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Abstract: Over the last years, we have been focused on chloramphenicol conjugates that combine in
their structure chloramphenicol base with natural polyamines, spermine, spermidine and putrescine,
and their modifications. Conjugate 3, with spermidine (SPD) as a natural polyamine linked to
chloramphenicol base, showed the best antibacterial and anticancer properties. Using 3 as a prototype,
we here explored the influence of the antibacterial and anticancer activity of additional benzyl groups
on N1 amino moiety together with modifications of the alkyl length of the aminobutyl fragment of
SPD. Our data demonstrate that the novel modifications did not further improve the antibacterial
activity of the prototype. However, one of the novel conjugates (4) showed anticancer activity without
affecting bacterial growth, thus emerging as a promising anticancer agent, with no adverse effects on
bacterial microflora when taken orally.

Keywords: Chloramphenicol; polyamines; conjugates; mitochondrial ribosome; molecular dynamics
simulations; antimicrobial activity; anticancer activity; protein biosynthesis; antibiotics

1. Introduction

Chloramphenicol (CAM) is an effective antibiotic with bacteriostatic action against Gram-positive
and Gram-negative bacteria and was the first broad-spectrum antibiotic to be used clinically. However,
the undesired toxicity resulting from CAM administration restricts its clinical use. Case reports indicate
that CAM is responsible for hematological disorders such as bone marrow depression and aplastic
anemia. While the first is a rare complication, the second is more frequent and was ascribed as a
mitochondrial protein synthesis disorder [1–4]. Despite its side effects, CAM remains one of the
best-studied protein synthesis inhibitors, and efforts towards its derivatization have continued in
order to provide a new generation of compounds with better antibacterial activity and minimal side
effects [5]. Numerous functional and structural studies have concluded that CAM binds to the large
ribosomal subunit occupying the A-site of the peptidyltransferase center (PTC) [6–8]. Its binding allows
the delivery and initial binding of the A-site aminoacyl-tRNA but prevents its full accommodation at
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the PTC, which brings the newly incoming aa-tRNA close to the P-site peptidyl-tRNA. Additionally,
CAM, like other peptidyltransferase (PTase) inhibitors, is not a general protein synthesis inhibitor but a
context-specific one [5,9]. Over the last years, we have been focused on CAM derivatization involving
the conjugation of the CAM-base with natural polyamines (PAs), in an attempt to develop new effective
derivatives which avoid the undesired side effects of CAM [10,11]. Our continuous efforts aim to
combine two different main and contrary players of protein synthesis on the same molecule.

PAs are low molecular weight aliphatic amines which are associated with multiple phenomena
within cells and specifically with ribosome function and protein biosynthesis [12,13]. Their significance
for growth and survival is proven by the fact that the biogenic PAs putrescine (PUT), spermidine (SPD)
and spermine (SPM) are found in almost all living organisms. Bacteria and mammalian cells
are able to synthesize de novo PAs which they need, but also express polyamine transporters
(PATs) that mediate the transport of extracellular PAs [14,15]. Additionally, cancer cells which
are characterized by a pronounced proliferation rate need higher levels of metabolites including
PAs. Indeed, many studies have confirmed the existence of higher levels of PAs in cancer cells
compared to normal, derived from both elevated biosynthesis and transporter expression on the cell
membranes [16]. Thus, PA metabolism and transport inhibition appear as promising targets for the
treatment of neoplasms [17].

We have recently reported the synthesis of a series of conjugates (PA–CAM conjugates) of
the naturally occurring PAs—PUT, SPD and SPM, with CAM—which showed comparable binding
affinities to CAM for the 70S E. coli ribosome [10]. Among them, conjugate 3 was the most potent
inhibitor of PTase activity (Ki: 0.98 µM) and also the most potent antibacterial agent, inhibiting the
growth of different microbial cells with comparable (wild-type E. coli strains) potency to CAM, or even
double the potency (mutant E. coli strains) [10]. Furthermore, conjugate 3 showed superior selectivity
and activity than CAM against human mesothelioma ZL34 and immortalized human mesothelial
Met5A cells [10]. These improved activities of the conjugate 3 were attributed to the introduction of
two benzyl moieties on the N8 amino group of the SPD fragment linked to CAM, which resulted in an
increased lipophilicity of the molecule, which could facilitate its passage through the cell membrane.
However, despite the mentioned advantages of 3 compared with the rest of the PA–CAM conjugates,
it was not superior to CAM in inhibiting wild-type E. coli strains, indicating that cellular permeability
remained a significant barrier for the use of the compound in the treatment of bacterial infections.

