIC is to dose biocides in large quantities (such as
chlorine, ozone, and commercially available biocides that are either formulated based on formaldehyde,
glutaraldehyde, or quaternary ammonium) [8]. The use of these highly toxic biocides has resulted in
the consideration of their potential health, safety, and environmental impacts. According to OSHA,
all materials capable of releasing formaldehyde at levels above 0.5 mg/L should be classified as
potential cancer hazards [9]. The use of seawater cooling towers and the development of oil reservoirs
in environmentally sensitive areas, coupled with stricter environmental regulations, has spurred
interest in the use of “green biocides” that are less toxic.

In this review, we aim to present quorum sensing inhibition as a possible natural biocidal approach
to tackling the main protagonist of MIC—sulfate-reducing bacteria (SRB). The review begins by
providing a basic understanding of the problems caused by SRB and the genetic traits behind sulfate
respiration. Secondly, a description of the current methods used to tackle SRB and microorganisms in
general is presented. Finally, this review introduces the use of quorum quenching as an alternative
method to tackle SRB, particularly those that cause biocorrosion problems in extreme environments
such as seawater injection systems and seawater cooling towers.

1.1. Sulfate Reducers: Phylogenetic Affiliation and Their Contributory Roles in Industrial Problems

Sulfate reducers are ubiquitous anaerobic microorganisms that use sulfate as an electron acceptor to
oxidize hydrogen and organic compounds (e.g., lactate, acetate, malate, butyrate) [10] (Table 1). They are
also able to reduce sulfite, thiosulfate, and sulfur to hydrogen sulfide (H2S). The detection of sulfate
reducers based on 16S rRNA gene sequencing analysis suggests that they can be found in both Bacteria
and Archaea domains, although the bacterial SRB are more commonly found in most studied ecosystems.
Within bacterial SRB, the most abundant group is composed of gram-negative Deltaproteobacteria.
Clostridia is the second most abundant group, with only three gram-positive genera that include
Desulfosporosinus, Desulfotomaculum, and Desulfosporomusa. The rest of the sulfate-reducing bacteria
belong to Nitrospirae, the thermophile Thermodesulfobacteria, and Thermodesulfobium. Additionally,
Archaeoglobus, Themocladium, and Caldivirga are three sulfate-reducing genera in the Archaea domain
that have been found in extreme environment such as hot springs and hydrothermal vents.

Table 1. Redox reactions for the formation of hydrogen sulfide by sulfate-reducing bacteria in the
presence of exemplary electron donors and electron acceptors.

4 H2 + SO4
2− + H+ = HS− + 4 H2O ∆G0′ (KJ/rx) = −151.9

CH3COO− + SO4
2− = 2 HCO3

− + HS− ∆G0′ (KJ/rx) = −47.6
CH3CH2COO− +0.75 SO4

2− = CH3COO− + HCO3
− 0.75 HS− + 0.25 H+ ∆G0′ (KJ/rx) = −37.7

CH3CH2CH2COO− + 0.5 SO4
2− = 2 CH3COO− + 0.5 HS− + 0.5 H+ ∆G0′ (KJ/rx) = −27.8

CH3CHOHCOO− + 0.5 SO4
2− = CH3COO− + HCO3

− + 0.5 HS− ∆G0′ (KJ/rx) = −80.2

It was previously thought that SRB microorganisms could only survive in anoxic environments.
However, studies over the past twenty years have revealed that some SRB are abundant in the surface
layers of microbial mats that are oxygenated. This adaptation is likely achieved through the formation
of close associations with other bacteria, such as sulfur-oxidizing bacteria. Sulfur-oxidizing bacteria
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can utilize the oxygen and produce the sulfide required for proliferation of SRB under seemingly
unfavorable conditions [11–14]. This observation coupled with the wide metabolic diversity of SRB
suggests their versatility in adapting to extreme pH and high temperature conditions, such as those
present in seawater cooling tower systems and seawater injection pipelines used for oil recovery.
SRBs are implicated as the main protagonists in the biocorrosion process, especially in the seawater
environment where high concentration of sulfate allows growth of SRB within the biofilm structure [15].

Corrosion is usually a chemical process that involves the electrochemical oxidation of metal in the
presence of oxygen and sulfur and can occur in both aerobic and anaerobic environments. For example,
the chemical dissolution of iron results in the production of hydrogen (Equation (1)).

Fe + H+ = Fe2+ + H2 (1)

This phenomenon is often coupled with microbial induced corrosion (MIC). SRBs are considered
to be the main cause of MIC. As SRB attach to the metal surface [16] (e.g., Fe) and reduce sulfate,
oxygen is depleted quickly as a result of the heavily populated biofilm environment. This area of
oxygen depletion becomes more anodic, and Fe0 acts as an electron donor to be oxidized to the soluble
Fe2+ form, as shown in Equation (2):

4 Fe + SO4
2− + H2O = FeS + 3 Fe(OH)2 + 2 OH− (2)

SRB consume H2 to reduce sulfate (Equation (3)) and influence the equilibrium of the chemical
dissolution. In addition to this process, SRB are able to corrode iron surfaces through the formation
of H2S, according to Equation (4) (chemical microbial induced corrosion, CMIC), and/or by directly
using Fe as an electron donor (Fe0 = Fe2+ + 2e−). This process is called electrical microbial induced
corrosion (EMIC) [17].

4 H2 + SO4
2− + H+ = HS− + 4 H2O (3)

H2S + Fe0 = H2 + FeS (4)

A recent study has demonstrated that EMIC may play a more important role in biocorrosion
by SRB when compared to CMIC. EMIC has thus far only been reported to be associated with the
presence of Desulfovibrionaceae and Desulfobulbaceae families [6].

