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Abstract: Herein, we describe a case report of carbapenem-resistant Acinetobacter baumannii and
Klebsiella pneumoniae isolates that were identified from the same patient at a Tertiary University
Hospital Centre in Portugal. Antimicrobial susceptibility and the molecular characterization of
resistance and virulence determinants were performed. PCR screening identified the presence of
the resistance genes blaKPC-3, blaTEM-1 and blaSHV-1 in both isolates. The KPC-3 K. pneumoniae isolate
belonged to the ST-14 high risk clone and accumulated an uncommon resistance and virulence profile
additional to a horizontal dissemination capacity. In conclusion, the molecular screening led to the
first identification of the A. baumannii KPC-3 producer in Portugal with a full antimicrobial resistance
profile including tigecycline and colistin.

Keywords: antimicrobial resistance; Gram-negative bacteria; K. pneumoniae; A. baumannii;
KPC-3 carbapenemase; colistin; tigecycline

1. Introduction

The acquisition and emergence of carbapenem resistance among Gram-negative bacteria (GNB)
is a major cause of concern since carbapenems currently represent the treatment of choice for severe
infections caused by multidrug-resistant (MDR) strains producing extended-spectrum β-lactamases
(ESBL) which is a major global challenge in the treatment of these pathogens [1]. The carbapenemases
frequently detected in Enterobacteriaceae are: (i) class A β-lactamases (e.g., K. pneumoniae carbapenemase;
KPC); (ii) class B β-lactamases/metallo-β-lactamases (e.g., New Delhi metallo-β-lactamase-1; NDM-1)
and (iii) class D β-lactamases (e.g., oxacillinase-48; OXA-48-like carbapenemases) [2,3]. Several
reports have identified these plasmid-encoded carbapenemases worldwide but their prevalence varies
geographically [2]. In 2017, the World Health Organization published a global priority pathogen
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list of antibiotic-resistant bacteria to help in prioritizing the research and development of new and
effective antibiotic treatments. In this list, carbapenem-resistant Enterobacteriaceae and Acinetobacter
baumannii are identified as two of the top three critical threats [4]. Antimicrobial resistance and bacterial
virulence have developed on different timescales but they share some common characteristics and
studies regarding the interplay between these factors are needed. Additionally, the development
of new strategies involving new antimicrobial compounds, novel diagnostic methods that focus
on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing
problem of the association between virulence and resistance, which is becoming more beneficial for
pathogenic bacteria with consequent therapeutic inefficacy [5]. Although great efforts have been made
to enhance epidemiological surveillance in Europe, the detection of virulence traits and the molecular
characterization of carbapenem-resistant isolates from some countries remain scarce.

This article aims to describe a case report of carbapenem-resistant A. baumannii and K. pneumoniae
isolates that were identified from the same patient at a Tertiary University Hospital Centre in Portugal,
leading, to the best of our knowledge, to the first description of the A. baumannii KPC-3 producer
in Portugal.

2. Results

A 35-year-old Portuguese Caucasian female patient with a medical history of renal insufficiency
was admitted to a Tertiary University Hospital Centre in Lisboa, Portugal at the beginning
of January. At the end of the same month, the patient underwent gastro-enterotomy surgery.
A carbapenem-resistant K. pneumoniae bacterial pathogen was identified in an infected wound at
the beginning of February. One month later, a new surgery was done at the same general surgical ward.
At the end of March, carbapenem-resistant A. baumannii was isolated from the same patient, also from
an infected wound and in the same surgical department. Previous failed treatments with meropenem,
linezolid and ciprofloxacin were documented. Considering the clinical instability of the patient,
a prolonged hospitalization (from January to May) in the general surgery ward occurred. Despite all
the efforts, the clinical condition worsened, an immunosuppression clinical state occurred and the
patient died. Both clinical pathogens were preserved and sent to the Laboratory of Microbiology and
Immunology in the Faculty of Pharmacy for specific and additional microbiological studies.

