Supplementary Material

Antibacterial and cytotoxic activities of ten essential oils commercially available

Sofia Oliveira Ribeiro ¹, Véronique Fontaine ², Véronique Mathieu ³, Abdesselam Zhiri ^{4,5}, Dominique Baudoux ⁴, Caroline Stévigny ^{*,1} and Florence Souard ^{*,6,7}

¹ Department of Research in Drug Development (RD3), Pharmacognosy, Bioanalysis and Drug Discovery Unit, Faculty of Pharmacy, Université libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium

² Department of Research in Drug Development (RD3), Microbiology, Bioorganic and Macromolecular Chemistry Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium

³ Department of Pharmacotherapy and Pharmaceutics, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium

⁴ Pranarôm International S.A. 37, Avenue des Artisans, 7822, Ghislenghien, Belgium

⁵ Unité de recherche en Biotechnologie végétale, Université libre de Bruxelles, CP 300, Rue Prof. Jeener & Brachet 12, 6041 Gosselies, Belgium

⁶ Department of Pharmacotherapy and Pharmaceutics (DPP), Pharmacology, Pharmacotherapy and Pharmaceutical care Unit, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium

⁷ Université Grenoble Alpes, DPM UMR 5063, F3Y041, Grenoble, France.

* Equally contributing project leaders

Corresponding author: Sofia Oliveira Ribeiro Tel.: +32 02 650 52 98 E-mail address: sofia.marilia.oliveira.ribeiro@ulb.be

Materials and methods

Synergistic activity between the essential oils and antibiotics

As mentioned in the article, we tested the synergistic activity between the essential oils and common antibiotics by evaluating the Fractional Inhibitory Concentration (FIC) and the FIC index (FICI). The essential oils (EO) were combined with antibiotics (AB) in a 1:1 ratio and serially dilute (from 1000 μ g.ml⁻¹ and 64 μ g.ml⁻¹, respectively) in the 96-well plates. The FICI was determined using the following equations:

FICI = FIC AB + FIC EO

where : FIC $_{\mbox{\scriptsize AB}}$ = MIC $_{\mbox{\scriptsize AB}}$ in combination with the EO / MIC $_{\mbox{\scriptsize AB}}$ alone

FIC EO = MIC EO in combination with the AB / MIC EO alone

The four possible types of interaction are :

- 1. synergy (FICI $\leq 0,5$)
- 2. additive $(0,5 < FICI \le 1)$
- 3. indifferent $(1 < FICI \le 2)$

4. antagonist (FIC > 2)

The tested strains (and the respective antibiotics tested) were *S. aureus* LMG 15975 (amoxicillin and penicillin V), *S. aureus* LMG 16217 (amoxicillin and penicillin V), *E. coli* LMG 15862 (amoxicillin and penicillin V) and *P. aeruginosa* LMG 6395 (doxycycline and tetracycline). The direct activity leading to obtain the MIC AB and the MIC EO were made at the same time as the synergistic test where we obtained the MIC AB/EO and the MIC EO/AB. The tests were made in triplicate.

Figure of contents

Table S1a – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the amoxicillin (AMX) and the penicillin V (PEN V) against *Staphylococcus aureus* LMG 15975 (n=3).

Table S1b – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the amoxicillin (AMX) and the penicillin V (PEN V) against *Staphylococcus aureus* LMG 16217 (n=3).

Table S1c – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the amoxicillin (AMX) and the penicillin V (PEN V) against *Escherichia coli* LMG 15862 (n=3).

Table S1d – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the doxycycline (DOX) and the tetracycline (TET) against *Pseudomonas aeruginosa* LMG 6395 (n=3).

Figure S1 – Certificate of the chemical analysis for the lot number OF17650 of *Trachyspermum ammi* L. (ajowan) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S2 – Certificate of the chemical analysis for the lot number OF22779 of *Ocimum basilicum ssp basilicum* L. (basil) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S3 – Certificate of the chemical analysis for the lot number OF22830 of *Matricaria recutita* L. (German chamomile) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S4 – Certificate of the chemical analysis for the lot number OF22426 of *Cinnamomum cassia* (L.) J. Presl. (Chinese cinnamon) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S5 – Certificate of the chemical analysis for the lot number OF21374 of *Coriandrum sativum* L. (coriander) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S6 – Certificate of the chemical analysis for the lot number OF22293 of *Eugenia caryophyllus* (Spreng.) Bullock & S. G. Harrison. (clove) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S7 – Certificate of the chemical analysis for the lot number OF20407 of *Cymbopogon citratus* (*DC.*) *Staph.* (lemongrass) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S8 – Certificate of the chemical analysis for the lot number OF19205 of *Lavandula stoechas* L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S9 – Certificate of the chemical analysis for the lot number OF22429 of *Origanum compactum* Benth. (oregano) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S10 – Certificate of the chemical analysis for the lot number OF21237 of *Cymbopogon martinii var. motia* (Roxb.) W.Watson (palmarosa) provided by Pranarôm. Screen capture made on 1st September 2020.

Results

				S. aureus	LMG 15975	5			
AB	EO	MIC AB (µg.ml ⁻¹)	MIC e0 (µg.ml-1)	MIC AB/EO (µg.ml ⁻¹)	MIC EO/AB (µg.ml-1)	FIC AB	FIC EO	FIC	Interaction
	/AW	16	500	8	125	0,50	0,25	0,75	Additive
	/BE	16	2000	8	125	0,50	0,06	0,56	Additive
	/CA	16	2000	8	125	0,50	0,06	0,56	Additive
	/CC	16	250	4	62,5	0,25	0,25	0,50	Synergy
AMX	/CF	16	125	2	31,25	0,13	0,25	0,38	Synergy
AMA	/GF	16	1000	8	125	0,50	0,13	0,63	Additive
	/LG	16	1000	8	125	0,50	0,13	0,63	Additive
	/LS	16	2000	8	125	0,50	0,06	0,56	Additive
	/OC	16	500	4	62,5	0,25	0,13	0,38	Synergy
	/PM	16	2000	8	125	0,50	0,06	0,56	Additive
	/AW	8	500	4	62,5	0,50	0,13	0,63	Additive
	/BE	8	2000	8	125	1,00	0,06	1,06	Indifferent
	/CA	8	2000	4	62,5	0,50	0,03	0,53	Additive
	/CC	8	250	4	62,5	0,50	0,25	0,75	Additive
DENLY	/CF	8	125	4	62,5	0,50	0,50	1,00	Additive
PEN V	/GF	8	1000	4	62,5	0,50	0,06	0,56	Additive
	/LG	8	1000	4	62,5	0,50	0,06	0,56	Additive
	/LS	8	2000	4	62,5	0,50	0,03	0,53	Additive
	/OC	8	500	4	62,5	0,50	0,13	0,63	Additive
	/PM	8	2000	8	125	1,00	0,06	1,06	Indifferent

Table S1a – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the amoxicillin (AMX) and the penicillin V (PEN V) against *Staphylococcus aureus* LMG 15975 (n=3).

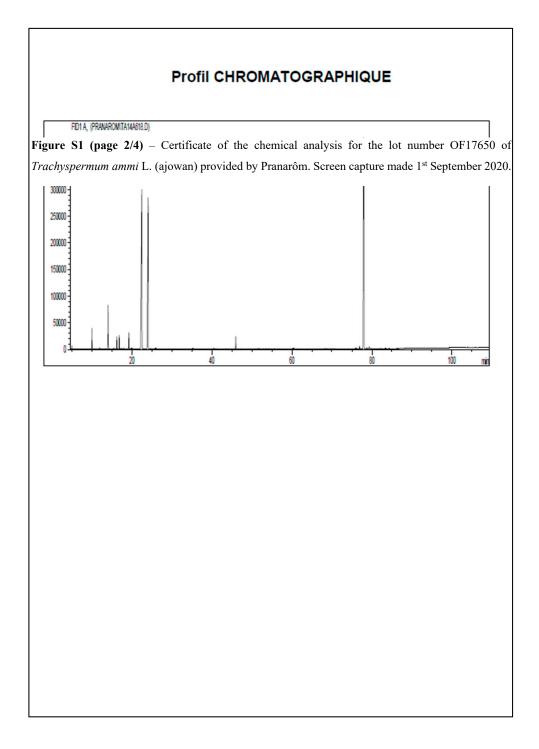
Table S2b – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the amoxicillin (AMX) and the penicillin V (PEN V) against *Staphylococcus aureus* LMG 16217 (n=3).

				S. aureus	LMG 16212	7			
AB	EO	MIC AB (µg.ml-1)	MIC EO (µg.ml-1)	MIC AB/EO (µg.ml-1)	MIC EO/AB (µg.ml-1)	FIC AB	FIC EO	FIC	Interaction
	/AW	64	500	16	250	0,25	0,50	0,75	Additive
	/BE	64	2000	64	1000	1,00	0,50	1,50	Indifferent
	/CA	64	2000	32	500	0,50	0,25	0,75	Additive
	/CC	64	250	8	125	0,13	0,50	0,63	Additive
АМХ	/CF	64	125	4	62,5	0,06	0,50	0,56	Additive
AIVIA	/GF	64	1000	32	500	0,50	0,50	1,00	Indifferent
	/LG	64	500	8	125	0,13	0,25	0,38	Synergy
	/LS	64	2000	32	500	0,50	0,25	0,75	Additive
	/OC	64	250	8	125	0,13	0,50	0,63	Additive
	/PM	64	2000	32	500	0,50	0,25	0,75	Additive
	/AW	64	500	16	250	0,25	0,50	0,75	Additive
PEN V	/BE	64	2000	64	1000	1,00	0,50	1,50	Indifferent
	/CA	64	2000	16	250	0,25	0,13	0,38	Synergy

/CC	64	250	8	125	0,13	0,50	0,63	Additive
/CF	64	125	8	125	0,13	1,00	1,13	Indifferent
/GF	64	1000	16	250	0,25	0,25	0,50	Synergy
/LG	64	500	16	250	0,25	0,50	0,75	Additive
/LS	64	2000	32	500	0,50	0,25	0,75	Additive
/OC	64	250	16	250	0,25	1,00	1,25	Indifferent
/PM	64	2000	32	500	0,50	0,25	0,75	Additive

Table S3c – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the amoxicillin (AMX) and the penicillin V (PEN V) against *Escherichia coli* LMG 15862 (n=3).

				E. coli	LMG 15862				
AB	EO	MIC AB (µg.ml ⁻¹)	MIC EO (µg.ml ⁻¹)	MIC AB/EO (µg.ml ⁻¹)	MIC EO/AB (µg.ml ⁻¹)	FIC AB	FIC EO	FIC	Interaction
	/AW	128	1000	64	1000	0,50	1,00	1,50	Indifferent
	/BE	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/CA	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/CC	128	500	32	500	0,25	1,00	1,25	Indifferent
AMX	/CF	128	2000	128	2000	1,00	1,00	2,00	Indifferent
AIVIA	/GF	128	1000	64	1000	0,50	1,00	1,50	Indifferent
	/LG	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/LS	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/OC	128	500	32	500	0,25	1,00	1,25	Indifferent
	/PM	128	1000	64	1000	0,50	1,00	1,50	Indifferent
	/AW	128	1000	64	1000	0,50	1,00	1,50	Indifferent
	/BE	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/CA	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/CC	128	500	32	500	0,25	1,00	1,25	Indifferent
PEN V	/CF	128	2000	128	2000	1,00	1,00	2,00	Indifferent
I'EIN V	/GF	128	1000	64	1000	0,50	1,00	1,50	Indifferent
	/LG	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/LS	128	2000	128	2000	1,00	1,00	2,00	Indifferent
	/OC	128	500	32	500	0,25	1,00	1,25	Indifferent
	/PM	128	1000	64	1000	0,50	1,00	1,50	Indifferent


Table S4d – Synergistic activity of the ten commercial essential oils (EO) in association with two different antibiotics (AB), the doxycycline (DOX) and the tetracycline (TET) against *Pseudomonas aeruginosa* LMG 6395 (n=3).