In addition to biocorrosion, SRB plays a role in the biofouling of the membranes used in seawater
desalination treatment plants. The growth of sulfate reducers in the biofilms formed on RO membranes
is enhanced by the high sulfate content of seawater and by the use of metabisulfite in the desalination
process. Metabisulfite is commonly added to neutralize chlorine or other oxidizing biocides in
desalination plants in order to protect the integrity of the membranes used. However, excess sulfate can
select for SRB, which can produce corrosive hydrogen sulfide that damages membrane integrity [18].

1.2. Current Strategies to Tackle SRBs and Their Limitations

Biocides are commonly used to eliminate SRB by the following mechanisms: (i) disruption of
membrane, envelope, capsid lipid, or protein constituents; (ii) blockage of receptor–ligand interactions;
and (iii) inhibition of replication. Biocides can be either oxidizing or non-oxidizing agents. Oxidizing
compounds (e.g., chlorine, bromine, ozone, and hydrogen peroxide) use radical substitution for
the oxidation of organic compounds; electrophiles (e.g., formaldehyde, formaldehyde-releasing
substances, isothiazolones) target cell walls and denature the amino groups of proteins; quaternary
ammonium compounds (QUATS) dissolve and destabilize the cell membranes; and protonophores
(e.g., parabens and weak acids like benzoic acid) acidify the cytoplasm of the cells to disrupt cellular
metabolism [19]. Other common non-oxidizing biocides are methylene-bisthiocyanate (MTB) and
tetrakis hydroxymethyl phosphonium sulfate (THPS) [1,20]. Different types of surfactants have also
been used to tackle sulfate reducers in the oil and gas industry. Table 2 presents a summary of the
biocides and surfactants commonly exploited to reduce unwanted microorganisms.



Antibiotics 2016, 5, 39 4 of 20

Table 2. Commonly used reagents and their mode of action, required dosage and associated disadvantages.

Class Biocide Action Dosage Other Information Ref.

Oxidizing
biocides

Chlorine
Direct oxidation, destruction of the cell walls through modification
of membrane permeability, leakage of cellular constituents, protein
inactivation, damage of nucleic acid.

0.5 ppm They have numerous disadvantages: (i) interaction
with other chemicals to result in toxic disinfectant
byproducts (ii) contribute to corrosion of structural
metals (iii) weaken the integrity of non-metallic
components (iv) ineffective against bacteria
embedded within biofilm matrix.

[1,20]
Bromine 0.05–0.1 ppm
Ozone 0.2–0.5 ppm

Hydrogen peroxide 50–100 ppm

Magnesium peroxide/ORC™ 1%–2% MgO2:
1% MgO2 + 1% ORC [21]

Non-oxidizing
biocides

Glutaraldehyde Reacts with proteins on the cell membrane and cytoplasm. 10–70 ppm Generally toxic and persistent in the environment into
which they are being discarded. To reduce the dosage,
in the recent past they have been tested in a cocktail
with 1000-2000 ppm Ethylenediaminedisuccinate
(EDDS), a chelator that increases the permeability of
membranes by chelating with Mg2+ and Ca2+, and
methanol or ethanol that denature the proteins of the
outer membrane [22,23]. The use of ultrasound was
also able to increase their efficacy [24].

[1,20]
QUATS (Quaternary

ammonium compounds)
Impose detergent effect on cell, dissolute lipids and thus cause loss
of cellular content. 8–35 ppm

Isothiazolones Exhibit cytotoxicity on different types of cells. 0.9–10 ppm

MTB (Methylene-bisthiocyanate) Prevents cell growth by blocking essential chemical reactions that
occur within the cell. 1.5–8 ppm

THPS (tetrakishydroxymethyl
phosphonium sulfate)

Cytotoxic effect, with loss of membrane integrity. Mainly used in
water treatment systems and oil field operations. Low
environmental toxicity.

10–90 ppm

Natural biocides

Lemongrass essential oil
and citrus

Antimicrobial effect due to membrane alteration and formation of
electron-dense inclusions. Loss of ions and reduction of membrane
potential will occur.

0.17–0.84 ppm Showed limited efficacies in large-scale operations. [25]

Cow Urine Reduces the planktonic and biofilm population in the same way.
A reduction of sulfide, Fe(III), and EPS production was observed. 25 ppm [26]

Surfactants

Imidazolium-based
Gemini Surfactants

Amphiphilic molecules create a biomolecular layer on the metal
surface. Also, hydrophobic chains of surfactants can penetrate
through bacterial cell membranes, leading to strong bacterial
damage. Shchiff bases are usually used to synthesize other
antibacterial compounds.

5000 ppm
Applied in the oil and gas industry to reduce the
action of SRB to delay the biocorrosion process.

[27]

Phosphonium
Surfactant compounds 50–400 ppm for 3 h [28]

Cationic surfactants based on
Schiff bases

20–400 ppm on
cultured media [29]

Gemini Surfactant

Forms a protective film on the surface. Electrostatic interaction
between the negatively charged cell membrane (lipoprotein) and
the positively charged ammonium groups of the synthesized
gemini surfactant. Moreover, physical disruption of the bacterial
cell membrane takes place when the surfactant's alkyl hydrophobic
chain penetrates into the bacterial cell membrane.

1 mM [30]
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The use of biocides can have numerous problems. First, biocides like chlorine can result in
the formation of carcinogenic and toxic disinfection byproducts, which impose a health, safety, and
environment (HSE) concern. Second, it is known that SRB can produce extracellular polymeric
substances (EPS), which, besides assisting in calcium precipitation and mineralization [31], also serve
to embed this bacteria within the biofilm matrix. SRB has been reported to exist in biofilm matrices
that are electroactive [32] or are determined to impart localized biocorrosion [2,33,34]. The biofilm
matrix not only serves to adhere SRB onto surfaces but also hinders penetration of biocides. This, in
turn, protects SRB from exposure to toxic biocides. Long-term exposure to sub-lethal concentrations of
biocides has been demonstrated to select for resistant variants of other bacteria, and the possibility that
this would occur for SRB cannot be excluded. The same concern is also applicable when alternative
methods, otherwise termed as green approaches, are used. Although green approaches like the use of
natural compounds including lemongrass essential oil, citrus, and cow urine (Table 2) would impose a
lower HSE concern, most of these natural compounds demonstrate limited efficacies in field studies.