Taking conjugate 3 as a prototype, we present now the synthesis and the evaluation of the
antimicrobial and antitumor activity of new conjugates, which were designed in such a way to allow
conclusions regarding the effect of (a) introducing additional benzyl moieties on the N1 of the SPD
skeleton, (b) deleting the aminopropyl moiety of the SPD skeleton, and (c) extending or shortening the
aminobutyl moiety on their biological activity. More precisely, we designed and synthesized the four
new conjugates 4–7 (Figure 1). In conjugate 4, two additional benzyl groups replaced the hydrogen
atoms at the N1 position of the SPD moiety, whereas in conjugate 5 the aminopropyl moiety was
omitted. Conjugates 6 and 7 constitute analogs of conjugate 5 in which the aliphatic chain of the
aminobutyl moiety was either extended or shortened.
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Figure 1. Structures of compounds encountered in the present work. 

2. Materials and Methods 

2.1. Synthesis of PA–CAM Conjugates 

The synthesis of the new PA–CAM conjugates 4–7 is depicted in Scheme 1. It involves the one-
pot acylation of the commercially available chloramphenicol base (CLB) with succinic anhydride 
followed by coupling with the appropriate N1,N1-dibenzylated linear diamines 10a-c or the 
N1,N1,N8,N8-tetrabenzylspermidine (12) in the presence of the coupling agent O-(benzotriazol-1-yl)-
N,N,N’,N’-tetramethyluronium hexafluorophosphate (HBTU) and Et3N or ethyldiisopropylamine 
(DIEA) in dimethylformamide (DMF). The required diamine derivatives 10a-c were obtained in the 
form of their bistrifluoroacetate salts from the corresponding linear, commercially available amino 
acids β-alanine (βAla, 8a), γ-aminobutyric acid (γΑba, 8b) and ε-aminocaproic acid (εAca, 8c) 
through a four-step sequence, also depicted in Scheme 1. This involved the protection of the amino 
function with the triphenylmethyl (trityl, Trt) group [18,19] followed by coupling with 
dibenzylamine in the presence of HBTU and Et3N to give the amides 9a-c. These were reduced with 
lithium aluminium hydride (LAH) in tetrahydrofuran (THF), and then the trityl group was removed 
by trifluoroacetic acid (TFA)-mediated acidolysis to provide compounds 10a-c. On the other hand, 
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2. Materials and Methods

2.1. Synthesis of PA–CAM Conjugates

The synthesis of the new PA–CAM conjugates 4–7 is depicted in Scheme 1. It involves
the one-pot acylation of the commercially available chloramphenicol base (CLB) with succinic
anhydride followed by coupling with the appropriate N1,N1-dibenzylated linear diamines
10a-c or the N1,N1,N8,N8-tetrabenzylspermidine (12) in the presence of the coupling agent
O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HBTU) and Et3N or
ethyldiisopropylamine (DIEA) in dimethylformamide (DMF). The required diamine derivatives 10a-c
were obtained in the form of their bistrifluoroacetate salts from the corresponding linear, commercially
available amino acids β-alanine (βAla, 8a), γ-aminobutyric acid (γAba, 8b) and ε-aminocaproic acid
(εAca, 8c) through a four-step sequence, also depicted in Scheme 1. This involved the protection of
the amino function with the triphenylmethyl (trityl, Trt) group [18,19] followed by coupling with
dibenzylamine in the presence of HBTU and Et3N to give the amides 9a-c. These were reduced with
lithium aluminium hydride (LAH) in tetrahydrofuran (THF), and then the trityl group was removed
by trifluoroacetic acid (TFA)-mediated acidolysis to provide compounds 10a-c. On the other hand,
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the spermidine derivative 12 was synthesized from amide 9a as follows. Compound 9a was routinely
detritylated with TFA and the thus-liberated primary amino function was acylated with succinic
anhydride, in the presence of DIEA. Without isolation, the obtained intermediate was further coupled
in a one-pot fashion with dibenzylamine in the presence of HBTU and DIEA and the thus-obtained
trisamide 11 was finally reduced with LAH to give the tetrabenzylated SPD 12. Experimental details for
the syntheses described above and the complete characterization of intermediates and final products
are provided in the Supplementary Material (Section S1).
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Scheme 1. Synthesis of polyamine (PA)–chloramphenicol (CAM) conjugates 4–7. Reagents and
reaction conditions: (i) (a) Me3SiCl, DCM/MeCN (5:1), reflux, (b) TrtCl/Et3N, (c) MeOH, 85–97%;
(ii) (PhCH2) 2NH, O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HBTU),
Et3N, 65–80%; (iii) lithium aluminium hydride (LAH), THF, reflux, 60–80%; (iv) trifluoroacetic acid
(TFA)/CH2Cl2(1:9 or 2:8 v/v), Et3SiH, 85–95%; (v) succinic anhydride, DIEA, DMF; (vi) (PhCH2)NH,
HBTU, ethyldiisopropylamine (DIEA), 90% over the two steps; (vii) (a) succinic anhydride, DMF,
(b) 10a-c or 12, HBTU, DIEA, DMF, 60–73%.