				P. aerugin	osa LMG 63	95			
AB	EO	MIC ab (µg.ml-1)	MIC EO (µg.ml ⁻¹)	MIC AB/EO (µg.ml ⁻¹)	MIC EO/AB (µg.ml-1)	FIC AB	FIC EO	FIC	Interaction
	/AW	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/BE	16	2000	8	125	0,50	0,06	0,56	Additive
	/CA	16	2000	8	125	0,50	0,06	0,56	Additive
DOX	/CC	16	500	16	250	1,00	0,50	1,50	Indifferent
DOX	/CF	16	2000	8	125	0,50	0,06	0,56	Additive
	/GF	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/LG	16	2000	8	125	0,50	0,06	0,56	Additive
	/LS	16	2000	8	125	0,50	0,06	0,56	Additive

	/OC	16	500	16	250	1,00	0,50	1,50	Indifferent
	/PM	16	2000	8	125	0,50	0,06	0,56	Additive
	/AW	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/BE	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/CA	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/CC	16	500	16	250	1,00	0,50	1,50	Indifferent
TET	/CF	16	2000	16	250	1,00	0,13	1,13	Indifferent
ILI	/GF	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/LG	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/LS	16	2000	16	250	1,00	0,13	1,13	Indifferent
	/OC	16	500	16	250	1,00	0,50	1,50	Indifferent
	/PM	16	2000	16	250	1,00	0,13	1,13	Indifferent

Figure S1 (page 1/4) – Certificate of the chemical analysis for the lot number OF17650 of *Trachyspermum ammi* L. (ajowan) provided by Pranarôm. Screen capture made 1st September 2020.

RANARŌM	Ρ	
FICHE D'ANALYS	E – ANALYSIS SH elle – Essential oil	<u>IEET</u>
Nom botanique – botanical name : Trachys Nom commun – french name: AJOWAI Numéro du lot - lot number: OF17650	permum ammi N N RÔM - INDE	
Caractéristiques d'analyse – analysis charact CPG - SM HEWLETT PACKARD / CPG- Colome : HP INNOWAX 60-0.5-0.25 Programmation de température : 6 mn à 50° Gaz vecteur He : 22 psis	FID °C -2°C/mn→250°C-20mn à 250°C	
Caractéristiques physiques – physical charac		
Aspect – physical state Couleur - colour	Liquide limpide Jaune d'or	
Odeur - odour	Phénolique, caractéristique	•
Densité à 20°C - density	0,910	-
Densité à 15°C - density	0,914	
Indice de réfraction à 20°C - refractive index	1,497 5	
Pouvoir rotatoire à 20°C – optical rotation Miscibilité à l'éthanol à 80% - miscibility	-1°	
Point d'éclair : SETAFLASH - flashpoint	1,4 volumes d'alcool / 1 volume d'HE (légè 58,0 °C	ere opalescence
Analyses pesticides – pesticide ana Pesticides Organochlorés : Dosage par GC M Interne validée selon la norme NF V03-110) Listo des pesticides recherchés (Pharmacopée Européenne) Methyl, Chiordane, Chiorfenvinphos, Chiorpyriphos, Chiorpyriphos, Chiorytinghos, Chiorfenvinphos, Chiorpyriphos, Chiorpyriphos, Endosuitan suitate, Endrine, Fenchiorphos (Ronnel), Fenchiorphy Heptachlor epoxide, Hexachlorocyclohexan e, Lindane, M deschorocyclohexane 0, Hexachlorocyclohexane s, Lindane, M Deschorocyclohexane 0, Hexachlorocyclohexane s, Lindane, M	IS détecteur XSD (méthode multirésidus : Alachior, Aldrine, Bromophos Ethyl, Bromophos os Methyl, Chlorthal Dimethyl, Cyfluthrine, Dicotol (Keithane), Dieldrine, Endosulfan, os-oxon, Fenvaierale, Filuvalinate, Heplachior, e o, Hexachiorocyclohexane B, ethoavchiore, Mirex, Naide, o.pDDD, o.pDDE.	<u>Résultats</u> < LMR*
o.p ⁻ DDT, Oxychlordane, p.p ⁻ DDD, p.p ⁻ DDE, p.p ⁻ DDT, Pentach Phosalone, Procymidone, Profenophos, Prothiofos, Quintozene, Pesticides Organophosphorés : Dosage par G		* Limite Maximale d Résidus autorisée
Interne validee selon la norme NF V03-110) Liste des pesticides recherches (Pharmacopée Européenne) Bromophos Ethyl, Bromophos Methyl, Chlorfenvinphos, Chlorpy Dimethoate, Ethion, Etrimphos, Fenchlorphos (Ronnel), Fenchlor Fensultothion-oxon, Fensultothion-oxon-suffone, Fensultothion-s	Acephate, Azinphos Ethyl, Azinphos Methyl, riphos, Chlorpyriphos Methyl, Diazinon, Dichlorvos, rphos-oxon, Fenitrothion, Fensulfothion (Dasanit), ulfone, Fenthion-oxon, Fenthion-oxon- toxyde, Fondros, Malakoton, Malakhon, Mecarbam,	< LMR*
Methacrifos, Methamidophos (Monitor), Methidathion, Monocroto Methyl, Parathion Ethyl, Parathion Methyl, Phosaione, Phosmet,	Didminister Ethyl Didminister Mathematical	* Limite Maximale d

Tableau de résultats 1 : AJOWAN INDE LOT N° OF17650

Pics	Temps de rétention	Constituants	%
1	5,0	ETHANOL	0,09
2	9,8	p-MENTHANE	0,01
3	10,0	α-PINENE	1,18
4	10,8	MENTHANE ISOMERE	0,02
5	11,6	α-FENCHENE	0,02
6	12,0	CAMPHENE	0,07
7	13,2	MENTHENE ISOMERE	0,01
8	14,1	β-PINENE	3,04
9	14,7	PINADIENE	0,01
10	15,3	Δ2-CARENE	0,02
11	15,5	p-MENTH-2-ENE	0,09
12	16,3	Δ3-CARENE	0,79
13	16,9	8-MYRCENE	0,84

Figure S1 (page 3/4) - Certificate of the chemical analysis for the lot number OF17650 of

Trachyspermum ammi L. (ajowan) provided by Pranarôm. Screen capture made 1st September 2020.

18	19,3	LIMONENE	1,15
19	19,9	1,8-CINEOLE	0,06
20	20,0	β-PHELLANDRENE	0,05
21	22,5	y-TERPINENE	27,44
22	24,1	p-CYMENE	20,55
23	24,7	TERPINOLENE	0,05
24	25,9	CYMENE ISOMERE	0,03
25	35,0	CETONE TERPENIQUE	0,02
26	35,2	a,p-DIMETHYLSTYRENE	0,06
27	35,5	MENTHATRIENE ISOMERE	0,01
28	40,3	EPOXYDE TERPENIQUE	0,03
29	40,5	EPOXYDE TERPENIQUE	0,07
30	41,0	EPOXYDE TERPENIQUE ISOMERE	0,02
31	43,7	4-CARANONE	0,01
32	44,1	TERPINENE-1-OL	0,02
33	44,5	FENCHOL	0,03
34	45,6	HYDRATE DE CAMPHENE	0,02
35	46,0	TERPINENE-4-OL	0,92
36	48,4	BICYCLOHEPTYL BUTANONE Mw=166	0,01
37	49,2	Trans-PINOCARVEOL	0,02
38	50,0	ALCOOL TERPENIQUE	0,01
39	50,6	Trans-VERBENOL	0,01
40	51,0	NERAL	0,02
41	51,7	α-TERPINEOL	0,06
42	52,0	BORNEOL	0,02
43	52,8	ESTER TERPENIQUE	0,03
44	54,0	PIPERITONE	0,01
45	54,5	CARVONE	0,01

Tableau de résultats 2 : AJOWAN INDE LOT N° OF17650

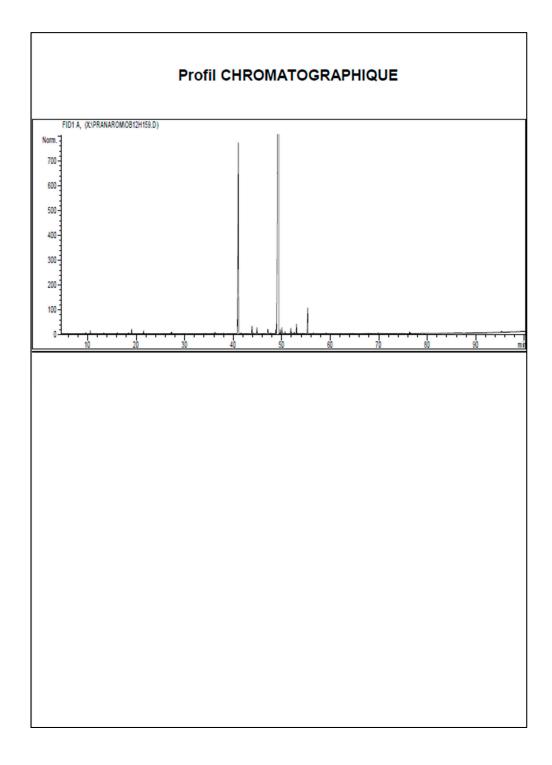

Pics	Temps de	Constituants	%
	rétention		1 10
46	57,3	MYRTENOL	0,01
47	59,7	Trans-CARVEOL	0,02
48	60,4	p-CYMENE-8-OL	0,04
49	65,6	PIPERITENONE	0,02
50	67,6	COMPOSÉ PHENOLIQUE	0,01
51	68,3	β-METHYL BENZENE PROPANOL	0,03
52	68,6	COMPOSÉ THYMOL ETHER	0,01
53	69,0	METHYL ETHYL PHENOL Mw=178	0,01
54	69,5	METHYL DIISOPROPYL PHENOL ISOMERE Mw=192	0,01
55	70,9	SESQUITERPENOL	0,02
56	71,7	p-MENTHA-1,4-DIEN-7-OL	0,02
57	73,1	p-CRESOL	0,01
58	74,1	CUMINOL	0,03
59	76,0	MENTHADIENOL ISOMERE	0,04
60	76,9	ISOTHYMOL	0,18
61	78,0	THYMOL	41,92
62	78,8	ISOCARVACROL	0,09
63	79,2	GERANYLGERANIADIENE ISOMERE	0,06
64	79,4	CARVACROL	0,18
65	79,9	COMPOSÉ PHENOLIQUE	0,02
66	81,8	METHYL PROPYL PHENOL ISOMERE	0,02
67	83,4	COMPOSÉ PHENOLIQUE	0,01
68	84,3	COMPOSÉ AROMATIQUE Mw=192	0,01
69	88,1	COMPOSÉ AROMATIQUE	0,05
70	88,3	COMPOSÉ PHENOLIQUE	0,02
71	90,6	COMPOSÉ AROMATIQUE	0,02