1.3. Biofilm Formation by SRB

Besides limiting the penetration and dissemination of biocides, biofilms are also intricately linked
to biocorrosion. The presence of biofilm increases the rate of corrosion by up to 10,000 times, compared
with the planktonic state [35]. This is likely due to poor oxygen diffusion throughout the biofilm that
results in anoxic zones, in turn favoring SRB growth. The presence of SRB in the biofilm structure
subsequently leads to localized biocorrosion events [36–38]. Furthermore, attachment on surfaces
as facilitated by biofilm formation would allow direct contact between outer membrane proteins or
electro-conductive nanowires and the metal surface [39,40].

To fully understand the contribution of SRB to biocorrosion and biofilm formation, a complete
understanding of the biological mechanisms at the gene level is necessary. Recent genomic studies
have revealed the nature of the genes that encode for the proteins required in sulfate reduction.
A comprehensive review of the genes is out of the scope of this review, and interested readers should
refer to several recent reviews related to this topic [41–45]. Instead, a brief summary of the genes
related to biofilm formation is provided in this review.

Caffrey and co-workers utilized a transcriptomic approach to show that Desulfovibrio vulgaris
biofilms upregulate many genes for flagellar components or proteins involved in flagellar biosynthesis
to promote the switch from planktonic lifestyle to biofilm formation on an iron electrode [46].
Both flagella and pili are extracellular filaments attached to the cellular membrane. It is commonly
thought that the main function of the flagella is to support rapid swimming motility, which, in the case
of the study conducted by Caffrey et al., may imply the swimming motility towards an iron electrode
and thereafter facilitating the attachment onto the electrode surface. Another study demonstrates that
mutants of Desulfovibrio alaskensis lacking genes required for glycosytransferase, the pilus assembly
protein, and the flagellar biosynthesis protein showed reduced biofilm formation and were unable
to establish syntrophic cell-to-cell interactions with a partnering methanogen [47]. On the contrary,
Zhang and colleagues found that, for the same bacterium, genes associated with flagellar motility
were down-regulated among cells in the biofilm phase when compared with the planktonic state [48].
The discrepancy between these observations could be due to the differences in the level of biofilm
maturation prior to sampling in both studies. In the latter study by Zhang et al., biofilm-associated
cells were sampled at day 26 (i.e., early phase of biofilm formation) while a longer culturing time was
taken by Krumholz et al., to establish the syntrophic interactions (i.e., late phase biofilm formation).
Hence, the expression of flagella-associated genes in an established biofilm may be more distinct from
that obtained during the early phase of biofilm formation.

Although no reports of nanowire or pili structures have been reported for SRB, it was observed
that some SRB species possess organic filaments similar to nanowires [2], which may play a role in
adhesion and biofilm formation. In addition, it was shown that the nanowire-like structures from SRB
cells play an important role in direct interspecies electron transfer [49]. Likewise, extracellular electron
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transfer is known to occur in the presence of conductive nanowires or pili [33]. Conductive nanowires
have been well studied in Geobacter sulfurreducens. It was previously observed that a pilus-deficient
mutant was able to attach to an iron surface but could not reduce Fe(III) [50]. Shewanella oneidensis
mutants deficient in mtrC and omcA genes (c-type cytochromes) and a functional Type II secretion
system have pili, but exhibited poor conductivity [51]. These Shewanella oneidensis mutants were also
unable to reduce hydrous ferric oxide. These combined observations exemplify the essential roles
nanowires, pilis or flagellum-like appendages, c-type cytochromes, and type II secretion systems
can play—not only in biofilm adherence and formation, but also in direct electron transfer and in
metal reduction.

In addition, it was observed that biofilm-associated D. vulgaris cells, when compared to a
planktonic batch culture, also demonstrate upregulation of echEF (subunits of Ech hydrogenase)
and cytochrome c533 [52]. Ech catalyzes the reduction of ferredoxin with hydrogen. Ferredoxin
proteins are, in turn, involved in the electrons transfer within the cell and are closely related with
diverse protein complexes, such as the heterodisulfide reductase HdrABC [44].

The close interconnection between biofilm formation and extracellular electron transfer in SRBs
would mean that biofilm formation by SRBs may play a crucial role in triggering biocorrosion events.

1.4. Biofilm Formation: the Role of QS and the Possible Link to Biocorrosion by SRB

Once a biofilm is established, the communication within the bacterial congregation allows
them to synergistically perform certain phenotypic traits [53]. This communication is often termed
as quorum sensing (QS), and is based on a set of small signal molecules (e.g., autoinducer-1,
autoinducer-2, and peptides) produced and received by the microorganisms within the congregated
mass. When the density of microbial cells increases, the density of different signal molecules
correspondingly increases, and the different autoinducers bind to the receptors to activate or inactivate
gene cascades [54]. Different bacteria use different signal molecules for QS, but the conventional notion
is that gram-negative bacteria use autoinducer-1 (AI-1), otherwise referred to as acyl-homoserine
lactone (acyl-HSL), while gram-positive bacteria use peptides as signaling molecules. In addition,
autoinducer-2 (AI-2) or furanosyl borate diester [55] is commonly thought to be the universal signal
molecule for interspecies communication. However, the role of AI-2 signaling and the presence of AI-2
related genes in QS have been called into question given that LuxS also plays a role in the activated
methyl cycle [56,57]. The activated methyl cycle is an important metabolic pathway for the recycling of
S-adenosylmethionine (SAM), the main methyl donor in methylation reactions required for cell growth,
cell development, and chemotaxis. AI-2 is a product of SAM metabolism and may be indicative of the
metabolic status of the cell and not present solely due to QS activity. Nevertheless, recent studies have
shown that enzymes with AI-2 quenching capabilities have resulted in a significantly thinner biofilm
that is more compact with a lower overall biovolume [58]. This finding suggests that, despite AI-2
having dual roles in both QS and metabolic pathways, quenching AI-2 may still be a good method to
deter growth of unwanted bacterial populations.