Carbapenem-resistant K. pneumoniae and A. baumannii were both recovered from the wound
sample. After identification, the antimicrobial susceptibility profiling analysis indicated that the
K. pneumoniae strain was resistant to all antibiotics tested, except tigecycline and colistin, while A.
baumanni showed resistance to all antibiotics studied (Table 1). Screening for carbapenemase yielded
positive results when using the Modified Hodge test.

PCR screening for β-lactamase genes followed by DNA sequencing identified the presence of
the resistance genes blaKPC-3, blaTEM-1 and blaSHV-1 in both isolates. The OmpK35 and OmpK36 porin
genes were positive in the K. pneumoniae strain and no mutational changes were found by DNA
sequencing. Multilocus sequence typing (MLST), based on the analysis of internal fragments of
seven housekeeping genes (gapA, infB, mdh, pgi, phoE, rpoB and tonB) revealed that the K. pneumoniae
clinical isolate belonged to sequence type 14 (ST-14). Additionally, K. pneumoniae virulence factors
were assessed by PCR with specific primers for the K2 serotype, fimbrial adhesins type 1 and type
3, haemolysin, aerobactin, mucoid regulator and the hypermucoviscosity phenotype. All except the
mucoid and hypermucoviscosity phenotype virulence factors were identified (Table 2).
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Table 1. Phenotypic characterization of the K. pneumoniae an-d A. baumannii isolates.

Classes of Antibiotics List of Antibiotics 1

(n = 15 Agents)
K. pneumoniae

69633
A. baumannii 4

86982

Penicillins Ampicillin R R

β-lactam/β-lactamase
inhibitor combinations

Amoxicillin-clavulanic acid R R
Piperacillin-tazobactam R R

Cephalosporins
Cefoxitin-C2G 2 R R

Cefotaxime-C3G 3 R R
Ceftazidime-C3G 3 R R

Monobactams Aztreonam R R

Carbapenems
Imipenem R R

Meropenem R R
Ertapenem R R

Aminoglycosides Gentamicin R R

Fluoroquinolones Ciprofloxacin R R
Levofloxacin R R

Polymyxins Colistin S R
Tetracyclines Tigecycline S R

1 β-lactam antibiotics classes are shaded grey. Red/R indicates resistance and green/S indicates susceptible, standard
dosing regimen. Strains were recovered from the same patient. 2 C2G: second generation cephalosporin; 3 C3G:
third generation cephalosporin 4 A. baumannii is considered to be intrinsically resistant to ampicillin, cefotaxime,
aztreonam and ertapenem.

Table 2. Resistance and virulence molecular characteristics of K. pneumoniae carbapenemase (KPC)-3
producer isolates.

Strain β-Lactamases Identified PBRT 1 MLST Virulence Profile

K. pneumoniae 69633 KPC-3 + SHV-1 + TEM-1 IncFrepB ST-14 K2 + fimH + mrkDV1 +
mrkDV2-4 + khe + iucC

A. baumannii 86982 KPC-3 + SHV-1 + TEM-1 IncFrepB - -
1 Legend: PBRT: PCR-based replicon typing; MLST: multilocus sequence typing.

In order to study the transferability of the resistance profile, biparental mating between the
K. pneumoniae isolate and the E. coli strain J53AziR was conducted and a transconjugant strain
was selected. Replicon typing classified this plasmid within the incompatibility group IncFrepB.
The transconjungant strain showed a susceptibility profile similar to the donor strain, with resistance
to amoxicillin/clavulanic acid, cefotaxime and ceftazidime, whereas the carbapenems and cefoxitin
showed decreased susceptibility, since they were not under the influence of porins. The genetic
environment of the blaKPC-3 gene was characterized, namely, we searched for the genes associated with
Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization transposon, in the K. pneumoniae
and A. baumannii isolates. The Tn4401b transposon was identified in both isolates. The plasmid
incompatibility group IncFrepB was also identified in the A. baumannii isolate.