2.2. Biological Evaluation

2.2.1. Bacterial Strains and Cell Lines

The in vivo antibacterial activity of the conjugates was determined using the following three
bacterial strains: wild-type Escherichia coli K12 (E. coli K12), Escherichia coli ∆TolC mutant strain (E. coli
∆TolC) lacking the TolC protein, which is involved in the efflux pumps operation, and wild-type
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Staphylococcus aureus (S. aureus). The anti-tumor activity of the conjugates was assessed using the human
ZL34 and MeT5A cell lines, which were kindly offered by Professor G. Stathopoulos (University of
Patras). ZL34 are cancer cells, derived from malignant pleural mesothelioma, while MeT5A are
immortalized cells, which originate from healthy mesothelial tissue [20].

2.2.2. In Vivo Antibacterial Activity

For the experimental procedures, the bacteria were cultured in luria broth (LB) medium
(tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) as previously described [10]. The bacteria
cultures were grown in the presence of CAM or each conjugate at increasing concentration (1–100 µM).
The cultures were incubated at 37 ◦C until the absorbance (OD560) of the reference culture in the absence
of antibiotic reached the value of 0.7. At this point, the growth of the cultures was terminated by placing
them in an ice bath, and the measurement of the optical density followed [10]. These measurements
were used to calculate the half-maximal effective concentration (EC50) values [21].

2.2.3. Affinity Measurement of PA–CAM Conjugates for the E. coli 70S Ribosome

Reassociated 70S ribosomes were prepared from E. coli K12 cells as described previously [22].
70S ribosomes were incubated in buffer A (100 mM Tris-HCl pH 7.2, 100 mM ammonium
acetate, 10 mM magnesium acetate, 6 mM β-mercaptoethanol) with 10 µM [14C]-chloramphenicol
(150 dpm/pmol) at a final concentration of 0.20 µM [23]. After incubation for 10 min at 37 ◦C,
the mixture was diluted with 3 mL of cold buffer A and filtered through a 25-mm diameter cellulose
nitrate membrane filter (Millipore 0.45 µm pore size). The filter was washed three times with 3 mL of
cold buffer A and the radioactivity which remained bound on the filter was measured. The binding
of [14C]-chloramphenicol was studied in competition with CAM or PA–CAM conjugates by keeping
the concentration of [14C]-CAM constant (10 µM) and increasing the concentration of non-radioactive
conjugates [23].

2.2.4. Evaluation of the Anticancer Activity

The antitumor activity of the conjugates was assessed using the human ZL34 and MeT5A cell lines
as previously described [10]. ZL34 and Met5A cells were plated in sterile 6-well microtiter plates and
grown in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% heat-inactivated fetal
bovine serum and 1% penicillin/streptomycin. Cultures were maintained in a humidified atmosphere
with 5% CO2 at 37 ◦C. Compounds 3 and 4 were added at final concentrations of 30 and 60 µM,
and then cells were grown for 24, 72 and 96 h. In parallel, solutions of conjugates combined with a
ten-fold concentration of SPD were incubated under the same conditions. After treatment, the drug
was removed by washing the cells twice with phosphate-buffered saline (PBS). The cells were then
trypsinized (0.5 mL trypsin-EDTA×1 solution/well, 5 min at 37 ◦C), mixed with 1 mL DMEM and
collected by centrifugation at 3000 × g for 5 min. Cell viabilities were determined by the trypan blue
exclusion assay, using a TC10 automated cell counter (BIORAD) [10]. Viable cells were expressed as a
percentage of total cells.