Although the simplest QS system known is the Vibrio fischieri AHL-based LuxI/R system, the
most well-studied model for QS is Vibrio harveyi. The system of this Gram-negative bacterium consists
of three circuits based on three different signals [59]. In the first circuit, LuxM produces an AHL
signal, termed as HAI-1, and binds to the sensor histidine kinase, LuxN. The second circuit is based
on the AI-2 signal; this molecule is a furanosyl borate diester, produced by the synthase, LuxS. AI-2
is recognized by the LuxP protein in the periplasm. The LuxP/AI-2 complex interacts with another
sensor histidine kinase, termed LuxQ. The third circuit involves a long-chain amino ketone, termed
CAI-1, as the signal molecule. CqsA produces this signal molecule, which subsequently interacts with
CqsS, a sensor histidine kinase. The expression of QS-related genes depends on the luxR gene. At low
cell density, a phosphate group is transferred from the three autoinducers to the regulation protein,
LuxO, within a cascade that also includes the protein, LuxU. In this state, LuxO is able to interfere
with the luxR gene activity. In contrast, at high cell density, the signal receptors bind to the three
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different autoinducers, switching from kinase to phosphatase; the phosphate group is removed from
LuxO. In this state, LuxO is not able to destabilize the luxR mRNA, hence resulting in a consequential
expression of target genes.

Examples of target genes that can result in important phenotypic traits include those involved
in biofilm formation. It was observed that biofilm formation in Burkholderia cenocepacia is regulated
by the AtsR QS system [60], while in Staphylococcus aureus mutants of the Agr QS system produce
more adhesins than the wild type due to the elimination of the Agr QS system that represses surface
adhesins. Surface adhesins, in turn, mediate contact with surfaces [61–63]. In Burkholderia glumae,
the TofR QS regulator is activated by the long chain C8-HSL autoinducer. It was demonstrated that a
mutant deficient in tofl, and hence unable to receive QS signals, was unable to produce rhamnolipds
and showed impaired swarming motility despite the presence of flagella [64]. Similarly, under
phosphate-limited conditions, the Rhl QS system in Pseudomonas aeruginosa is upregulated to promote
the hyperproduction of rhamnolipids so as to induce swarming motility [65].

Besides regulating production of rhamnolipids to enhance swarming motilities, QS influences the
expression of genes related to flagella and pili synthesis, as demonstrated in Sinorhizobium fredii [66]
and Burkholderia glumae [67]. There was also QS-dependent regulation of different types of
secretion systems, such as the type VI secretion system in Burkholderia glumae [67], type III secretion
systems in Escherichia coli [68] and Aeromonas hydrophila [69], and type II secretion proteins in
Pseudomonas aeruginosa [70]. In these opportunistic pathogens, the secretion systems are most probably
required for host invasion and toxin injection. However, as the earlier section has demonstrated links
between flagella or type secretion systems with extracellular electron transfer, these reports infer
a possible direct or indirect role QS may play in electron transfer. This is further supported by an
observation in P. aeruginosa, in which spiking of C4 and C8-HSL showed an activation of numerous
genes associated with c-type cytochromes. These proteins are important for the transfer of electrons
and hence likely contribute to biocorrosion [70].

1.5. QS in SRBs: What is Known Thus Far?

Despite the tremendous wealth of knowledge related to QS in model bacterium species like
Vibrio harveyi and Vibrio fischeri, this mechanism is still relatively unknown in SRBs although inferences
on the presence of putative QS systems in SRBs can be made.

For example, a cell-free assay based on the expression of β-galactosidase was developed for
rapid identification of QS activity in bacteria. The result demonstrates that several AHLs (C6 -AHL,
oxo-C6 -AHL, C8-AHL, C10-AHL, and C12-AHL) were produced by Desulfovibrio vulgaris and other
Desulfovibrio species [71,72]. Diverse AHLs were also detected from microbial mats containing a high
abundance of SRBs [12]. Preliminary studies by Montgomery and coworkers suggest that AHLs with
long chains of alkyl groups are more stable than short chain AHLs at elevated pH (>8.2), and that these
long chain alkyl AHLs were produced by SRBs to stimulate sulfide oxidation by sulfide-oxidizing
bacteria (SOB) [73]. It remains unknown if this cross-communication between SRB and SOB are a result
of altruistic behavior from SRB to achieve co-existence of both microbial groups in the same microbial
mat or because there is an underlying incentive for SRB to gain access to sulfate through SOBs.