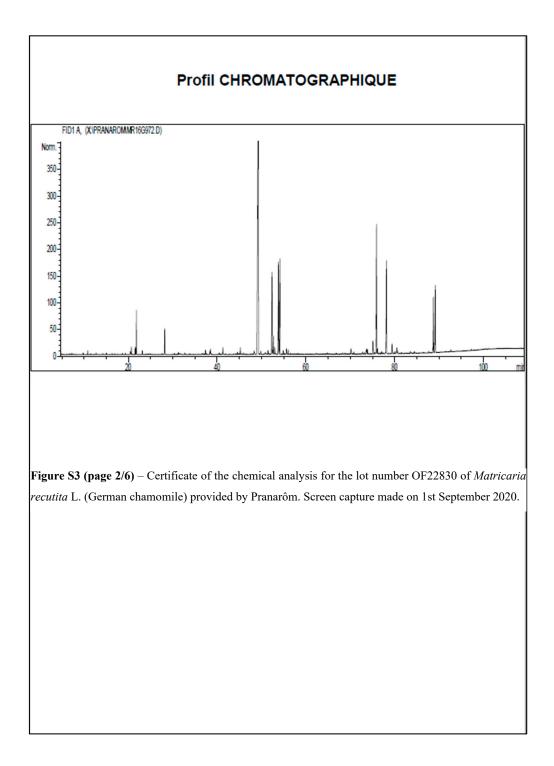
Figure S1 (page 4/4) - Certificate of the chemical analysis for the lot number OF17650 of

Trachyspermum ammi L. (ajowan) provided by Pranarôm. Screen capture made 1st September 2020.

Pranarôm Int. C. Schulze Contrôle qualité

	E – ANALYSIS SHEET
	elle – Essential oil
Nom commun – french name : BASIL Numéro du lot – lot number : OF227	ARÔM - INDE 11TÉ FLEURIE 5
<u>Caractéristiques d'analyse – analysis charac</u>	teristics:
CPG - SM HEWLETT PACKARD / CPG Colonne : HP DNNOWAX 60-0.5-0.25 Programmation de température : 6 mn à 50 Gaz vecteur He : 22 psis	0°C -2 °C/mn→250°C -10mn à 250°C
Caractéristiques physiques – physical charact	eristics:
Aspect – physical state	Liquide limpide
Couleur - colour Odeur - odour	Jaune très clair Caractéristique, épicée
Densité à 20°C - density	0,938
Densité à 15°C - density	0,942
Indice de réfraction à 20°C - refractive inde	
Pouvoir rotatoire à 20°C - optical rotation	-7,5 °C
Miscibilité à l'éthanol à 80% - miscibility	2,5 volumes d'alcool à 80% / 1 volume d'HE 80,7 °C
Point d'éclair : SETAFLASH - flashpoint	
Analyses pesticides – pesticide analysis : Pesticides Organochlorés : Dosage par GC / Interne validée seion la norme NF V03-110) Liste des pesticides recherches (Pharmacopée Européenne Methyl, Chiordane, Chiorfenvinphos, Chiorpyriphos, Chiorgyrip Cyhaiothrine lambda, Cypermethrine, Dichlorduanide, Dichlorvo Endosultan sultate, Endrine, Fenchiorphos (Ronnei), Fenchiorpi Heptachlor epoxide, Hexachlorocyclohexane s, Lindane, J Hexachlorocyclohexane S, Hexachlorocyclohexane s, Lindane, J	y): Alachior, Aldrine, Bromophos Ethyl, Bromophos hos Methyl, Chiorthal Dimethyl, Cyfluthrine, , Diotodi (Ketthane), Dieldrine, Endosulfan, hos-oxon, Fervalerate, Filuxalinate, Heptachior, ne d, Hexachiorocyclohexane β, Wethoxychiore, Mirex, Naled, o, 0, -DDD, o, 0, -DDE,
Analyses pesticides – pesticide analysis : Pesticides Organochlorés : Dosage par GC I Interne validée seion la norme NF V03-110) Liste des pesticides recherchés (Pharmacopée Européenne Methyl, Chiordane, Chiorenviphos, Chiorpyripho Cyhalothrine lambda, Cypermethrine, Dichloftuanide, Dichlorove Endosultan suitate, Endringhos (Ronnei), Fenchlorpj Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclohexas e (. Indane, I Hexachlorocyclohexas e (. Hexachlorocyclohexas e (. Indane, I o,p-DDT, Oxychlordane, p.p-DDD, p.p'-DDE, p.p-DDT, Pentac Phosalone, Procymidone, Profenophos, Prothiotos, Quintozene	(): Alachior, Aldrine, Bromophos Ethyl, Bromophos nos Methyl, Chiorthal Dimethyl, Cyfluthrine, I, Dicotol (Ketthane), Dieldrine, Endosufan, nos-oxon, Fervalerate, Fluvalinate, Heptachior, ne g, Hexachiorocyclohexane B, wethosychiore, Mirex, Naied, op. DDD , op. DDE, hioroaniline, Pentachioroanisole, Permethrine, S421, Teonazene, Tetradifon, Vinclozoline
Analyses pesticides – pesticide analysis ; Pesticides Organochlorés : Dosage par GC I Interne validée selon la norme NF V03-110) Liste des pesticides recherchés (Pharmacopée Européenne Methyl, Chiodrane, Chiorenvippios, Chiorytriphos, Chiorytriphos, Cyhakothrine lambda, Cypermethrine, Dichlofluanide, Dichlorvol Endosultan suifate, Endrine, Fenchlorphos (Ronnei), Fenchlorph Heptachlor epoxide, Hexachlorocyclonexane s, Lindane, I, og-DDT, Oxychlordane, Profenophos, Prothlofos, Quintozene Phosalone, Procymidone, Profenophos, Prothlofos, Quintozene Pesticides Organophosphorés : Dosage par	(): Alachior, Aldrine, Bromophos Ethyl, Bromophos nos Methyl, Chiorthal Dimethyl, Cyfluthrine, I, Dicotol (Ketthane), Dieldrine, Endosufan, nos-oxon, Fervalerate, Fluvalinate, Heptachior, ne g, Hexachiorocyclohexane B, wethosychiore, Mirex, Naied, op. DDD , op. DDE, hioroaniline, Pentachioroanisole, Permethrine, S421, Teonazene, Tetradifon, Vinclozoline
Analyses pesticides – pesticide analysis : Pesticides Organochlorés : Dosage par GC I Interne validée seion la norme NF V03-110) Lite des pesticides recherchés (Pharmacopée Européenne Methyl, Chiodrane, Chiofrenvippios, Chioprypio Cyhatothrine lambda, Cypermethrine, Dichlortonos (Ronnel), Fenchlorp Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclohexan Hexachlorocyclohexane 6, Hexachlorocyclohexane c, Lindane, 1, op-DDT, Oxychlordane, Profenophos, Prothlotos, Quintozene Possione, Procymidone, Profenophos, Prothlotos, Quintozene Pesticides Organophosphorés : Dosage par Interne validée seion la norme NF V03-110) S2 (page 1/4) – Certificate of the chemi	(): Alachior, Aldrine, Bromophos Ethyl, Bromophos nos Methyl, Chiorthal Dimethyl, Cyfluthrine, s, Diotol (Kethane), Dieldrine, Endosufan, nos-oxon, Ferwalerate, Fluvalinate, Heptachior, ne g, Hexachiorocyclohexane 8, wethooxychiore, Mirex, Naide, op-DDD, o.gr-DDE, hioroaniline, Pentachioroanisole, Permethrine , s421, Teonazene, Tetradifon, Vinciozoline GC MS détecteur FPD (methode multirealdus cal analysis for the lot number OF22779 o
Analyses pesticides – pesticide analysis : Pesticides Organochlorés : Dosage par GC I Interne validée seion la norme NF V03-110) Lite des pesticides recherchés (Pharmacopée Européenne Methyl, Chiodrane, Chiofrenvippios, Chioprypio Cyhatothrine lambda, Cypermethrine, Dichlortonos (Ronnel), Fenchlorp Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclohexan Hexachlorocyclohexane 6, Hexachlorocyclohexane c, Lindane, 1, op-DDT, Oxychlordane, Profenophos, Prothlotos, Quintozene Possione, Procymidone, Profenophos, Prothlotos, Quintozene Pesticides Organophosphorés : Dosage par Interne validée seion la norme NF V03-110) S2 (page 1/4) – Certificate of the chemi): Alachlor, Aldrine, Bromophos Ethyl, Bromophos hos Methyl, Chlorthal Dimethyl, Cyfluthrine, i, Dicotol (Kethane), Dieldrine, Endosulfan, hos-oxon, Fenvalerate, Fluvalinate, Heptachlor, ne , Hexachlorocyclohexan e B, Wethoxychlore, Mirex, Naied, o.gr-DDD, o.gr-DDE, hioroanilline, Pentachloroanisce, Permethrine, , S421, Tecnazene, Tetradifon, Vinclozoline GC MS détecteur FPD (methode multiresidus

Figure S2 (page 2/4) – Certificate of the chemical analysis for the lot number OF22779 of *Ocimum basilicum ssp basilicum* L. (basil) provided by Pranarôm. Screen capture made on 1st September 2020.


Figure S2 (page 3/4) – Certificate of the chemical analysis for the lot number OF22779 of *Ocimum basilicum ssp basilicum* L. (basil) provided by Pranarôm. Screen capture made on 1st September 2020.

-		de résultats 1 : BASILIC BIO LOT N° OF22779	
Pics	Temps de rétention	Constituants	%
1	5,1	ACETONE	0,01
2	6.6	ISOVALERALDEHYDE	0,01
3	6,8	ETHANOL	0,01
4	7,4	3-METHYL-2-BUTENAL	0,01
5	9,6	α-PINENE	0,08
6	9,8	α-THUYENE	0,01
7	9,9	TOLUENE	0,01
8	10,4	COMPOSÉ Mw=138	0,01
9	10,6	DIMETHYL METHYLETHYL CYCLOPENTENE ISOMERE	0,17
10	10,7	COMPOSÉ TERPENIQUE	0,01
11	11,1	DIMETHYL METHYLETHYL CYCLOPENTENE ISOMERE	0,01
12	11,8	MENTHENE ISOMERE	0,01
13	12,9	2,5-DIMETHYL-1,6-HEPTADIENE	0,01
14	13,4	β-PINENE	0,06
15	14,0	SABINENE	0,02
16	16,1	β-MYRCENE	0,05
17	18,4	LIMONENE	0,08
18	19,0	1,8-CINEOLE	0,31
19	20,4	Cis-β-OCIMENE	0,01
20	21,3	γ-TERPINENE	0,01
21	21,5	Trans-β-OCIMENE	0,19
22	22,8	p-CYMENE	0,02
23 24	24,1		0,01
24	25,7 27,3	ACETATE DE cis-3-HEXENYLE 6-METHYL-5-HEPTEN-2-ONE	0,01
26	30,1	3-HEXEN-1-OL	0,02
27	31,5	FENCHONE	0,02
28	34,3	Cis-OXYDE DE LINALOL	0,03
29	34,4	1-OCTEN-3-OL	0,00
30	35,8	DIHYDROMYRCENOL	0,03
31	36,2	MENTHONE	0,12
32	36,5	ACETATE D'OCTYLE	0,04
33	37,3	ISOMENTHONE	0,02
34	38,0	α-COPAENE	0,07
35	38,9	DECANAL	0,02
36	39,8	CAMPHRE	0,02
37	40,4	β-BOURBONENE	0,03
38	40,6	α-GURJUNENE	0,01
39	41,1	LINALOL	19,32
40	41,6	1-OCTANOL	0,08
41	41,9	ALCOOL ALIPHATIQUE	0,01
42	42,4	ACETATE DE MENTHYLE	0,03
43	42,8		0,01
44	43,9	α-trans-BERGAMOTENE	0,64
45	44,3	β-ELEMENE	0,06
46	44,6		0,02
47	44,9	TERPINENE-4-OL	0,03