3. Discussion

K. pneumoniae is the causative agent of several different healthcare-associated infections, such
as wound infections, bloodstream infections, meningitis and pneumonia [6]. The extensive use of
antimicrobials has led to a high incidence of resistance [7]. In our study, the firstly identified K.
pneumoniae isolate showed a multidrug resistance profile to all β-lactams (including carbapenems)
but also to aminoglycosides and fluoroquinolones. Tigecycline, colistin and carbapenem were
the most commonly used drugs in combination antibiotic treatment in carbapenem-resistant
infections [7]. However, carbapenemase-producing A. baumannii, which was identified three months
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later, was resistant to all antibiotics studied, limiting treatment options. In Portugal, the carbapenem
resistance rates in K. pneumoniae increased from 0.9% (2009) to 5.2% (2016) and a worryingly resistance
rate of 51.9% (2016) was reported for A. baumannii isolates, [8] despite the reduction trends in
carbapenem antimicrobial consumption (ESAC-Net) [9].

Regardless of the efforts, our patient died. Pang et al. studied the prevalence and treatment for
carbapenem-resistant Enterobacteriaceae infections in three tertiary care hospitals and showed poor
mortality outcomes (23% at 28 days) but an effective treatment with the quinolone antibiotic [10].
Worryingly, infection with carbapenem-resistant A. baumannii is associated with a risk of mortality that
is twice that of infection with its carbapenem-susceptible counterparts [11] as the high patient mortality
rate (44% at 28 days) found in the AIDA trial demonstrated [12]. So, it is critical to effectively treat the
primary infection in order to avoid co-infections or secondary infections with more resistant pathogens
with consequent therapeutic failure. The role of old antibiotics in the era of antibiotic resistance should
be promoted, such as the case of fosfomycin, which may be indicated for infections of the central
nervous system, soft tissues, bone, lungs and abscesses due to its extensive tissue penetration [13,14].

The outer membrane of Gram-negative bacteria is a unique architecture that acts as a potent
permeability barrier against toxic molecules, such as antibiotics [15]. It has been reported that a loss
of porins OmpK35 and OmpK36 led to an increase in carbapenem and ciprofloxacin resistance [16].
DNA sequence analyses and protein homology searches were conducted and no changes were found
when compared with K. pneumoniae isolates (GenBank accession number AJ303057 and GU461279),
which is in accordance with studies described by other authors, namely in wound specimens [6] and
KPC-3 producers [17], with the results being indicative that carbapenemase production is the main
carbapenem resistance mechanism.

The genetic characterization confirmed the phenotypic features described since it identified
the gene coding of the carbapenemase KPC-3 in co-expression with broad-spectrum β-lactamases
(TEM-1 and SHV-1). Also, the A. baumannii showed the same resistance profile. The most common
carbapenemase described worldwide is KPC-2 [18–22] but KPC-3 has already been identified in the
United States [23], Israel [22], Italy [24] and Spain [25]. In Portugal, the first carbapenem-resistant K.
pneumoniae was identified in 2009 [26] and since then, dissemination to other Enterobacteriaceae [27]
and the increasing frequency of hospital outbreaks [28] has led to the creation of the Epidemiological
Surveillance of Antimicrobial Resistance Guidelines, which contains mandatory notification of these
pathogens [29].

The genetic environment of the K. pneumoniae strain was determined in order to understand if
there had been a horizontal spread of the KPC-3 gene between the K. pneumoniae and A. baumannii
isolates. Our study describes a horizontal dissemination ability of the blaKPC-3 gene found in the K.
pneumoniae isolate by an identical mobile genetic element, the Tn4401b isoform which is associated
with a high resistance to carbapenems [17,30], propagated by a single type of plasmid, IncFrepB.
The K. pneumoniae and A. baummanii isolates found in the same patient shared the same IncFrepB
replicon origin which is indicative of a potential horizontal dissemination between these distinct
species [31,32]. Additional studies should clearly demonstrate the interspecies transfer of blaKPC-3 by
whole-plasmid sequencing.