In other studies, proteins homologous to LuxR and LuxS were found in Desulfovibrio magneticus [74],
D. desulfuricans [75], and D. vulgaris [76]. A further mining of the SRB genomes available in the NCBI
database also showed that proteins homologous to LuxS AI-2 synthase and the AI-2 receptors (i.e., LuxP
and LuxQ) are present in many Desulfovibrio species. In addition, gene sequences homologous to that
of LuxO, which is involved in the phosphorylation cascade to upregulate or repress quorum sensing
associated genes, are also present in many Desulfovibrio species (Table 3). Based on these data mining
results, as shown in Table 3, the presence of QS systems similar to that of Vibrio harveyi in several
Desulfovibrio spp. can be inferred, specifically in Desulfovibrio hydrothermalis (with potential homologous
proteins related to LuxS, LuxP, LuxQ, and LuxO) and D. salexigens (with potential homologous proteins
related to LuxS, LuxQ, and LuxO).
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Although gram-negative Desulfovibrio spp. is relatively better studied than other types of SRB,
many SRBs that are present in seawater cooling tower systems or in the oil field injection systems are
not Desulfovibrio spp., but instead belong to the thermophilic gram-positive Desulfotomaculum spp. [77]
or other gram-negative bacteria like Desulfonauticus spp. [78]. Similar data mining in gram-positive
Desulfotomaculum genomes showed that the majority of them (e.g., Desulfotomaculum kuznetsovii,
Desulfotomaculum ruminis, Desulfotomaculum reducens, and Desulfotomaculm acetoxidans) have LuxR-type
transcriptional regulator proteins. Given the lack of synthases discovered from genome-mining of
SRBs, these LuxR-type proteins may simply be orphan receptors which have no signal to quench
and/or to respond to and hence are not involved in QS. However, there also exists the possibility
that these orphan receptors might allow the SRB to sense and respond to signals produced by other
bacteria within a microbial community, or environmentally-modified autoinducers could bind to these
orphan receptors so as to provide a broader environmental sensor [14]. Further studies are needed to
determine what the downstream genes coordinated by the LuxR-type transcriptional regulators in
SRB are, and whether there is a direct link between QS in SRB and sulfate-reduction and biocorrosion.

Similarly, non-Desulfovibrio gram-negative SRBs (e.g., Desulfobacter postgatei, Desulfobacterium
autotrophicum, Desulfobulbus propionicus) are positive for AI-2 family transporters. However,
all instances of genome mining showed no synthases or receptors homologous to the conventional
ones found in V. fischeri. Nonetheless, it may be possible that synthase or receptor proteins different
from those conventionally seen in Vibrio spp. may be present in these SRBs.

As mentioned in the earlier section, quorum-controlled genes have been identified in various
pathogens, such as Yersinia pestis and Pseudomonas aeruginosa [65,79]. This has been done through
the use of RNA-seq and genetic manipulations to derive mutant strains, and such approaches can be
used on the SRBs to elucidate the quorum-controlled genes. Insights from the use of these approaches
would serve to establish a relationship among QS, sulfate reduction, and biocorrosion. To elaborate,
Schuster and coworkers utilized mutant strains of Pseudomonas aeruginosa PAO1 that are devoid of
AHL receptors, comparing their gene expression profiles in the presence of HSL against those of the
wild-type strain to determine the presence of quorum-activated genes. Similarly, P. aeruginosa PAO1
devoid of AHL synthases was determined for its quorum-activated genes when AHL was spiked
during growth. Hence, using a similar approach and with Desulfovibrio hydrothermalis as a model
bacterium, the identified LuxS, LuxP, and LuxQ in this SRB can be possibly inactivated or knocked out
for comparison against the wild-type strain.
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Table 3. QS (quorum sensing) protein homologs in SRB (sulfate-reducing bacteria). Each protein was compared with the homologue in Vibrio harveyi.

Protein SRB Best Matched Protein Name in Database that was
Homologous to the Listed QS Protein

Amino Acids
Identity % Query Cover % E Value

LuxS
Desulfovibrio hydrothermalis S-ribosylhomocysteine lyase 33 100 3E-19

Desulfovibrio salexigens Quorum sensing AI-2, LuxS 34 100 2E-18
Desulfotalea psychrophila Probable q. s. AI-2 production protein, LuxS 34 85 4E-16

LuxR

Desulfovibrio desulfuricans 2 components transcriptional regulator 38 99 4E-47
Desulfovibrio africanus Transcriptional regulator, LuxR family 31 98 7E-21
Desulfovibrio africanus 2 components transcriptional regulator 32 97 2E-34

Desulfovibrio magneticus RS-1 LuxR family transcriptional regulator 48 34 1E-17
Desulfotomaculum nigrificans 2 components transcriptional regulator, LuxR family 35 99 5E-42
Desulfotomaculum acetoxidans 2 components transcriptional regulator, LuxR family 24 94 3E-08
Desulfotomaculum acetoxidans Transcriptional regulator, LuxR family 27 94 1E-15
Desulfotomaculum kuznetsovii 2 components transcriptional regulator, LuxR family 38 99 3E-49

Desulfotomaculum reducens 2 components transcriptional regulator, LuxR family 38 99 3E-41
Desulfotomaculum ruminis Regulatory protein, LuxR 52 16 2E-11

Desulfosarcina cetonica LuxR family transcriptional regulator 26 90 6E-16
Desulfobacterium autotrophicum 2 components transcriptional regulator, LuxR family 39 98 2E-43
Desulfobacterium autotrophicum LuxR family transcriptional regulator 47 17 2E-05

Desulfobulbus propionicus DSM 2032 2 components transcriptional regulator, LuxR family 34 98 5E-41
Desulfovibrio vulgaris (str. Hildenborough) LuxR family transcriptional regulator 32 93 2E-29

Syntrophobacter fumaroxidans 2 components transcriptional regulator, LuxR family 40 96 2e-51
Thermodesulfobium narugense 2 components transcriptional regulator, LuxR family 33 90 4e-32
Thermodesulfovibrio aggregans LuxR family transcriptional regulator 35 99 3e-36

LuxP
Desulfovibrio piezophilus AI-2 binding perisplatic protein, LuxP 42 95 7E-95

Desulfovibrio hydrothermalis AI-2 binding perisplatic protein, LuxP 43 94 6E-103
Desulfovibrio alaskensis AI-2 binding perisplatic protein, LuxP precursor 44 89 2E-105

LuxQ
Desulfovibrio salexigens PAS/PAC sensor signal transduction histidine kinase 29 31 2E-22

Desulfovibrio hydrothermalis Signal transduction histidine kinase 31 31 5E-23

LuxO

Desulfotignum phosphitoxidans Luminescence regulatory protein, LuxO 45 67 7E-85
Desulfovibrio salexigens PAS modulated sigma54 specific transcriptional 53 55 2E-83