Constituants β-CARYOPHYLLENE MENTHOL Call Constituants MENTHOL Call Constituants MENTHOL Constituants MENTHOL Constituants MENTHOL Constituants MENTHOL Constituants MENTHOL Constituants MENTHOL Constituants MENTHOL Constituants MENTHOL Constituants Constituants MENTHOL Constituants Co	
MENTHOL icate of the chemical analysis for the lot numb sil) provided by Pranarôm. Screen capture made	0,4 er OF22779 of
MENTHOL icate of the chemical analysis for the lot numb sil) provided by Pranarôm. Screen capture made	0,4 er OF22779 of
icate of the chemical analysis for the lot numb sil) provided by Pranarôm. Screen capture made	er OF22779 of
a-HUMULENE	on 1st Septem
	0,2
NERAL	0,5
Z-β-FARNESENE	0,0
	0,1
	0,4
	0,0
	0,0
	0,0
	0,1
	0,0
	0,6
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	1,9
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
	0,0
α-CADINOL	0,0
CHAVICOL	0,0
COMPOSÉ AROMATIQUE Mw=220	0,0
3-METHOXY-CINNAMALDEHYDE	0,0
	0,0 0,0
	CHAVICOL

PRANAROM	ρ	
FICHE D'ANALYSE – Huile essentiell	ANALYSIS SHE	ET
Nom botanique – botanical name : Matricaria r Nom commun – french name : MATRICAIR Numéro du lot – lot number : OF22830 Origine - origin : PRANARON Partie de la plante – part of the plant : FLEUR Date de distillation – distillation date : 06/2015 Date de péremption – out of date : 04/2021	RE M - UK	
Caractéristiques d'analyse - analysis characteris CPG - SM HEWLETT PACKARD	stics:	
Colonne : HP INNOWAX 60-0.5-0.25		
L. (German chamomile) provided by Prana		1st September 20
Aspect – physical state	Liquide limpide	1st September 20
Aspect – physical state Couleur - colour	Liquide limpide Bleu foncé	1st September 20
Aspect – physical state Couleur - oolour Odeur - odour	Liquide limpide Bleu foncé Aromatique, tenace	1st September 20
Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density	Liquide limpide Bleu foncé Aromatique, tenace 0,895	1st September 20
Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density	Liquide limpide Bleu foncé Aromatique, tenace 0.895 0.899	1st September 20
Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C – refractive index	Liquide limpide Bleu foncé Aromatique, tenace 0,895 0,899 1,497 3 (lecture floue)	1st September 20
Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C – refractive index Pouvoir rotatoire à 20°C - optical rotation Ti	Liquide limpide Bleu foncé Aromatique, tenace 0.895 0.899 1.497 3 (lecture floue) rop foncé pour la lecture	1st September 20
Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C – refractive index Pouvoir rotatoire à 20°C - optical rotation Ti	Liquide limpide Bleu foncé Aromatique, tenace 0,895 0,899 1,497 3 (lecture floue)	1st September 20
Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive index Pouvoir rotatoire à 20°C - optical rotation Ti Miscibilité à l'éthanol à 80% - miscibility So	Liquide limpide Bleu foncé Aromatigue, tenace 0,895 0,899 1.497 3 (lecture floue) rop foncé pour la lecture pluble dans Talcool à 90 % 92,2 °C étecteur XSD (méthode multirésidus chior, Aldrine, Bromophos Ethyl, Bromophos ethyl, Chiorthal Dimethyl, Cyfluthrine, fol (Kethane), Dieldrine, Endosufan, tor, Fenvalerate, Fluvalnate, Heytachtor, fexachtorocyclonexane β, sychlore, Miret, Naled, o.p. DDD, o.p. DDE,	1st September 20 Résultats < LMR*

Interne validée selon la norme NF V03-110)
Liste des pesticides recherchée (Pharmacopée Européenne): Acephale, Azinphos Ethyl, Azinphos Methyl,
Bromophos Ethyl, Bromophos Methyl, Chiorenvinphos, Chiorpyriphos, Chiorpyriphos Methyl, Jazinphos Methyl, Bromophos Methyl, Chiorenvinphos, Chiorpyriphos, Chiorpyriphos Methyl, Brasultonion, Dichiorvos,
Dimethoate, Ethion, Etrimphos, Fenchiorphos, Chiorpyriphos, Penkultothion (Dasanit),
Fensultothion-oxon, Fenchiorphos, Methyl, Brathion-sulfone, Fenthion-sultone, Penthion-sultone, Methyl, Brathion Ethyl, Proteinophos, Methyl, Proteinophos,
Prothiofos, Quinalphos.

Tableau de résultats 1 : CAMOMILLE MATRICAIRE

Pics	Temps de	Constituants	%
	rétention	Conoticularito	10
1	4,9	ACETONE	0,02
2	6,2	NONANE	0,01
3	6,6	2-METHYL BUTANAL	0,01
4	6,7	ISOVALERALDEHYDE	0,02
5	7,1	ETHANOL	0,03
6	7,5	2-METHYL BUTANAL	0,03
7	9,8	α-PINENE	0,06
8	9,9	α-THUYENE	0,01
9	10,8	2-METHYLBUTYRATE D'ETHYLE	0,12
10	11,3	VALERATE D'ETHYLE	0,01
11	11,5	CAMPHENE	0,02
12	11,7	ESTER ALIPHATIQUE	0,02
13	12,3	HEXANAL	0,01
14	12,7	UNDECANE	0,07
15	14,2	SABINENE	0,05
16	15,0	METHYLPROPIONATE D'ISOBUTYLE	0,08
17	16,3	β-MYRCENE	0,04
18	16,9	ψ-LIMONENE	0,03
19	17,5	α-TERPINENE	0,01
20	18,7	LIMONENE	0,06
21	19,3	1,8-CINEOLE + β-PHELLANDRENE	0,07
22	20,4	2-PENTYL FURANE	0,12
23	20,5	2-METHYLBUTYRATE DE BUTYLE	0,04
24	20,7	Cis-β-OCIMENE	0,34
25	21,5	y-TERPINENE	0,35
26	21,8	Trans-β-OCIMENE	1,98
27	23,1	p-CYMENE	0,18
28	24,0	TERPINOLENE	0,04
29	24,4	OCTANAL	0,11
30	25,0	ISOVALERATE D'ISOAMYLE	0,03
31	25,2	4,8-DIMETHYL-1,3,7-NONATRIENE	0,02
32	27,5	6-METHYL-5-HEPTEN-2-ONE	0,06
33	28,2	ARTEMISIA CETONE	1,25
34	30,3	3-HEXEN-1-OL	0,06
35	30,8	PROPIONATE D'HEXENYLE	0,02
36	31,0	ANGELATE DE METHALLYLE	0,02
37	31,3	YOMOGI ALCOOL	0,11
38	31,6	NONANAL	0,18
39	32,7	BUTYRATE D'HEXYLE	0,09
40	33,8	2-METHYLBUTYRATE D'HEXYLE	0,05
41	34,7	3-METHYLBUTYRATE D'HEXYLE	0,03

Figure S3 (page 3/6) – Certificate of the chemical analysis for the lot number OF22830 of *Matricaria recutita* L. (German chamomile) provided by Pranarôm. Screen capture made on 1st September 2020.

Tableau de résultats 2 : CAMOMILLE MATRICAIRE

Pics	Temps de	Constituants	%
	rétention	0500007500505	
46	37,0	SESQUITERPENE	0,05
47	37,4		0,25
48	37,6	ISOVALERATE DE CIS-3-HEXENYLE	0,04
49	38,0	CYCLOSATIVENE	0,01
50	38,4		0,32
51	38,5	ARTEMISIA ALCOOL	0,17
52	40,4	MODHEPHENE	0,09
53	40,8	α-GURJUNENE	0,03
54	41,2		0,49
55	41,3	LINALOL	0,04
56	41,6	β1-CUBEBENE	0,02
57	41,9	1-OCTANOL	0,04
58	42,8	CITRONNELLATE DE METHYLE	0,03
59	43,7	ε-CADINENE	0,07
60	44,2	β-ISOCOMENE	0,07
61	44,6	β-ELEMENE	0,14
62	44,9	β-CUBEBENE	0,09
63	45,2	β-CARYOPHYLLENE	0,44
64	45,5	SESQUITERPENE	0,05
65	46,0	AROMADENDRENE	0,11
66	46,4	SESQUITERPENE	0,02
67	46,6	SESQUITERPENE	0,04
68	47,4	CADINA-3,5-DIENE	0,01
69	47,6	4,8-DIMETHYL, 3,7-NONANEDIEN-2-ONE	0,03
70	48,1	CADINENE ISOMERE	0,06
71	48,3	FARNESENE ISOMERE + ALLO-AROMADENDRENE	0,33
72	49,3	E(trans)-β-FARNESENE	41,17
73	49,8	α-HUMULENE	0,24
74	50,0	γ-SELINENE	0,02
75	50,7	Z-β-FARNESENE	0,07
76	50,9	γ-CURCUMENE	0,18
77	51,0	BORNEOL	0,06
78	51,5	LEDENE	0,27
79	51,7	SESQUITERPENE	0,06
80	52,4	GERMACRENE D	5,46
81	52,6	Z,E-α-FARNESENE	1,06
82	53,0	β-BISABOLENE	0,49
83	53,8	BICYCLOGERMACRENE	5,89
84	54,1	E,E-a-FARNESENE	5,57
85	54,6	ACETATE DE GERANYLE	0,05
86	54,9	δ-CADINENE	0,22
87	55,2	γ-CADINENE	0,06
88	55,4	SALICYLATE DE METHYLE	0,20
89	55,6	β-SESQUIPHELLANDRENE	0,28
90	56,0	α-CURCUMENE	0,20
			-

Figure S3 (page 4/6) – Certificate of the chemical analysis for the lot number OF22830 of *Matricaria recutita* L. (German chamomile) provided by Pranarôm. Screen capture made on 1st September 2020.