2.2.5. Immunoblotting

Cell lysates were prepared after treatment with 60 µM of conjugates for 48 h. Total cellular
proteins were isolated at 4 ◦C using RIPA buffer (ABCAM) and mixed with 4% SDS-containing
loading buffer. Protein concentrations were determined using Bradford assay [24]. Lysates (100 mg
protein/well) were reduced in Laemmli buffer containing 1 mM dithiothreitol, resolved by 10%
SDS-PAGE and electrotransfered to Immobilon-P PVDF membranes (Millipore, Massachusetts, USA)
according to standard procedures [25]. Blots were incubated at 4 ◦C overnight with rabbit monoclonal
antibody against mitochondrial cytochrome c oxidase subunit II (COX2) (anti-mtCO2 antibody,
ABCAM) at a 1:1000 dilution in blocking buffer. After washing with TBS-Tween and incubation
with secondary antibody coupled to horse radish peroxidase, protein bands were visualized with
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ECLTM chemiluminescence reagent (Amersham) and detected by autoradiography. The intensity of
bands was quantified by Image Analysis, using the Image-Pro Plus 7 software (Media Cybernetics).
Blots were re-probed with a mouse anti-actin antibody (Santa Cruz Biotechnology) to verify equal
protein loading.

2.2.6. Quantification of the Intracellular Levels of Conjugates 3 and 4 Plus Polyamines

PAs and conjugates 3 and 4 in ZL34 and Met5A cells were determined by reverse phase
high-performance liquid chromatography (RP-HPLC-DAD), as described previously [11]. Briefly, 100
mg cells (wet weight), either ZL34 or Met5A, which were grown in the presence of 60 µM of conjugates,
were washed and then homogenized in 0.6 M HClO4. Cultures grown in the absence of the conjugates
were used as reference. In the isolates, hexamethylenediamine dihydrochloride was added as an
internal standard, followed by dansylation and subsequent extraction by toluene. The extracts were
dried, reconstituted in acetonitrile/10 mM phosphate buffer pH 4.4 (45:55 v/v) and filtered through
a 0.2-µm membrane (Spartan 13/0.2 RC Whatman GmbH, Dassel, Germany) prior to HPLC analysis.
The HPLC system included a Varian Star 9010 solvent delivery system with a 250 × 4.6 mm Luna 5 µm
C18(2) 100 A column (Phenomenex Co., USA) and a photodiode array detector (Shimadzu SPDM20A).

The gradient elution profile is presented in Table 1. The flow rate was set at 1.0 mL/min.
Polyamines were quantified at 258 nm and the conjugates at 275 nm. The detection limits for PUT,
SPD, and SPM were 52 pmol, 18 pmol, and 36 pmol at 258 nm, respectively. The detection limits for
compounds 3 and 4 were 25 pmol and 30 pmol at 275 nm, respectively. All experiments were run
in triplicate. The coefficients of variation (C.V.) of the intra-assays were 5–7%, while those of the
inter-assays ranged from 13 to 17%. LC Solution Software (Shimadzu) was used for data processing
and the results were expressed as nmol/mg protein.

Table 1. Gradient elution profile. Mobile phase A: acetonitrile; mobile phase B: 10 mM phosphate
buffer (pH 4.4).

Time (min) Mobile Phase A (%) Mobile Phase B (%)