Desulfovibrio magneticus RS-1 Fis family transcriptional regulator 43 68 5E-75
Desulfovibrio vulgaris Sigma54 specific transcriptional regulator 46 53 4E-82

Desulfovibrio hydrothermalis PAS modulated sigma54 specific transcriptional 54 55 1E-84
Desulfovibrio africanus PAS modulated sigma54 specific transcriptional 39 69 4E-81

CqsS Desulfovibrio salexigens PAS/ signal transduction histidine kinase 34 52 1E-83
Desulfovibrio magneticus Multi-sensor hybrid histidine kinase 39 28 8E-77
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1.6. QQ as a Potential Green Biocidal Approach to Tackle QS

Given the importance of QS in various bacteria, including possibly SRBs, and that conventional
biocides as highlighted in Table 2 can impose various detrimental effects, alternative green approaches
should be explored. Recently a novel method, termed quorum quenching (QQ), has been demonstrated
to reduce membrane biofouling and to repress the virulence factors of some pathogens by blocking the
ability of communication in bacteria [80–83]. Likewise, the basis behind the QQ approach as a means
to limit SRB is based on the assumption that interference of the communication channels would reduce
biofilm formation and the associated metabolism of SRBs. Alternatively, QQ can also serve to deter the
growth of other bacterial populations that may be supporting the proliferation of SRBs (e.g., aerobic
microorganisms that help to establish an anoxic niche for SRB). However, it is important to note that a
possible application of QQ to inhibit SRBs has not yet been exploited. This is likely due to the lack of
understanding on whether QS is indeed present among SRBs.

Regardless, QQ can be achieved in three ways: (i) blocking synthesis of autoinducers;
(ii) interfering with signal receptors; and (iii) degrading the autoinducers [84]. The first approach
has been studied in a number of instances but not widely used [85–87], as blocking the synthesis of
autoinducers in vivo within the cells is difficult to achieve. The majority of the QQ effort thus has been
focused on either the second or third approach. For the second approach, compounds that have been
recognized to interfere with signal receptors due to their structural similarity with the autoinducer
have been identified. To illustrate, halogenated furanone secreted by Delisea pulchra is able to inhibit
Pseudomonas aeruginosa QS by repressing the lasB gene. The furanone compound acts as an analog to
the cognate signal molecules and competitively binds onto receptors [88].

Alternatively, quorum-sensing antagonists of either natural or synthetic origin (e.g., vanillin [89],
malic and lactic acids [90], or numerous biosurfactants [91]) are able to interfere with the
receptor-binding process. Some of these compounds are produced by thermophiles and halophiles and
hence make them suitable for application in seawater cooling tower systems and seawater injection
systems. Both systems face unique and challenging environmental factors. These environmental
factors include high salinity (of up to 58 g/L), high temperature (of up to 45 ◦C), and an alkaline pH of
7.2–8.0 [92], which serve to increase the technical complexity involved in developing QQ approaches
to scavenge QS molecules.

Table 4 presents a non-exhaustive list of quorum sensing inhibitors with demonstrated quorum
quenching effect in thermophilic or halophilic conditions. A more comprehensive list of small molecule
compounds is also reviewed by Galloway and coworkers, although those compounds have not been
tested for quenching effects in thermophilic or halophilic conditions [93].
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Table 4. Natural or synthetic compounds with demonstrated quorum quenching effects in thermophilic or halophilic conditions. QSI denotes quorum sensing inhibitor.

Name Origin Structure Action Mechanism Treatment Condition QSI Effect Ref.

N (2′-phenylethyl)-Isobutyramide
3-methyl-N

(2′-phenylethyl)-butyramide

Halobacillus salinus C42
(sea grass)
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(pH 7.5 ± 0.2) at 30 ◦C

Reduces the biofilm and EPS formation
of marine infectious pathogens
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[98]
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Leucetta chagosensis AI-2 inhibitor Artificial seawater Inhibits strongly the AI-2 channel of

Vibrio harveyi [99]
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Table 5. List of AHL-lactonases and AHL-acylases that exhibit activity under thermophilic or saline conditions.

Name Origin Property Quenching Effect/Target Ref.

AHL acylase Bacillus pumilus S8-07 (Palk Bay) Retains activity after incubation at 70 ◦C for 10 min. Causes reduction of virulence factors and biofilm in
Pseudomonas aeruginosa PAO1 and Serratia marcescens [100]

AHL lactonase (AiiAB546) Bacillus sp. B546
(mud of a fish pond)

Shows optimal activity at pH 8.0, 20 ◦C, stable at pH
8.0–12.0, however also remains thermostable at 70 ◦C and is
highly resistant to proteases.

C10-HSL, C12-HSL, C6-HSL, 3-oxo-C6-HSL, 3-oxo-C8-HSL,
C8-HSL Attenuates Aeromonas hydrophila infection in carp [101]

AHL lactonase Geobacillus caldoxylosilyticus YS-8,
(volcano soil)

Exhibits activity over a wide temperature range of 30–70 ◦C,
optimal temperature and pH: 50 ◦C and pH 7.5. C6-HSL, 3-oxo-C12-HSL, 3-oxo-C6-AHL, C8-HSL [102]

AHL lactonase (AiiA TSAWB) Bacillus sp. TSAWB (salty soil) Shows hydrolysis activity in presence of 0%–5% salinity. C10-HSL [103]

AHL lactonase (SisLac) Bacillus sp. TSAWB (salty soil) Optimal activity at pH 9.0, enzymatic half-life of 84 min at
85 ◦C. C8-HSL, and C10-HSL [104]

Phosphotriesterase-like
lactonases (SsoPox)

Hyperthermophilic archaeon
Sulfolobus solfataricus MT4

Exhibits activity over a broad pH range of 5.0–9.5,
thermostable at 70 ◦C to 85 ◦C. 3-oxo-C8-HSL, 3-O-C6-HSL, C4-HSL [105]

AHL lactonase (AiiAAI96) Bacillus sp. AI96 (pond sediment)
Possesses high activity under broad conditions: ranging
from pH 6.0 to 8.5 and 10 ◦C to 40 ◦C. Also stable at 70◦C,
pH 8.0 for at least 1 h.