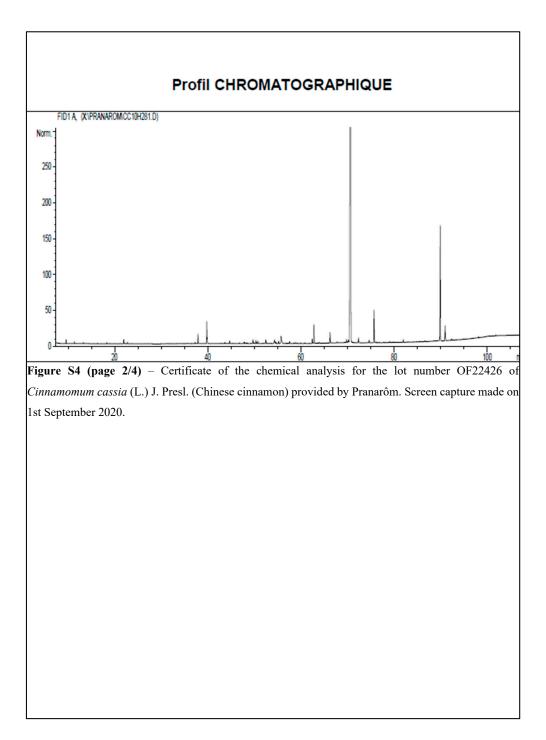

Figure S3 (page 5/6) – Certificate of the chemical analysis for the lot number OF22830 of *Matricaria recutita* L. (German chamomile) provided by Pranarôm. Screen capture made on 1st September 2020.

Tableau de résultats 3 : CAMOMILLE MATRICAIRE LOT OF22830

Pics	Temps de	Constituants	%
	rétention		1
91	56,5	SESQUITERPENE Mw=202	0,09
92	57,0	CADINA-1,4-DIENE	0,06
93	57,5	NEROL	0,08
94	57,8	α-AMORPHENE	0,06
95	58,1	SESQUITERPENE Mw=202	0,08
96	58,9	2,4-DECADIENAL	0,06
97	59,8	CALAMENENE	0,04
98	62,3	SESQUIROSEFURANE	0,07
99	62,5	Epi-CUBEBOL	0,05
100	62,8	COMPOSÉ AROMATIQUE	0,04
101	63,3	α-CALACORENE	0,02
102	63,8	DIHYDROCHAMAZULENE ISOMERE	0,05
103	64,8	PHENYLACETONITRILE	0,04
104	64,4	NONADECANE	0,07
105	64,8	DENDROLASINE	0,10
106	65,1	IONONE ISOMERE	0,05
107	65,4	Trans-JASMONE	0,06
108	66,8	COMPOSÉ AROMATIQUE	0,06
109	67,1	SESQUITERPENE	0,02
110	67,8	COMPOSÉ PHENOLIQUE	0,04
111	68,3	BOURBONANOL ISOMERE	0,11
112	68,8	ESTER ALIPHATIQUE	0,08
113	69,3	COMPOSÉ SESQUITERPENIQUE	0,02
114	69,6	ESTER TERPENIQUE	0,02
115	70,1	Trans-NEROLIDOL + ALCOOL ALIPHATIQUE	0,51
116	70,5	ACIDE CAPRYLIQUE	0,06
117	70,8	GLEENOL	0,12
118	71,7	Epi-CUBENOL	0,04
119	71,9	LEVOJUNENOL	0,05
120	72,3	SESQUIPHELLANDROL ISOMERE	0,02
121	72,5	CUBENOL	0,04
122	72,8	GLOBULOL	0,12
123	73,2	VIRIDIFLOROL	0,12
124	73,6	ALCOOL ALIPHATIQUE	0,14
125	73,7	SESQUITERPENOL	0,26
126	73,9	COMPOSÉ TERPENIQUE	0,27
127	74,3	EUDESMOL ISOMERE	0,05
128	75,1	SPATHULENOL + TRIMETHYL PENTADECANONE	0,81
129	75,5	OXYDE DE BISABOLOL C	0,12
130	75,9	OXYDE B DE α-BISABOLOL	8,77
131	76,2	COMPOSÉ AROMATIQUE Mw=236	0,32
132	76,4	DIHYDROCHAMAZULENE ISOMERE	0,05
133	76,8	EUGENOL	0,07
134	77,1	OXYDE DE BISABOLOL ISOMERE	0,14
135	77,4	T-CADINOL	0,10

Pics Temps de rétention	Constituants	%
136 78,0	OXYDE A DE BISABOLOL	5,96
	cate of the chemical analysis for the lot number C	
	e) provided by Pranarôm. Screen capture made o	
141 80,4	α-CADINOL + OXYDE DE BISABOLOL ISOMERE	0,14
142 80,5	α-EUDESMOL	0,34
143 80,6	SESQUITERPENOL	0,16
144 81,6	ACIDE CAPRIQUE	0,05
145 83,5	MATRICARIA ESTER	0,13
146 84,4	TRICOSANE	0,09
147 87,6	COMPOSÉ AROMATIQUE Mw=234	0,09
148 88,7	CHAMAZULENE	3,45
149 89,1	OXYDE A DE α-BISABOLOL	4,02
150 92,6	PENTACOSANE	0,13
151 97,2	PHYTOL	0,06
152 100,4	ACIDE MYRISTIQUE	0,03
153 101,3	HEPTACOSANE	0,03
	TOTAL f the analysis : Avril 2016,	99,7
	C. Schulze Contrôle qualité	

PR	ANARŌM		
E	ICHE D'ANALYSE – A Huile essentielle –		<u>IEET</u>
Nom cor Numéro Origine - Partie de Date de c	anique – botanical name : Cinnamomum ca anunu – french name : CANNELIER DE C du lot – lot number : OF22426 origin : PRANARÔM - CH la plante – part of the plant : RAMEAU listillation – distillation date : 06/2015 péremption – out of date : 04/2021	assia CHINE	
-	stiques d'analyse- analysis characteristics:		
igure S4 (pa	CPG - SM HEWLETT PACKARD / CPG-FID ge 1/4) – Certificate of the chemical	analysis for the lot nu	mber OF22426
	ussia (L.) J. Presl. (Chinese cinnamon) p	-	
	······································		F
1 at Contombo	- 2020		
1 1st Septembe		Liquide limpide	
1st Septembe	Aspect – physical state	Liquide limpide Jaune clair	
1 1st Septembe	Aspect – physical state Couleur - colour Odeur - odour	Liquide limpide Jaune clair Caractéristique, de cinnamalde	ehyde
1st Septembe	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density	Jaune clair Caractéristique, de cinnamalde 1,051	ehyde
1st Septembe	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density	Jaune clair Caractéristique, de cinnamalde 1.051 1.055	ehyde
1st Septembe	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive index	Jaune clair Caractéristique, de cinnamalde 1,051	ehyde
1st Septembe	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density	Jaune clair Caractéristique, de cinnamald 1,051 1,055 1,609 8	
1st Septembe	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive index Pouvoir rotatoire à 20°C - optical rotation	Jaune clair Caractéristique, de cinnamalde 1,051 1,055 1,809 8 0 °	
Analy: Pesticid Interne val Lite des p Methyl, Chik Cynaiothim Endosulfan Heptachioro Hextachioro	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive index Pouvoir rotatoire à 20°C - optical rotation Miscibilité à l'éthanol à 70% - miscibility Point d'éclair : SETAFLASH - flashpoint es pesticides – pesticide analysis : es Organochlorés : Dosage par GC MS détecteu de selon la norme NF V03-110) stétodes recherches (Pharmacopée Européenne): Alachior, Ald rdane, Chiorfenvinphos, Chiorpyriphos Methyl, Chi l'amoda, Cypermethrine, Dichiofluaride, Dichioros, Dicotol (Keth rdane, Chiorfenvinphos, Romei), Fenchlophos-con, Fern vpoxide, Hexachiorocyclohexane a, Hexachioroxyclohexane a,	Jaune clair Caractéristique, de cinnamald 1,051 1,055 1,809 8 0 ° 1,9 volumes d'alcool / 1 volume 113,1 °C r XSD (méthode multiresidus rine, Bromophos Ethyl, Bromophos orthal Dimethyl, Cyfluthrine, ane), Dieldrine, Endosufan, alerate, Fluvalinate, Heplachor, rocyclohexane β, Mirex, Naled, o,P-DDD, o,P-DDE,	e d'HE Résultats < LMR*
Analy: Pesticid Interne vall Litte des p Methyl, Chik Cynaiothrin Endosulfan Heptachioro o,p*-DDT, O Phosaione,	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive index Pouvoir rotatoire à 20°C - optical rotation Miscibilité à l'éthanol à 70% - miscibility Point d'éclair : SETAFLASH - flashpoint es pesticides – pesticide analysis : es Organochlorés : Dosage par GC MS détecteu de selon la norme NF V03-110) seticides recherches (Pharmacopée Européenne): Alachior, Ald drae, Chiofrenvinphos, Chiopyriphos Methyl, Chi l'ambda, Cypermethrne, Dichiofluaride, Dichiorvos, Dicotol (Keth uitate, Endiner, Fenchiophos, Chiopyriphos Methyl, Chi l'ambda, Cypermethrne, Dichiofluaride, Dichiorvos, Dicotol (Keth uitate, Endiner, Fenchiophos, Chionyriphos, Rethyl, Chi l'ambda, Cypermethrne, Pichiofluaride, Dichiorvos, Dicotol (Keth Usitate, Endiner, Fenchiophos, Chionyriphos, Rethyl, Chi l'ambda, Cypermethrne, Dichiofluaride, Dichiorvos, Dicotol (Keth Usitate, Endiner, Fenchiophos, Chonychiner, enchiophos, Pentochioros-con, Fenv poxide, Hexachiorocyclohexare a, Lindane, Methowychiore, wychiordane, p.p'-DDD, p.p'-DDT, Pentachioroaniline, Pe Procymidone, Profenophos, Profiloros, Quintozene, S421, Tecnaz	Jaune clair Caractéristique, de cinnamald 1,051 1,055 1,609 8 0 * 1,9 volumes d'alcool / 1 volume 113,1 °C r XSD (méthode muttrésidus trine, Bromophos Ethyl, Bromophos orhal Dimethyl, Cyfluthrine, ane), Dieldrine, Endosuftan, alerate, Fluvalinate, Heptachlor, rocyclohexane B, Mirex, Naled, op: ODD , op: ODE, entachloroaniscie, Permethrine , ene, Tetradifon, Vinclozoline	e d'HE Résultats < LMR* * Limite Maximple de Residu autorisée
Pesticid Interne val Liste des p Methyl, Chik Cyhalothrin Endosultan Heptachlorr Hexachlorro o, p ⁻¹ -DDT, O Phosalone, Pesticid Interne val Liste des p Bromophos Dimethoatte Fensultothic suitone, Fet Methacritos	Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive index Pouvoir rotatoire à 20°C - optical rotation Miscibilité à l'éthanol à 70% - miscibility Point d'éclair : SETAFLASH - flashpoint ese pesticides – pesticide analysis : es Organochlorés : Dosage par GC MS détecteu de selon la norme NF V03-110) seticides recherches (Pharmacopée Europeane): Alachior, Ald rane, Chiofrevinghos, Chiopyriphos Authyl, Chi- lambda, Cypermethrine, Dichlofuanide, Dichlorvos, Dicotol (Keth sulfale, Endrine, Fenchlorphos (Rornel), Fenchlorphos-oxon, Ferv yoldhe, Kasolitorbenzene, Hexachlorocyclohexane 6, Mexachlorocyclohexane 6, Hexachlorocyclohexane 6, Hexachlorocyclohexane 6, Mexachlorocyclohexane 6,	Jaune clair Caractéristique, de cinnamald 1,051 1,055 1,609 8 0* 1,9 volumes d'alcool / 1 volume 113,1 *C International and the second of the second International contention of the second International contention of the second Intachioraniscle, Permethrine , anei, Dieldrine, Endosuffan, alerate, Fluvalinate, Heptachlor, rocyclohexane ß, Mirex, Naled, o,p-DDD, o,p-DDE, entachloronaliscle, Permethrine , ene, Tetradifon, Vinclozoline Intachloronaliscle, Permethrine , ene, Tetradifon, Vinclozoline Intachloronaliscle, Permethrine , ener, Tetradifon, Vinclozoline Interchion, Fensibion-oxon, Fentibion-oxon, Settyl, Azinphos Methyl, yriphos Methyl, Diazinon, Dichloros, enitrothion, Reason, Paratoxon and the second Settyl, Azinphos Methyl, yriphos Methyl, Diazinon, Maiathlon, Mecarbam, Direthoate, Paraoxon, Paratoxon	e d'HE Résultats < LMR*