0 45 55
14 80 20
15 90 10

2.2.7. System Modeling and Molecular Dynamics Simulations

The binding modes of conjugates 3 and 4 in a region near the catalytic center (A2938, C2939)
of the human mitochondrial large ribosomal subunit (hmLRS) have been modeled using molecular
dynamics simulations. Three-dimensional models of the compounds were produced with Arguslab
4.0.1 (Planaria Software LLC, Seattle, WA, USA, http://www.arguslab.com), starting with the 3D
structure of CAM derived from the 50S ribosomal subunit structure of E. coli in complex with CAM
(PDB:3OFC). CHARMM force field parameters and topology files were generated by the SwissParam
Tool [26]. The 3D structure of the hmLRS (PDB:3J7Y) with a resolution of 3.4 Å was used to model
a ~28 Å radius environment around each analog near the catalytic center. The analogs were initially
positioned with their CAM moieties within the drug crystallographic pocket mapped into the hmLRS
according to the intersystem correspondence of large subunit relevant nucleotides shown in Table S1
of Supplementary Material S3. The systems were then solvated with ~10,000 TIP3 water molecules,
and then neutralized with Mg2+ ions using the VMD program [27]. All systems derived as above
were energy minimized and then subjected to short NPT molecular dynamics (MD) simulations to
stabilize their volume at T = 300 K and P = 1 Atm. Subsequently, NVT MD simulations for 30 ns at
300 K, with the particle mesh Ewald (PME) algorithm, and the rigid bonds assignments were run using
the NAMD software [28] and the CHARMM27 force field for proteins and nucleic acids. During MD
simulations, harmonic constraints have been imposed to all nucleic acid backbone atoms. Finally,
an average structure over the last 1 ns of each simulation trajectory was energy minimized and used

http://www.arguslab.com
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for further analysis. All molecular visualizations were produced with the open-ource Pymol version
1.6 Copyright symb 2009-2013 Schrödinger, LLC.

2.2.8. Statistics

All data presented in the figures and tables represent the mean value and standard deviation,
obtained from at least two independently performed experiments. Statistical tests (data variability,
t-tests, one-way ANOVA) were performed using the program IBM Statistics 24. The statistical
significance threshold was set at p = 0.05.

3. Results

3.1. Antibacterial Activity of Novel PA–CAM Conjugates

All cells were cultivated in the presence of CAM or PA–CAM conjugates in concentrations reaching
up to 100 µM. An E. coli strain was used as a model of Gram-negative bacteria, and an S. aureus strain
was used as a model of Gram-positive bacteria. The antibacterial activity of the conjugates is expressed
by the EC50 value (Table 2). With the exception of compound 3, none of the new compounds exhibited
inhibitory activity against the growth of bacterial cultures. Thus, either new derivatives failed to
cross the bacterial cell membrane or they are non-active within the bacterial cells. The latter could
be attributed either to new derivatives not binding on the bacterial ribosome, or binding without
effect [29]. An alternative explanation would be that the conjugates may enter the bacteria but are
exported by efflux pumps, the specific bacterial transporters which represent a resistance mechanism.
However, since E. coli ∆TolC growth was not inhibited, such a possibility does not seem feasible.

Table 2. In vivo antibacterial activity of CAM and PA–CAM conjugates against wild-type (WT)
and mutant strains of bacteria, expressed by the half-maximal effective concentration (EC50) value.
Data represent the mean ± SD values obtained from three independent experiments.

Compound
EC50 (µM)

Escherichia coli K12 Escherichia coli ∆TolC Staphylococcus aureus

CAM 6.2 ± 0.5 2.3 ± 0.6 3.4 ± 0.3
3 11.0 ± 0.9 8.9 ± 0.7 6.8 ± 0.5
4 >200 >200 >200
5 >200 >200 >200
6 >200 >200 >200
7 >200 >200 >200

3.2. The New PA–CAM Conjugates Compete with CAM to Bind on the Bacterial Ribosome

To clarify whether the new PA–CAM conjugates maintain their binding site on the 70S bacterial
ribosome, we carried out competition experiments. These data (Figure S1, Supplementary Material)
allowed us to measure the concentration required for the 50% displacement of the radioactive CAM
(IC50), in the presence of increasing concentrations of all PA–CAM conjugates. The affinity constants, Ki,
were calculated using the following Cheng–Prusoff relationship (1) [30] and their values are presented
in Table 3. According to the values of Table 3, the decrease of the affinity for 70S ribosome follows the
order 3>7>4>6>CAM>5.

Ki =
IC50

1 + [I]
KD

(1)

where [I] is the concentration of [14C]-CAM (constant at 10 µM) and KD is the dissociation constant of
ribosome–chloramphenicol complex formation.
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Table 3. The binding affinity constants Ki of all PA–CAM.