Type 1 fimbriae is the most common adhesin in Enterobacteriaceae and can lead to persistent urinary
tract infections [33]. Type 3 fimbrial adhesins mediate the binding of K. pneumoniae to endothelial and
epithelial cells of the urinary and respiratory tracts. Many K. pneumoniae clinical isolates express both
type 1 and type 3 fimbrial adhesins [33,34] but interestingly, in the current study, we found the coding
genes to both of these adhesive structures but also to the K2 capsular serotype, which is predominantly
associated with virulent strains [35], the iron siderophore aerobactin and hemolysin virulence factors.

Wasfi et al. demonstrated that only 7% of MDR K. pneumoniae isolates have the K2 capsular
genotype [6]. The hemolysin virulence factor was detected in enterohemorrhagic Escherichia coli [36]
and recently, also in uropathogenic bacteria, where has been described as causing programmed cell
necrosis by altering mitochondrial dynamics [37]. The aerobactin mediates the acquisition of iron to
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help virulent bacteria to overcome iron starvation while bacteria invade and proliferate in the human
system [38]. Russo et al. showed that aerobactin accounts for increased siderophore production,
resulting in a 100% mortality rate and demonstrating the virulence of the isolates and their ability
to cause infection at a low dose [39]. The virulence gene aerobactin has been previously detected in
Enterobacteriaceae [40] including carbapenem-resistant K. pneumoniae isolates [6].

The carbapenemase producers are usually associated with highly resistant but low virulent
strains [40–42]. In Brazil, De Cassia Andrade et al. reported the accumulation of virulence genes of
KPC-2 K. pneumoniae isolates, along with the multi-resistance profile [43]. Also, in the United States,
Krapp et al. described one K. pneumoniae KPC-3, SHV-28 and OXA-9 producer with the following
virulence genes: enterobactin (entABCDEF), aerobactin receptor (iutA), type 1 and 3 fimbrial adhesion
genes and the salmochelin receptor (iroN) [44]. These studies align with our findings in Portugal and
suggest that the carbapenem-resistant K. pneumoniae strains are increasing in virulence. However,
considering that we only described one clinical situation with one K. pneumoniae isolate, additional
studies should be promoted, specifically regarding the interplay between resistance and virulence in K.
pneumoniae. However, of note, our preliminary results indicate that variability in virulence profiles can
exist according to the geographic origin of the isolate.

The MLST International clone ST-258 has been recognized as the prevalent ST of
carbapenem-resistant K. pneumoniae isolates worldwide [45–48]. Herein, we described an isolate
that belongs to sequence type ST-14 which has been associated with pan resistant isolates and the
production of OXA-48 and NDM carbapenemases with a higher colistin rate of resistance when
compared with isolates outside the cluster (37.1% vs. 27.1%) [49]. We should continuously highlight
the importance of monitoring the emergence of highly virulent and resistant K. pneumoniae.

Future research regarding the colistin resistance molecular mechanisms in Gram-negative
bacteria is needed. Furthermore, additional studies exploring the dangerous connections between
resistance and virulence in Gram-negative infections and their impact on therapeutic efficacy should
be incentivized.

4. Materials and Methods

4.1. Bacterial Isolates

The isolates were recovered using standard clinical operating procedures. Bacterial identification
and antimicrobial susceptibility testing were performed at the microbiology laboratory by automated
systems (Vitek2®, BioMérieux, Marcy, l’Etoile, France) and confirmed by the disk diffusion test
in accordance with the methodology of the European Committee on Antimicrobial Susceptibility
Testing (EUCAST), available at the European Society of Clinical Microbiology and Infectious
Diseases (ESCMID) website (http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/).
Isolates with reduced susceptibility to carbapenems were selected and send to the Microbiology and
Immunology Department in the Faculty of Pharmacy for specific and additional microbiological
studies. The isolates were held in stock frozen in brain heart infusion (BHI) broth (VWR Prolabo®,
Lisboa, Portugal) with 15% glycerol at −80 ◦C. For the analysis, the strains were grown in BHI broth
for 18 h at 37 ◦C and seeded in Lysogeny broth (LB), more commonly known as Luria–Bertani agar
(VWR Prolabo®, Lisboa, Portugal). Both isolates were recovered from wound infections.