C4-HSL, C6-HSL, C7-HSL, C8-HSL, C10-HSL, C12-HSL,
C14-HSL, 3-oxo-C8-HSL, 3-oxo-C6-HSL, 3-oxo-C10-HSL,
3-oxo-C12-HSL, 3-oxo-C14-HSL, 3-hydroxy-C8-HSL,
3-hydroxy-C14-HSL. Attenuates Aeromonas hydrophila
infection in zebrafish by oral feeding.

[106]

AHL lactonase (AiiA) Bacillus licheniformis DAHB1

Optimal activity at pH: 7.0–8.0 and temperature range:
30–50 ◦C.
Maintains 90% activity after incubation at 60 ◦C–80 ◦C for
1 h. Resistant to acidic environment and proteases.

C4-HSL, C6-HSL, 3-oxo-C6-HSL, C8-HSL, 3-oxo-C8-HSL,
C10-HSL, C12-HSL, C14-HSL, Inhibits biofilm formation
and viable counts of Vibrio parahaemolyticus and attenuates
infection and mortality of shrimps in aquaculture

[107]

AHL lactonase (Aii20J) Marine bacteria Tenacibaculum sp.
strain 20 J

Crude enzyme stays active under 100 ◦C for 10 min,
resistant to proteinase K and α-chymotrypsin, unaffected by
wide ranges of pH.

C4-HSL, C6-HSL, C8-HSL, C10-HSL, C12-HSL, C14-HSL,
3-oxo-C6-HSL, 3-oxo-C12-HSL, 3-oxo-C10-HSL,
3-OH-C10-HSL, 3-oxo-C12-HSL, 3-OH-C12-HSL,
3-oxo-C13-HSL, 3-oxo-C14-HSL, Quenches AHL-mediated
acid resistance in Escherichia coli

[108]

AHL lactonase (AiiT)
Marine bacteria

Thermaerobacter marianensis
JCM 10246

Shows AHL degradation activity at temperature ranging
from 40 to 80◦C. Maintains 80% of enzyme activity after
incubation at 40, 60 and 70 ◦C for 10 min.

C6-HSL, C8-HSL, C10-HSL [109]

AHL lactonase (QsdH) Pseudoalteromonas byunsanensis
strain 1A01261

Exhibits activity over a temperature range of 20–60 ◦C.
Stays active after 60 ◦C for 30 min.

3-oxo-C8-HSL, 3-oxo-C6-HSL, C4-HSL, C6-HSL, C8-HSL,
C10-HSL, C12-HSL, C14-HSL, Attenuates pathogenicity of
plant pathogen Erwinia carotovora under 0.15 M NaCl

[110]

AHL lactonase (MomL) Muricauda olearia Th120 Exhibits high activity range from 20–50 ◦C. Retains
30% activity after incubation at 60 ◦C for 30 min.

C6-HSL, C12-HSL, 3-oxo-C6HSL, C8-HSL, 3-oxo-C8-HSL,
C4-HSL, 3-oxo-C10-HSL, C14-HSL, 3-oxo-C14-HSL,
C10-HSL. Attenuates virulence of Pseudomonas aeruginosa
and Caenorhabditis elegans

[111]

AHL lactonase Tenacibaculum soleae T173 Maintains C6-HSL degrading activity after boiled for
30 min.

C6-HSL, 3-oxo-C6-HSL, C8-HSL,3-oxo-C8-HSL, C10-HSL,
3-oxo-C10-HSL, C12-HSL, 3-oxo-C12-HSL, C14-HSL
and 3-oxo-C14-HSL

[112]

Phospshotriesterase-like
Lactonase Geobacillus kaustophilus HTA426 Retains its catalytic activity at 60 ◦C for up to 72 h. C4-HSL, C6-HSL, 3-oxo-C6-HSL, C8-HSL,

3-oxo-C8-HSL, C10-HSL [113]
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Besides small molecules, quorum quenching can also be attained via enzymes. There are at
least three known classes of enzymes for AHL degradation: (i) AHL-lactonase, (ii) AHL-acylase,
and (iii) AHL oxidoreductases [114]. AHL-lactonase induces hydrolysis of the homoserine lactone
ring while AHL-acylase hydrolyses the amide bond between the acyl side chain and the homoserine
lactone in the AHL molecules. AHL-oxidoreductases reduce homoserine lactones, which then become
unrecognizable by the receptors. AHL-lactonases and AHL-acylases originating from bacteria, and
demonstrated to either exhibit activity or remain stable in high temperature or saline conditions are
listed in Table 5.

As compared to that of AHL, enzyme-based QQ for AI-2 is not well studied. The only
known enzyme to act on AI-2 is identified to be the AI-2 kinase (LsrK) from E. coli. This enzyme
degrades AI-2 and has been demonstrated to reduce the QS response of Salmonella Typhimurium and
Vibrio harveyi [115]. AI-2 kinase, however, requires the presence of ATP, which decomposes at acidic
pH and/or at elevated temperature [114], thus limiting the applicability of this enzyme in seawater
cooling tower and injection systems.

Recently, by constructing large-insert cosmid libraries from metagenomes derived from
various saline samples, enzymes displaying homologies to oxidoreductases, proteases, amidases,
and aminotransferases were identified to exhibit a QQ effect against both AHL and AI-2 [58].
To exemplify, enzymes ranging from 177–478 aa that share close homology (42%–100% aa identity)
with either aminotransferase, 3-hydroxy-2-methylbutyry-CoA dehydrogenase, ferredoxin reductase,
4-hydroxy-3-methybut-2-en-1-yl diphosphate synthase, 3-beta hydroxysteroid dehydrogenase, or
N-acetylmuramoyl-L-alanine amidase were recovered from the Black Sea and salt marsh. This finding
suggests that the types of enzymes that can quench AI-2 extend beyond the AI-2 kinase.