Compound Ki (µM)

CAM 1.5 ± 0.1
3 0.8 ± 0.1
4 1.1 ± 0.1
5 2.6 ± 0.3
6 1.3 ± 0.2
7 1.0 ± 0.1

3.3. Antiproliferative Activity of Compound 4

Based on the established antitumor activity of compound 3, we were expecting that the addition
of the benzyl groups on the spermidine domain of the compound could also affect this feature.
Compound 4 demonstrated cytotoxicity for ZL34 cancer cells, which appeared to be inhibited when
the cells were cultured in the presence of exogenous SPD in the medium (Figure 2C). Furthermore,
conjugate 4 exhibited milder action against immortalized mesenchymal Met5A cells relative to
conjugate 3, as presented in Figure 2D. The other compounds 5, 6 and 7 did not show any important
antiproliferative activity.
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3.4. Conjugates 3 and 4 Are Inhibitors of Mitochondrial Protein Synthesis

The cytotoxic effect of conjugates 3 and 4 on human cell lines triggered the investigation of the
underlying mechanism. Taking into account the mitochondrial toxicity of CAM [31], we examined
the possible disruption of mitochondrial protein synthesis. For this purpose, a mitochondrially
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encoded protein compartment of OXPHOS Complex IV, COX2 was measured. Indeed, as presented in
Figure 3A, a remarkable decrease in COX2 levels was observed in ZL34 malignant cells. Simultaneously,
actin levels, which were used as a reference of cytoplasmic protein synthesis level, did not demonstrate
any decrease. In Figure 3C, data were normalized as to actin levels. COX2 levels were affected to a
lesser extent in Met5A cells compared to ZL34 (Figure 3B,D).
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3.5. Derivatives’ and Polyamines’ Intracellular Concentrations

The results of the identification and quantification of compounds 3 and 4 (for compound 4, see also
Figure S2, Supplementary Material) and PAs (Figure S3, Supplementary Material) are presented in
Table 4. Regarding the ZL34 cancer cell line (Figure 4A), it appears that the presence of conjugates 3
and 4 resulted in the decrease of PUT, SPD and SPM levels, which was particularly pronounced in
the case of SPM. In contrast, in immortalized Met5A cells (Figure 4B), in the presence of conjugates 3
and 4, there was no remarkable change in PUT and SPD levels. SPM, however, showed a downward
trend in immortalized cells, but to a lesser extent related to malignant cells. It is worth noting that
conjugate 4 exhibited a remarkably high level of internalization in ZL34 cells relative to compound 3
(Figure 4C). Still, both conjugates were identified in higher concentrations in tumor ZL34 cells relative
to Met5A mesothelial cells. The elevated polyamine intake rates of cancer cells could probably explain
this observation [17].
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Table 4. Intracellular compound and polyamine concentrations (expressed nmol/mg protein). Cell lines
ZL34 and Met5A were treated with 60 µM of compounds 3 and 4. Values presented as mean ± SD,
obtained from three independent repetitions.

(nmol/mg Protein)

Cell line Compound Concentration (µM) PUT SPD SPM

ZL34 - - 3.18 ± 1.82 15.16 ± 3.63 35.40 ± 5.16
3 5.96 ± 0.92 1.58 ± 0.13 4.18 ± 1.87 1 2.71 ± 1.17 2

4 29.00 ± 2.53 2.07 ± 0.91 5.36 ± 2.15 1 3.17 ± 1.70 2

Met5A - - 7.29 ± 3.17 12.87 ± 3.34 35.96 ± 11.72
3 3.75 ± 0.60 7.38 ± 1.93 7.38 ± 1.85 22.50 ± 3.11
4 7.40 ± 0.80 5.60 ± 1.10 8.14 ± 2.16 25.80 ± 6.57

1 Significantly different values from those measured in control samples (p < 0.05); 2 Significantly different values
from those measured in control samples (p < 0.01).
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3.6. System Modeling and Molecular Dynamics Simulations