4.2. Antimicrobial Susceptibility Testing

Bacterial antimicrobial susceptibility testing was performed in accordance with the EUCAST
standardized disk diffusion method in Mueller–Hinton (MH) agar medium (VWR Prolabo®, Lisboa,
Portugal). The detailed methodology and the preparation and storage of MH agar are described in
the EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing guidelines, which are
available at (http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/). Quality control
was carried out in accordance with EUCAST (version 6.0, 2016) and the Clinical and Laboratory

http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/
http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology/
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Standards Institute (CLSI) guidelines (M100-S20), namely, Escherichia coli ATCC 25922 and Escherichia
coli ATCC 35218 were used as controls for the inhibitor component of beta-lactam inhibitor-combination
disks. Susceptibility was tested by a panel of antibiotics: amoxicillin/clavulanic acid (20/10 µg),
cefoxitin (30 µg), cefotaxime (5 µg), ceftazidime (10 µg), imipenem (10 µg), gentamicin (10 µg),
ciprofloxacin (5 µg) and tigecycline (15 µg). The inhibition zones were interpreted in accordance
with EUCAST. The isolates were categorized as susceptible, standard dosing regimen (S); susceptible,
increased exposure (I); and resistant (R) by applying the breakpoints in the phenotypic test results.
Multidrug-resistant (MDR) bacteria were defined as those that acquired non-susceptibility to at least
one agent in three or more antimicrobial categories, in accordance with the United States Center for
Disease Control and Prevention (CDC) and the European Centre for Disease Prevention and Control
(ECDC) consensual definition [50].

4.3. Resistance and Virulence Determinants

PCR-based screening for the most commonly found β-lactamase families was performed with
specific primers that have already been described (blaSHV [51], blaDHA [52], blaCMY [53], blaCTX-M [54])
including carbapenemase genes (blaKPC [55], blaIMP [56], blaVIM [57] and blaOXA [58]). The virulence
factors were assessed by PCR with specific primers for the K2 serotype (K2A), fimbrial adhesins type
1 (fimH) and type 3 (mrkDv1 and mrkDv2–4), haemolysin (khe), aerobactin (iucC), regulator of mucoid
phenotype (rmpA) and the hypermucoviscosity phenotype (magA). The primers for blaTEM, blaNDM,
OmpK35 and OmpK36 and for virulence genes were designed in our laboratory in accordance with the
sequences’(5′–3′) available on Genbank (Table 3).

Table 3. List of primer designs in the current study and expected amplicon size.

Gene DNA Sequence (5′ to 3′) Amplicon Size (bp) EMBL Accession Number (Genbank)

blaNDM
F: TATCGCCGTCTAGTTCTGCTG

871 AB604954R: ACTGCCCGTTGACGCCCAAT

K2A
F: CAACCATGGTGGTCGATTAG

531 EF221827R: TGGTAGCCATATCCCTTTGG

fimH F: TGTTCACCACCCTGCTGCTG
512 NC_012731.1R: CACCACGTCGTTCTTGGCGT

mrkDV1
F: CGGTGATGCTGGACATGGT

300 EU682505.2R: CCTCTAGCGAATAGTTGGTG

mrkDV2–4

F: CTTAATGGCGMTGGGCACCA
950

AY225463.1

R: TCATATGCGACTCCACCTCG
AY225464.1
AY225465.1

khe
F: TGATTGCATTCGCCACTGG

428 NC_012731.1R: GGTCAACCCAACGATCCTGG

iucC
F: GTGCTGTCGATGAGCGATGC

944 NC_005249.1R: GTGAGCCAGGTTTCAGCGTC

rmpA F: ACTGGGCTACCTCTGCTTCA
516 NC_012731.1R: CTTGCATGAGCCATCTTTCA

magA F: TCTGTCATGGCTTAGACCGAT
1137 NC_012731.1R: GCAATCGAAGTGAAGAGTGC

ompK35 F: ATATTCTGGCAGTGGTGATCC
1012 AJ303057R:GCTTTGGTGTAATCGTTGTC

ompK36 F: TAGCAGGCGCAGCAAATGC
1031 GU461279R: TGCAACCACGTCGTCGGTA

Legend: F—forward primer; R—reverse primer.
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4.4. Molecular Methods