1.7. Potential Strategies for QQ Application to Tackle SRB

Despite the advantages associated with enzyme-based QQ approaches, the application of QQ
can be technically challenging. This is particularly the case in harsh environmental conditions
representative of seawater cooling towers or injection systems. As mentioned earlier, both systems
face challenging environmental factors, including high salinity of up to 58 g/L, high temperature of
up to 45 ◦C, and an alkaline pH of 7.2 to 8.0 [92]. Therefore, although a considerable number of QQ
enzymes and QSIs have been screened and characterized, as detailed in Tables 4 and 5, it is feasibly
challenging to adapt them for industrial applications.

Several strategies can be applied to overcome these technical challenges. The first step would
involve screening for the novel genes responsible for the thermostable QQ enzymes. The sources
of such genes potentially include extremophiles, as detailed in Table 5. Bacterial candidates include
Geobacillus caldosilitycus YS-8, which is able to degrade N-acylhomoserine lactone at temperatures from
30 to 70 ◦C, with a maximum activity at 50 ◦C and pH 7.5 [102]. It has been reported that the gene, aiiA,
from Bacillus sp. strain AI96, encodes for a thermostable AHL lactonase [106]. This enzyme is stable at
80 ◦C and shows full activity from 10 to 40 ◦C at pH 8.0. Thermostable AHL lactonase enzymes with
maximum activity at high temperature have also been isolated from Tenacibaculum sp. 20J [108] and
Thermaerobacter marianensis [109], both of which are marine bacteria. These can be potential candidates
for the isolation of related genes that express useful thermostable QQ enzymes. Protein engineering
methods such as site mutagenesis or directed evolution can also be applied to modify the properties of
QQ enzymes to tailor for their use under specific conditions.

Once the appropriate gene has been identified, the gene can be manipulated into a genetic system
to overexpress the associated QQ enzymes. For instance, Bacillus megaterium can be selected as a
potential genetic system for this experiment because it is resistant at the temperature, salinity, and pH
conditions mentioned above. Furthermore, expression vectors are already developed for and stable in
this bacterium. At the same time, the bacterial host should also be chosen based on its ability to express
extracellular QQ enzymes in larger quantities compared to the wild-type strains. This would enable
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the direct application of the bacterium in the system, circumventing the need to operate separate
bioreactors for production and purification of the QQ enzymes.

A genetic system capable of overexpressing the QQ enzymes can be directly applied to a relevant
system via different strategies. Immobilization or encapsulation of bacterial hosts secreting QQ
enzymes in magnetic carriers, beads, or hollow-fiber vessels has been previously applied to achieve
lower membrane fouling in wastewater treatment systems [84,116,117]. It is proposed that such a
strategy would allow continuous growth and self-replenishment of the bacterial source and enzymes
within the system. Furthermore, proper selection of the encapsulation material would also allow
for the minimization of any potential toxic shock loading that may render the bacteria and QQ
enzymes inactive.

The advantage of the quorum quenching approach is based on to the limited inclination of the
target bacteria to develop resistant traits to its effects. In fact, quorum quenching agents do not affect
bacterial growth, but only their ability to switch to a collective behavior. Despite having its advantages,
Kalia et al., pointed out the possibility that bacteria can block the QS system at high concentrations
of inhibitors and return to their natural condition when these concentrations decrease [118]. For this
reason, it will be important to investigate bacterial behavior in the presence of a QS inhibitor to avoid
the evolution of SRB resistant to QQ approaches. Furthermore, the QQ approach is not likely to be
effective when directly applied to an open system. Diffusion of QQ enzymes or QS inhibitors would
render a loss in the localized blocking of QS communications, and could limit their intended effect.

Instead, the QQ approach may be more feasible when applied to closed systems. To illustrate,
it has been demonstrated in various lab-scale reactors that membrane biofouling can be controlled
through the addition of quorum quenching enzymes or QS inhibitors. A corresponding improvement
in the water flux and decrease in biofilm thickness were observed. A recent study involving pilot-scale
MBRs (i.e., closed reactor systems) that were operated for at least four months to treat real-strength
municipal wastewater [119,120] also showed that QQ was able to delay transmembrane pressure
build-up and reduce EPS concentrations in membrane biofilms [83]. Although similar demonstrations
of QQ to reduce SRBs are not available, these findings collectively show the potential of a QQ approach
to delay the biofilm formation process and hence avoid the consequential effect of biocorrosion in a
contained system (e.g. seawater injection pipeline or the seawater cooling tower).

2. Conclusions

This review addresses the need and basis for developing new and green approaches to reducing
SRB in engineered industrial systems, primarily due to their associated roles in biofilm formation and
subsequent effect on biocorrosion. Rampant use of the conventionally deployed antibiotics and biocides
are ineffective long-term solutions to SRB, as evidenced by the emergence of antibiotic-resistant bacteria
and antibiotic-resistance genes in many other types of bacteria. The continued application of biocides
against microorganisms involved in the biocorrosion process also places an unsustainable pressure
on the environment when these compounds are unintentionally disseminated into surrounding
ecosystems. The quorum quenching approach, as discussed in this review, would serve as an
environmentally friendly alternative. However, prior to exploiting the quorum quenching approaches
outlined in this study to tackle the biocorrosion process, future studies should focus on understanding
the quorum sensing mechanisms in SRB. Despite the evidence of a putative quorum sensing system in
many SRB, a more complete picture of the genes controlled by QS and the genes machinery involved
is necessary to develop a successful QQ approach.
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