Tableau de résultats 1 : CINNAMOMUM CASSIA OF22426

Pics	Temps de	Constituants	%
	rétention		
1	5,0	ACETONE	0,01
2	6,0	METHANOL	0,04
3	9,5	α-PINENE	0,09
4	11,3	CAMPHENE	0,06
5	13,2	β-PINENE	0,04
6	16,3	α-PHELLANDRENE	0,01
7	18,3	LIMONENE	0,04
8	18,9	β-PHELLANDRENE + 1,8-CINEOLE	0,01
9	21,9	STYRENE	0,16
10	22,7	p-CYMENE	0,06
11	27,1	6-METHYL-5-HEPTEN-2-ONE	0,02
12	35,5	FURFURALDEHYDE	0,02
13	37,2	YLANGENE	0,06
14	37,8	α-COPAENE	0,41
15	39,7	BENZALDEHYDE	0,99
16	42,6	α-cis-BERGAMOTENE	0,02
17	43,0	SESQUITERPENE	0,04
18	43,4	ACETATE DE BORNYLE	0,02
19	43,6	α-trans-BERGAMOTENE	0,05
20	44,0	β-ELEMENE	0,01
21	44,4	TERPINENE-4-OL	0,02
22	44,7	β-CARYOPHYLLENE	0,12
23	45,4	AROMADENDRENE	0,02
24	46,7	p-METHOXY STYRENE	0,03
25	47.7	ACETOPHENONE	0.06

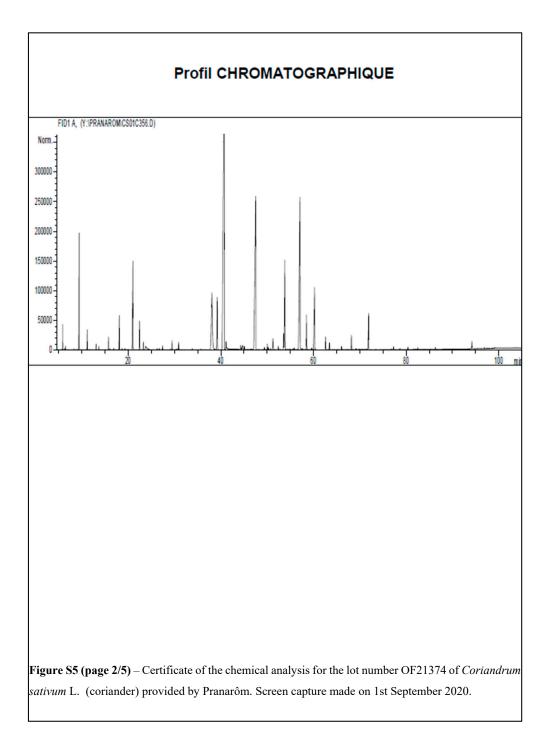
Cinnamomum cassia (L.) J. Presl. (Chinese cinnamon) provided by Pranarôm. Screen capture made

on	1 ct	Septem	her	202	0

31	40.9		0.03
	49,8	α-HUMULENE	
32	50,3	γ-MUUROLENE + BORNEOL	0,13
33	50,5	LEDENE	0,04
34	50,7	β-BISABOLENE	0,10
35	50,8	HYDROXY CINNAMALDEHYDE	0,02
36	52,4	α-MUUROLENE	0,22
37	52,6	SESQUITERPENE	0,01
38	54,2	SESQUITERPENE	0,09
39	54,3	δ-CADINENE	0,20
40	54,6	FARNESENE ISOMERE	0,06
41	55,2	γ-CADINENE	0,09
42	55,7	BENZENE PROPANAL + α-CURCUMENE	0,71
43	56,6	SESQUITERPENE	0,02
44	57,4	SESQUITERPENE	0,02
45	57,5	ACETATE DE 2-PHENYLETHYLE	0,07

Tableau de résultats 2 : CINNAMOMUM CASSIA OF22426

Pics	Temps de	Constituants	%
	rétention		
46	58,4	Trans-ANETHOL	0,03
47	58,9	CALAMENENE	0,05
48	59,3	2-METHOXY PHENOL	0,01
49	59,9	ALCOOL BENZYLIQUE	0,03
50	60,7	COMPOSÉ CINNAMALDEHYDE	0,02
51	62,4	Z-CINNAMALDEHYDE	0,19
52	62,7	ALCOOL PHENYLETHYLIQUE	0,76
53	63,6	α-CALACORENE	0,02
54	63,9	TETRADECANAL	0,04
55	65,7	COMPOSÉ PHENOLIQUE	0,02
56	66,2	2-METHOXY-BENZALDEHYDE	0,46
57	67,7	OXYDE DE CARYOPHYLLENE	0,05
58	69,7	E-NEROLIDOL	0,12
59	70,1	3-PHENYLPROPANOL	0,13
60	70,6	E-CINNAMALDEHYDE	84,96
61	72,3	COMPOSÉ PHENYLETHYLIQUE Mw=164	0,27
62	74,6	SPATHULENOL	0,11
63	75,0	ACETATE DE CINNAMYLE	1,29
64	76,2	EUGENOL	0,03
65	76,4	α-MUUROLOL	0,02
66	76,8	EPOXY SESQUITERPENIQUE	0,02
67	77,6	δ-CADINOL	0,02
68	77,8	SESQUITERPENOL	0,02
69	78,1	EXPOXY SESQUITERPENIQUE	0,02
70	79,0	DITERPENE Mw=272	0,05
71	79,5	CADALENE	0,02
72	79,6	α-CADINOL	0,02
73	79,8	SESQUITERPENOL	0,02
74	80,0	COMPOSÉ AROMATIQUE	0,02
75	81,3	2-METHOXY CINNAMALDEHYDE	0,01
76	81,9	ALCOOL CINNAMIQUE	0.12


Figure S4 (page 4/4) - Certificate of the chemical analysis for the lot number OF22426 of

Cinnamomum cassia (L.) J. Presl. (Chinese cinnamon) provided by Pranarôm. Screen capture made

on 1st September 2020.

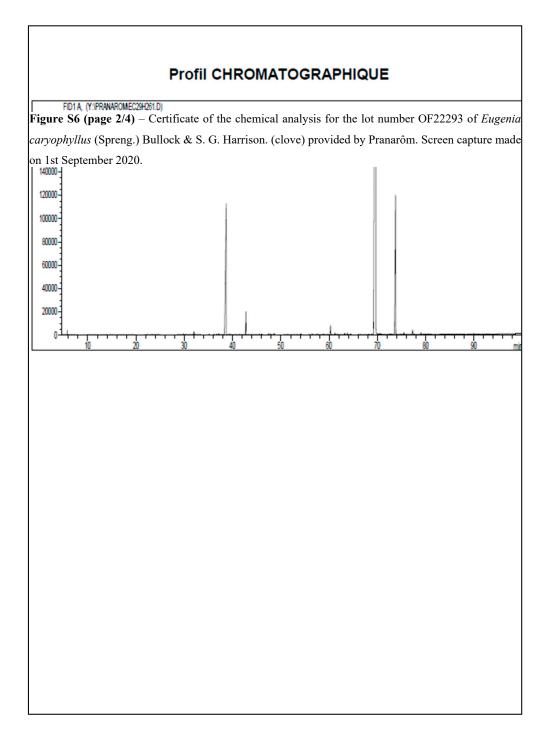
90,9	COUMARINE Mw=146	0,75
92,3	ACETATE D'o-METHOXYCINNAMALDEHYDE	0,05
98,0	BENZOATE DE BENZYLE	0,05
101,8	BENZOATE DE 2-PHENYLETHYLE	0,04
107,8	ACIDE CINNAMIQUE	0,11
	TOTAL	99,94
	Pranarôm Int.	
	98,0 101,8 107,8	98,0 BENZOATE DE BENZYLE 101,8 BENZOATE DE 2-PHENYLETHYLE 107,8 ACIDE CINNAMIQUE

	LYSE - ANALYSI	
Hulle e	ssentielle – Essential of	1
Nom botanique – botanical name: Nom commun – french name: Numéro du lot – lot number : Origine - origin: Partie de la plante – part of the plant: Date de distillation – distillation date Date de péremption – out of date :		
Caractéristiques d'analyse – analys	sis characteristics:	
Gaz vecteur He : 22 psis	0.5-0.25 ≥ : 6 mn à 50 °C -2 °C/mn→250 °C-10mn à 250 °C	2
Caractéristiques physiques – physic	al characteristics:	_
Aspect – physical state Couleur - colour	Liquide limpide Jaune clair]
Odeur - odour	Caractéristique de la plante	1
Densité à 20°C - density	0,860]
Densité à 15°C - density	0,864	-
Indice de réfraction à 20°C - refractive Pouvoir rotatoire à 20°C - optical rotatio		-
Miscibilité à l'éthanol à 75% - miscibility	1,3 volumes d'alcool / 1 volume d'HE	1
Point d'éclair : SETAFLASH - flashpoint		1
Interne validée selon la norme NF V03-110) Liste des pesticides recherches (Pharmacopée Methyl, Chiordane, Chiorfenvinghos, Chioropytigho Cyhalothrine lambda, Cypermethrine, Dichlofluanic Endosultan sulfate, Endrine, Fenchlorphos (Ronne Heotachlor eoxide, Hexachliorobenzene, Hexachli	e par GC MS détecteur XSD (methode multirés Européenne): Alachior, Aldrine, Bromophos Ethyl, Brom s, Chicryviphos Methyl, Chiorthal Dimethyl, Cynuthrine, te, Dichiorvos, Dicofol (Keithane), Dieldrine, Endosulfan, i), Fenchlorphos-oxon, Fenvalerate, Fluvalinate, Heptach	nophos < LMR*
Phosalone, Procymidone, Profenophos, Prothiofos	, Quintozene, S421, Tecnazene, Tetraditon, Vinciozoline of the chemical analysis for the	Résidus autorisée
55 (page 1/5) – Certificate (of the chemical analysis for the	for number or 2