Polymerase chain reactions (PCRs) were performed using the commercial kit puReTaq
Ready-To-Go PCR Beads (GE Healthcare®, Lisboa, Portugal) in accordance with the manufacturer’s
instructions. Subsequently, the PCR products were resolved in 1% agarose gel in 1× concentrated
Tris-Borate-EDTA (TBE) buffer (Sigma-Aldrich®, Lisboa, Portugal) (89 mM Tris-borate and 2 mM
EDTA) and stained with GelRed (Biotium®, Lisboa, Portugal). Positive and negative controls were
included in all PCR assays. The positive controls used were positive strains from the Laboratory
of Microbiology collection that had been sequenced previously and the negative controls were
provided by the PCR commercial kit puReTaq Ready-To-Go PCR Beads. The resulting PCR products
were submitted to purification using the JETquick Spin Column Technique PCR Purification Kit
(Genomed®, Lisboa, Portugal), in accordance with the producer’s instructions and were sequenced
at Macrogen Korea and STABVida Portugal. Searches for nucleotide sequences were performed
with the BLAST program, which is available at the National Center for Biotechnology Information
website (http://www.ncbi.nim.nih.gov/). Multiple-sequence alignments were performed with
the ClustalX program, which is available at the European Bioinformatics Institute website (http:
//www.ebi.ac.uk/Tools/msa/clustalw2).

4.5. Transfer of blaKPC-3 and Plasmid Characterization

The identification of the incompatibility groups of plasmids was performed by the Replicon
Typing technique [59]. This technique allowed us to identify the origins of replication of plasmids
belonging to different incompatibility groups (IncHI1, IncHI2, IncI1-I, IncX, IncL/M, IncN, IncFIA,
IncFIB, IncW, IncY, IncP, IncFIC, IncA/C, IncT, IncFIIAs, IncK, IncB/O, IncF). Subsequently, the transfer
of the blaKPC-3 gene to the E. coli J53 resistant azide (AziR) receptor was performed by conjugation [60].
The transconjugants were selected in Müller–Hinton agar (VWR Prolabo®) supplemented with sodium
azide (100 µg/mL) and cefotaxime (1 µg/mL).

4.6. Multilocus Sequence Typing (MLST)

MLST was performed on the K. pneumoniae isolate as previously described [61]. The sequence
was performed at Macrogen Korea and submitted to the MLST database for allele attribution. The K.
pneumoniae database is available at the Pasteur MLST website (http://www.pasteur.fr/mlst/) and was
last accessed on 2 May 2018.

4.7. Ethical Approval

Isolates were obtained as part of routine diagnostic testing and were analysed anonymously.
All data were collected in accordance with the European Parliament and Council Decision on the
Epidemiological Surveillance and Control of Communicable Disease in the European Community.
Clinical and epidemiological data were collected from clinical records. The study proposal was also
approved by the Research Ethics Committee of the Faculty of Medicine, University of Lisboa, Portugal.

5. Conclusions

In conclusion, we identified the first KPC-3 carbapenemase-producing A. baumannii isolate in
Portugal associated with a fateful opportunistic infection preceded by a highly resistant and virulent
K. pneumoniae KPC-3 producer belonging to the ST-14 high-risk clone. This illustrates a previously
undescribed situation in our country with significant impact regarding the therapeutic antibiotics
available for severe infections. The knowledge of specific genotyping patterns, resistance and virulence
determinants of pathogens is crucial for the development of new antibacterial agents and adjuvants
against antimicrobial resistant Gram-negative bacteria.

http://www.ncbi.nim.nih.gov/
http://www.ebi.ac.uk/Tools/msa/clustalw2
http://www.ebi.ac.uk/Tools/msa/clustalw2
http://www.pasteur.fr/mlst/
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