Based on the previous data, conjugates 3 and 4 seem to interact with mitochondrial protein
synthesis, possibly by binding on the mitochondrial ribosome. Thus, we attempted to verify the
possible stereochemical interactions of our compounds with the mitochondrial ribosome by applying
molecular dynamics simulations. We also exploited our results from footprinting analysis on the 70S
bacterial ribosome, taking into account the similarity of bacterial and mitochondrial ribosomal particles,
as has been formulated by the theory of endosymbiosis [32]. Conjugates 3 and 4 demonstrated a similar
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footprinting pattern to CAM. Figure 5 illustrates the outcome of the simulations. Both compounds
appear to form hydrogen bonds with G2724 of mitochondrial 16S rRNA, which corresponds to the
G2061 of E. coli 23S rRNA. In addition, conjugate 3 interacts with A2725 and C2726 (A2062 and C2063,
respectively), bases that lie within the CAM binding site on the bacterial ribosome. Furthermore,
a hydrogen bond between conjugate 4 and U3072 (U2585 on 23S E. coli rRNA) suggests a contribution
of the polyamine segment to the compound ribosomal binding affinity. Finally, the interactions of the
conjugates with G2992 (conjugate 3) and A2938 (conjugate 4) indicate that they may enter the cleft of
the peptidyl transferase center of the mitochondrial ribosome.

Table 5. Hydrogen bond pairs$ between atoms of mitochondrial rRNA and of compounds 3 and 4#.
Corresponding bases of E. coli 23S rRNA are noted in parenthesis. The matching of RNA nucleotides
was based on data from Brown et al. [33].

rRNA Comp. 3 rRNA Comp. 4

N2: G2992 (G2505) O1 N3: U3072 (U2585) O5
O2: C2726 (C2063) N2 N2: G2724 (G2061) O3
O2′: G2724 (G2061) O4 N1: G2724 (G2061) O3
O2′: A2725 (A2062) O4 N1: A2938 (A2451) O3

$ Hydrogen bonds have been assigned using the program Swiss-PdbViewer 4.0.1 [34]. # Atom numbering in the
models of compounds 3 and 4 is given by Arguslab and is shown in Figure S4, Supplementary Material.
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Figure 5. Molecular modeling of compounds binding mode in the vicinity of the catalytic center of
hmLRS, derived from molecular dynamics (MD) simulations. Possible hydrogen bonds are shown
with yellow bullets. For clarity only, relevant nucleotides of the environment are shown. Nucleotides
A2938 and C2939 of the catalytic center are shown for orientation purposes in gray. (A) Compound 3.
Four possible hydrogen bonds stabilize compound 3 in the region, as shown in Table 5. (B) Compound
4. Four possible hydrogen bonds (Table 5) as well as two stacking interactions stabilize compound 4 in
the region. Note the hydrogen bond between N1 nitrogen of adenine in A2938 with a hydroxyl oxygen
of compound 4 nearest to the CAM ring.

4. Discussion

Bacterial resistance to antibiotics poses a serious risk to public health. Resistance can be
developed by a variety of mechanisms, such as modifications on the antibiotic’s binding site [35],
reduced membrane permeability [36,37], modifications on the antibiotic moiety [38] or increased efflux
through specific transporters (efflux pumps) [39,40]. Despite ongoing research efforts, only a small
number of new antibacterial compounds have been introduced into clinical practice over the last
years, rendering resistance a serious therapeutic problem. An approach to overcome this issue is
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the chemical modification of already known effective antibiotics [41] and led us to focus on CAM
derivatization [10,11,21,42–44].

Our new PA–CAM conjugates were tested either in Gram-positive or in Gram-negative bacteria
and additionally in the mutant E. coli strain ∆TolC, which is more sensitive to many antibiotics.
According to our results, neither compound inhibited bacterial growth, although both can be bound on
E. coli ribosomes with binding affinities similar to CAM (Table 3). From the data of Table 3, it is obvious
that all compounds can bind to the E.coli ribosomes with almost identical affinities. Neither the addition
of two more benzyl groups on the lead molecule, nor the deletion of the aminopropyl moiety nor PA
carbon skeleton modification changed the order of magnitude of their binding affinity, presented by
the Ki value. Moreover, while their binding affinities for the ribosome are high enough, none of them
exerted important antimicrobial activity. Taking also into account the fact that the ∆TolC strain was
not inhibited in the presence of our conjugates, it remains to be further clarified whether the bound
conjugates inhibit ribosome function in vitro. Such a result will allow us to clarify their ability or
inability to pass through the cell membrane.