Tableau de résultats 1 : CORIANDRUM SATIVUM OF21374

Pics	Temps de	Constituants	%
	rétention		10
1	4,6	ACETONE	0,02
2	5,7	METHANOL	0,01
3	5,8	NONANE	0,39
4	6,2	2-METHYLBUTANAL	0,01
5	6,3	ISOVALERALDEHYDE	0,03
6	6,4	ETHANOL	0,07
7	6,8	1-NONENE	0,01
8	7,0	2-ETHYL FURANE	0,01
9	8,3	DECANE	0,03
10	8,7	2-METHYLBUTYRATE DE METHYLE	0,01
11	8,8	TRICYCLENE	0,02
12	9,3	α-PINENE	3,28
13	9,4	α-THUYENE	0,01
14	11,1	CAMPHENE	0,55
15	11,7	HEXANAL	0,01
16	12,3	UNDECANE	0,01
17	13,0	β-PINENE	0,17
18	13,6	SABINENE	0,10
19	15,1	Δ3-CARENE	0,01
20	15,7	β-MYRCENE	0,36
21	16,0	α-PHELLANDRENE	0,03
22	16,9	α-TERPINENE	0,04
23	17,2	HEPTANAL	0,01
24	18,0	LIMONENE	1,09
25	18,7	β-PHELLANDRENE	0,04
26	18,8	1,8-CINEOLE	0,02
27	19,3	2-HEXANAL	0,04
28	19,7	2-PENTYLFURANE	0,01
29	20,0	Cis-β-OCIMENE	0,01
30	21,0	y-TERPINENE	4,14
31	21,1	Trans-8-OCIMENE	0,05
32	22,4	p-CYMENE	0,90
33	23,3	TERPINOLENE	0,25
34	23,7	OCTANAL	0,65
35	25,2	ACETATE DE 4-HEXEN-1-OL	0,01
36	26,2	2-HEXYLFURANE	0,04
37	26,6	6-METHYL-5-HEPTEN-2-ONE	0,06
38	27,4	1-HEXANOL	0,14
39	29,1	ANGELATE DE METHALLYLE	0,02
40	29,4	3-HEXEN-1-OL	0,31
41	30,4	2-NONANONE	0,04
42	30,7	NONANAL	0,05
43	30,9	2-HEXEN-1-OL	0,32
44	32,0	PENTYL BENZENE	0,01
45	33,8	α,p-DIMETHYL STYRENE + Cis-OXYDE DE LINALOL	0,04

Figure S5 (page 3/5) – Certificate of the chemical analysis for the lot number OF21374 of *Coriandrum sativum* L. (coriander) provided by Pranarôm. Screen capture made on 1st September 2020.


Figure S5 (page 4/5) – Certificate of the chemical analysis for the lot number OF21374 of *Coriandrum sativum* L. (coriander) provided by Pranarôm. Screen capture made on 1st September 2020.

Dics Temps de rétention Constituants % 46 34,3 6-METHYL-S-HEPTEN-2-OL 0.01 47 35,1 Trans-THUYANOL 0.01 48 35,7 Trans-THUYANOL 0.01 48 35,7 Trans-THUYANOL 0.03 50 36,4 CITRONELLAL 0.03 51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-OL 0,20 58 44,4 P-CARVONE 0,07 59 44,7 UNDECANAL 0,42 60 45,7 CIE-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 CIE-p-MENTH-2-EN-1-OL 0,03 64 46,5 MYRTENAL 0,0			OF21374	
rétention λ0 46 34,3 6-METHYL-S-HEPTEN-2-OL 0,01 47 35,1 Trans-THUYANOL 0,01 48 35,7 Trans-OXYDE DE LINALOL 0,03 49 35,8 ACETATE D'OCTYLE 0,01 50 36,4 CITRONELLAL 0,03 51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,272 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-0L 0,00 58 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 59 44,7 UNDECANAL 0,03 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 64	Pics	Temps de	Constituants	0/
47 35,1 Trans-THUVANOL 0,01 48 35,7 Trans-OXYDE DE LINALOL 0,03 49 35,8 ACETATE D'OCTYLE 0,01 50 36,4 CITRONELLAL 0,03 51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE4-OL 0,20 58 44,4 §-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,5 MYRTENAL 0,06 64 46,5 MYRTENAL 0,06		rétention	Constitutints	/0
48 35,7 Trans-OXYDE DE LINALOL 0,03 49 35,8 ACETATE D'OCTYLE 0,01 50 36,4 CITRONELIAL 0,03 51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-OL 0,20 58 44,4 β-CARYOPHYLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 47,5 2-DECENAL 615,09 66 47,6 1-NONANOL 0,01	46	34,3	6-METHYL-5-HEPTEN-2-OL	0,01
49 35,8 ACETATE D'OCTYLE 0,01 50 36,4 CITRONELLAL 0,03 51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 I-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-0L 0,20 58 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-0L 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,5 MYRTENAL 0,06 64 46,5 MYRTENAL 0,016 65 47,6 1-NONANOL 0,01 66 47,6 1-NONANOL 0,01 68 48,2 ISOBORNEOL 0,02 <td< td=""><td>47</td><td>35,1</td><td>Trans-THUYANOL</td><td>0,01</td></td<>	47	35,1	Trans-THUYANOL	0,01
50 36,4 CITRONELLAL 0,03 51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4.0L 0,20 58 44,4 \$-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHETHYLE 0,03 63 46,3 Cis-\$-TERPINEOL 0,01 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,01 67 47,9 ACETATE DE CITRONELLYLE 0,01 <td>48</td> <td>35,7</td> <td>Trans-OXYDE DE LINALOL</td> <td>0,03</td>	48	35,7	Trans-OXYDE DE LINALOL	0,03
51 38,1 DECANAL 6,43 52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINEE-4-OL 0,20 58 44,4 β-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,01 67 49,9 Δ-TERPINEOL 0,02 68 48,2 ISOBORNEOL 0,02		35,8	ACETATE D'OCTYLE	0,01
52 39,2 CAMPHRE 2,40 53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-OL 0,020 58 44,4 β-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,01 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 </td <td>50</td> <td>36,4</td> <td>CITRONELLAL</td> <td>0,03</td>	50	36,4	CITRONELLAL	0,03
53 40,7 LINALOL 32,42 54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-OL 0,20 58 44,4 β-CARYOPHYLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-g-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,6 1-NONANOL 0,10 66 47,6 1-NONANOL 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 5-TERPINEOL 0,01 70 49,1 A-CETATE DE MYRTENYLE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,	51	38,1	DECANAL	6,43
54 41,0 Cis-THUYANOL 0,10 55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-OL 0,20 58 44,4 β-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,01 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE	52	39,2	CAMPHRE	2,40
55 41,1 1-OCTANOL 0,72 56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE4-OL 0,20 58 44,4 β-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-g-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,01 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 5-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE D				
56 42,5 PINOCARVONE 0,07 57 44,3 TERPINENE-4-OL 0,20 58 44,4 β-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-p-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,01 74 50,2 BORNEOL				
57 44,3 TERPINENE-4-OL 0,20 58 44,4 β-CARYOPHYLLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 5-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE				
58 44,4 β-CARYOPHYLENE 0,07 59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,10 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,03 75 50,6 FORMI				
59 44,7 UNDECANAL 0,42 60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-fTERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,01 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 ô-TERPINEOL 0,01 70 49,1 α -HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α -TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 <				
60 45,1 ALCOOL CYCLOALKYL 0,17 61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 ô-TERPINEOL 0,01 70 49,1 ACHUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,10 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α -TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 <t< td=""><td></td><td></td><td></td><td>-1</td></t<>				-1
61 45,7 Cis-p-MENTH-2-EN-1-OL 0,03 62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 <td< td=""><td></td><td></td><td></td><td></td></td<>				
62 45,9 BENZOATE DE METHYLE 0,03 63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,01 80 52,6 OXYOPE DE LINALOL PY				
63 46,3 Cis-β-TERPINEOL 0,03 64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,09 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,067 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,01 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE				
64 46,5 MYRTENAL 0,06 65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 5-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,10 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,01 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,01 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,03 81 53,5 ACETATE DE GERANYLE 0,03 82 53,5 ACETATE D				
65 47,5 2-DECENAL 15,09 66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 ô-TERPINEOL 0,01 70 49,1 α -HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α -TERPINEOL 0,19 74 50,2 BORNEOL 0,05 76 51,2 DODECANAL 0,05 76 51,2 DODECANAL 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXPUDE DE LINALOL PYRANIQUE 0,03 81 53,5 ACETATE DE GERANYLE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 82 53,5 <				
66 47,6 1-NONANOL 0,10 67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,99 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,01 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,03 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 82 53,5 A				
67 47,9 ACETATE DE CITRONELLYLE 0,01 68 48,2 ISOBORNEOL 0,02 69 48,9 5-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4				
68 48,2 ISOBORNEOL 0,02 69 48,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,01 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 S				
69 40,9 δ-TERPINEOL 0,01 70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,10 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 <t< td=""><td></td><td></td><td></td><td></td></t<>				
70 49,1 α-HUMULENE + LACTONE LAVANDE 0,01 71 49,4 NERAL + FORMIATE DE DECYLE 0,10 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85				
71 49,4 NERAL + FORMIATE DE DECYLE 0,10 72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,02 88 55,5 MYRTENOL 0,04				
72 49,7 ACETATE DE MYRTENYLE 0,01 73 50,0 α-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,03 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,02 88 55,5 MYRTENOL 0,04				
73 50,0 a-TERPINEOL 0,19 74 50,2 BORNEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
74 50,1 60 NEOL 60,09 75 50,6 FORMEOL 0,09 75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
75 50,6 FORMIATE DE GERANYLE 0,05 76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
76 51,2 DODECANAL 0,67 77 51,3 VERBENONE 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,6 OXYDE DE LINALOL PYRANIQUE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
77 51,3 VERBENONE 0,05 78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
78 51,7 ACETATE DE NERYLE 0,02 79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
79 52,4 GERANIAL 0,14 80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
80 52,6 OXYDE DE LINALOL PYRANIQUE 0,02 81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
81 52,8 CARVONE 0,03 82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
82 53,5 ACETATE DE GERANYLE 0,55 83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SEQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
83 53,8 1-DECANOL + 2-UNDECENAL 4,27 84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
84 54,1 CITRONELLOL 0,03 85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04	83	53.8		
85 54,4 SESQUITERPENE 0,02 86 54,6 PROPIONATE DE NERYLE 0,02 87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04	85			0.02
87 55,0 SALICYLATE DE METHYLE 0,05 88 55,5 MYRTENOL 0,04				
88 55,5 MYRTENOL 0,04				
	88			0.04
	89			
90 57,1 2-DECEN-1-OL 12,35	90			

Figure S5 (page 5/5) – Certificate of the chemical analysis for the lot number OF21374 of *Coriandrum sativum* L. (coriander) provided by Pranarôm. Screen capture made on 1st September 2020.