Multiple reports have been published concerning the undesirable side effects following
administration of CAM, which are due to antibiotic activity on the mitochondrial ribosome [4].
This finding has prompted the investigation of the potential anticancer action of the antibiotic, as tumor
cells are particularly dependent on mitochondrial activity due to their increased energy needs [3].
Along with increased energy requirements, the need for active metabolites is also elevated in tumor
cells [45]. Among these metabolites are PAs, essential molecules for cell growth and survival. Indeed,
cancer cells have to cope with this need by increasing both the biosynthesis and import of PAs into the
cell [46]. The increased activity of PATs in cancer cells is a distinctive element, compared to normal
cells, that may be useful in the specialized targeting of neoplastic cells [17].

These observations prompted us to investigate the antitumor activity of the PA–CAM conjugates.
Interestingly, previous studies have established the antitumor potential of compound 3 [10]. Among the
new compounds tested, only compound 4 exhibited a similar antiproliferative behavior to compound
3, decreasing the viability of cancer cells and having a milder effect on Met5A non-tumor cells.

Interestingly, compound 4 demonstrated elevated internalization in cancer cells compared to 3,
possibly due to an increased lipophilicity, derived from the two additional benzyl groups. Nevertheless,
both compounds were identified in higher concentrations in ZL34 mesothelioma cells, exploiting the
presence of more active transporters on cancer cell membranes [17]. Both derivatives are considered
to enter the human cells using the PATs, since they competed with SPD, when the latter was added
exogenously in the culture medium (Figure 2A,C).

CAM has been shown to act on mitochondria, inhibiting mitochondrial protein synthesis [47].
A hypothesis that we examined is the possibility that compounds 3 and 4 affect the viability of human
cells in the same way. For this purpose, COX2 protein was used as a marker. COX2 is encoded by
mitochondrial DNA and is translated with mitochondrial ribosomes [48]. Indeed, conjugates 3 and 4
caused a significant decrease in COX2 expression in tumor cells, while actin level, which was used
as an indicator of cytoplasmic protein synthesis, remained unaffected, hinting that the mitoribosome
may be the main target in the human cancer cells. Molecular dynamics simulations (Figure 5),
indicate the placement of compounds on the mitochondrial ribosome in a way that could possibly
inhibit the protein synthesis. Both compounds appear to form hydrogen bonds with nucleotides
of mitochondrial 16S rRNA of the large ribosome subunit, which could justify the inhibition of
mitochondrial protein synthesis.

PA levels in the tumor cells cultured in the presence of the two conjugates showed a remarkable
decrease. A possible explanation for this is that the presence of PA–CAM conjugates, combined with
the already elevated levels of cell PAs, triggers the activity of SSAT (spermidine/spermine
N1-acetyltransferase), which is responsible for the first step of PA catabolism. SSAT, being unable
to act on the conjugates, would, however, deplete only the endogenous PAs, thereby disrupting PA
homeostasis [49]. This hypothesis is strengthened by the observation that PUT levels were not affected,



Antibiotics 2019, 8, 9 13 of 16

since PUT is not used by SSAT as a substrate [50]. Another suggestion is that PA–CAM conjugates
functioned in a competitive manner, lowering the intracellular levels of the PAs.

5. Conclusions

In conclusion, the novel PA–CAM conjugates, synthesized with the aim of improving the activity
of a previously developed SPD–CAM conjugate (3), did not demonstrate improved antibacterial
activity, possibly due to their inability to penetrate the bacterial cell membrane. However, one of
them, namely compound 4, carrying two additional benzyl groups, proved to be effective against
human mesothelioma ZL34 cells, while having a milder effect on Met5A cells. Therefore, this new
compound could be considered as a promising antitumor agent. Moreover, the absence of antibacterial
activity could render the compound as a therapeutic agent with no unintentional disturbance of the
bacterial microflora of the patient, a necessary feature for the maintenance of homeostasis and normal
function, which is often a side effect of orally-administrated drugs [51]. Finally, the deletion of the
aminopropyl moiety of the lead molecule rendered it inactive either as an antibacterial or an antitumor
agent, while the additional modification of the polyamine carbon skeleton did not further modify their
limited biological activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/8/1/9/s1,
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compounds 3–7, Figure S2: RP-HPLC chromatograms for the intracellular concentration of compound 4 in ZL34
and Met5A cells, Figure S3: RP-HPLC chromatogram of dansylated PAs in ZL34 cells, Figure S4: Atom numbering
in compound 3 and 4 models; Materials and Methods Section (S3): Table S1: Intersystem Correspondence of
Relevant Large Subunit Nucleotides.
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