rétention Constituents 91 58,2 ALCOOL ALIPHATIQUE 92 57,6 ALDEHYDE TERPENIQUE 93 58,0 Trans-CARVEOL 94 58,4 GERANIOL 95 58,5 p-CYMENE-8-OL 96 59,6 ALCOOL ALIPHATIQUE 97 60,2 2-DODECENAL 98 60,4 DODECADIENAL 99 62,6 2-DODECENAL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECEN-L 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE INSATURÉ 111 <t< th=""><th>%</th><th>Constituants</th><th>Temps de</th><th>Pics</th></t<>	%	Constituants	Temps de	Pics
92 57,6 ALDEHYDE TERPENIQUE 93 58,0 Trans-CARVEOL 94 58,4 GERANIOL 95 58,5 p-CYMENE-8-OL 96 59,6 ALCOOL ALIPHATIQUE 97 60,2 2-DODECENAL 98 60,4 DODECADIENAL 99 62,6 2-DODECEN-1-OL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 <td< td=""><td></td><td></td><td></td><td></td></td<>				
93 58,0 Trans-CARVEOL 94 58,4 GERANIOL 95 58,5 p-CYMENE-8-OL 96 59,6 ALCOOL ALIPHATIQUE 97 60,2 2-DODECENAL 98 60,4 DODECADIENAL 99 62,6 2-DODECENAL 99 62,6 2-DODECANAL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113	0,06			
94 58,4 GERANIOL 95 58,5 p-CYMENE-8-OL 96 96 59,6 ALCOOL ALIPHATIQUE 97 97 60,2 2-DODECENAL 98 98 60,4 DODECANL 99 99 62,6 2-DODECENAL 99 100 63,4 PENTADECANAL 101 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 102 65,2 1-DODECANOL 103 66,0 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 17,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE INSATURÉ 111 80,4 ACIDE CAPRIQUE 111 80,4 ACIDE CAPRIQUE 108 114	0,05			
95 58,5 p-CYMENE-8-OL 96 59,6 ALCOOL ALIPHATIQUE 97 60,2 2-DODECENAL 98 60,4 DODECADIENAL 99 62,6 2-DODECEN-LOL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 <td>1,24</td> <td></td> <td></td> <td></td>	1,24			
96 59,6 ALCOOL ALIPHATIQUE 97 60,2 2-DODECENAL 98 60,4 DODECADIENAL 99 62,6 2-DODECEN-1-OL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 7.6 ALDEHYDE ALIPHATIQUE INSATURÉ 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE Tans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ	0.02			
97 60,2 2-DODECENAL 98 60,4 DODECADIENAL 99 99 62,6 2-DODECEN-1-OL 100 100 63,4 PENTADECANAL 101 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 104 107 69,8 ACIDE CAPRYLIQUE 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 112 110 78,6 ALDEHYDE ALIPHATIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 111 80,4 ACIDE trans-2-DECENOÏQUE 114 86,3 ACIDE Trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE MW=194 116 96,9 COMPOSE AROMATIQUE	0,02			
98 60,4 DODECADIENAL 99 62,6 2-DODECEN-1-OL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MY	3,54			
99 62,6 2-DODECEN-1-OL 100 63,4 PENTADECANAL 101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACI	0.03			
101 63,5 2,6-DIMETHYL-3,7-OCTADIENE-2,6-DIOL 102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE INSATURÉ 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1	0,45			
102 65,2 1-DODECANOL 103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSE AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQU	0,30	PENTADECANAL	63,4	100
103 66,0 2-TRIDECENAL 104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSE AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 118 04 el 'analyse – date of the analysis : Janvier 2015,	0,03			
104 67,3 OXYDE DE CARYOPHYLLENE 105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Pranarôm Int. Date de l'analyse – date of the analysis : Janvier 2015,	0,02			
105 68,2 Trans-2-TETRADECEN-1-OL 106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,13			
106 69,1 Cis-NEROLIDOL 107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C.Schulze	0,01			
107 69,8 ACIDE CAPRYLIQUE 108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 118 Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,50			
108 71,9 TETRADECENAL 109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSE AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,06			
109 77,3 ALDEHYDE ALIPHATIQUE INSATURÉ 110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSE AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	1.81			
110 78,6 ALDEHYDE ALIPHATIQUE 111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,10			
111 80,4 ACIDE CAPRIQUE 112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0.04			
112 81,7 COMPOSÉ PHENYLIQUE Mw=238 113 82,5 ALDEHYDE ALIPHATIQUE INSATURÉ 114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE 117 99,1 ACIDE MYRISTIQUE 117 Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,10			
114 86,3 ACIDE trans-2-DECENOÏQUE 115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Drate de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,02			
115 94,2 SEDANOLIDE Mw=194 116 96,9 COMPOSE AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,08		82,5	113
116 96,9 COMPOSÉ AROMATIQUE 117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,07			
117 99,1 ACIDE MYRISTIQUE TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,32	SEDANOLIDE Mw=194		
TOTAL Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,04	COMPOSE AROMATIQUE		
Date de l'analyse – date of the analysis : Janvier 2015, Pranarôm Int. C. Schulze	0,04		99,1	117
Pranarôm Int. C. Schulze	99,84		de l'analure – date	Data
C. Schulze		of the analysis . Janvier 2015,	de l'analyse – date	Date
		Pranarôm Int.		
Contrôle qualité		C. Schulze		
		Contrôle qualité		
		•		

<i>phyllus</i> (Spreng.) Bullock & S. G. I	Harrison. (clove) provided by Pranarôm	. Screen capture
September 2020.		
	YSE – ANALYSIS S	HEET
	sentielle – Essential oil	
Nom botanique – botanical name: E	ugenia caryophyllus	
	LOUS DE GIROFLE	
	F22293	
Origine - origin : P	RANARÔM - INDONESIE	
Partie de la plante - part of the plant: B	OUTON FLORAL	
Date de distillation – distillation date : 0		
Date de péremption – out of date : 0	4/2021	
Connectivitation of disarches and being	havaatoriatiaa	
<u> Caractéristiques d'analyse – analysis c</u>	naracteristics:	
CPG - SM HEWLETT PACKARI		
Colonne : HP INNOWAX 60-0.5-(Programmation de température : 6	0.25 mn à 50°C -2°C/mn→250°C-20mn à 250°C	
Gaz vecteur He : 22 psis	and a 50° C +2 Crant-7250° C+20mm a 250° C	
Constitution and and an an about of	-have standard as	
<u> Caractéristiques physiques – physical</u>	<u>characteristics :</u>	
Aspect – physical state	Liquide limpide	
Couleur - colour	Jaune d'or clair	
Ddeur - odour Densité à 20°C - density	Caractéristique de l'eugénol 1.055	
Densité à 15°C - density	1,059	
ndice de réfraction à 20°C - refractive index		
Pouvoir rotatoire à 20°C - optical rotation	- 0,5 °	
Miscibilité à l'éthanol à 70% - miscibility Point d'éclair : SETAFLASH - flashpoint	1 volume d'alcool / 1 volume d'HE 103,3 °C	
one decian : OETATEROT - hastpoint	100,0 0	
Analyses pesticides – pesticide analysis :		
	ar GC MS détecteur XSD (méthode multirésidus	Résultats
nterne validée selon la norme NF V03-110) Liste des pesticides recherchés (Pharmacopée Euro	opéenne): Alachior, Aldrine, Bromophos Ethyl, Bromophos	
Methyl, Chlordane, Chlorienvinphos, Chlorpyriphos, Cł Cyhalothrine Iambda, Cypermethrine, Dichloriuanide, D	lorpyriphos Methyl, Chiorthal Dimethyl, Cyfluthrine,	< LMR*
Endosulfan sulfate, Endrine, Fenchlorphos (Ronnel), Fe	enchlorphos-oxon, Fenvalerate, Fluvalinate, Heptachlor,	< LIMIX
Heptachior epoxide, Hexachiorobenzene, Hexachiorocy Hexachiorocyclohexane 5, Hexachiorocyclohexane 5, L	clohexane α, Hexachlorocyclohexane β, Indane, Methoxychlore, Mirex, Naled, o,p'-DDD , o,p'-DDE,	
o,p'-DDT, Oxychlordane, p,p'-DDD, p,p'-DDE, p,p'-DDT	, Pentachioroaniline, Pentachioroanisole, Permethrine ,	* Limite Maximale de
Phosalone, Procymidone, Profenophos, Prothiofos, Qui	Intozene, S421, Techazene, Tetradifon, Vinciozoline	Résidus autorisée
	ge par GC MS détecteur FPD (méthode multirésidus	Résultats
interne validée selon la norme NF V03-110) Liste des pesticides recherchés (Pharmacopée Euro	opéenne): Acephate, Azinphos Ethyl, Azinphos Méthyl,	
Bromophos Ethyl, Bromophos Methyl, Chlorlenvinphos,	Chlorpyriphos, Chlorpyriphos Methyl, Diazinon, Dichlorvos,	<1 MPt
	, Fenchlörphos-oxon, Fenitrothion, Fensulfothion (Dasanit), ifothion-sulfone, Fenthion, Fenthion-oxon, Fenthion-oxon-	< LMR*
	nthion-sulfoxyde, Fonofos, Malaoxon, Malathion, Mecarbam,	
sulfone, Fenthion-oxon-sulfoxyde, Fenthion-sulfone, Fe		1 I
sulfone, Fenthion-oxon-sulfoxyde, Fenthion-sulfone, Fe Methacrifos, Methamidophos (Monitor), Methidathion, N	Phosmet, Pirimiphos Ethyl, Pirimiphos Méthyl, Profenophos,	* Limite Maximale de

Tableau de résultats 1: EUGENIA CARYOPHYLLUS OF22293

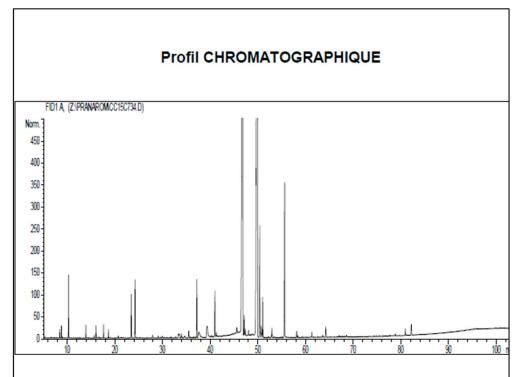
Pics	Temps de rétention	Constituants	%
1	5,8	ETHANOL	0,05
2	22,2	6-METHYL-5-HEPTEN-2-ONE	0,01
3	29.9	FURFURAL	0.02

Figure S6 (page 3/4) – Certificate of the chemical analysis for the lot number OF22293 of Eugenia

caryophyllus (Spreng.) Bullock & S. G. Harrison. (clove) provided by Pranarôm. Screen capture made on 1st September 2020.

9	37,1	ISOCARYOPHYLLENE ISOMERE	0,04
10	38,2	β-ELEMENE	0,01
11	38,7	β-CARYOPHYLLENE	9,06
12	39,4	SESQUITERPENE	0,02
13	40,5	CADINA-1,5-DIENE	0,01
14	41,5	SESQUITERPENE	0,01
15	42,8	α-HUMULENE	0,70
16	43,9	y-MUUROLENE	0,01
17	45,6	FARNESENE ISOMERE	0,01
18	46,0	α-MUUROLENE	0,01
19	46,2	8-SELINENE	0,01
20	47,5	α-FARNESENE	0,03
21	47,9	δ-CADINENE	0.01
22	48.0	γ-CADINENE	0.01
23	48,6	SALICYLATE DE METHYLE	0,03
24	51,3	EPOXYDE SESQUITERPENIQUE	0.02
25	54,2	ALCOOL BENZYLIQUE	0,01
26	56,6	α-CALACORENE	0.03
27	57.7	CETONE AROMATIQUE Mw=164	0.03
28	58,8	EPOXYDE SESQUITERPENIQUE	0.02
29	59,0	EPOXYDE SESQUITERPENIQUE	0.01
30	59,8	OXYDE D'ISOCARYOPHYLLENE	0.02
31	60,3	OXYDE DE CARYOPHYLLENE	0.31
32	61,2	EPOXYDE SESQUITERPENIQUE	0.05
33	61,7	METHYLEUGENOL	0,02
34	62,0	EPOXYDE SESQUITERPENIQUE	0,01
35	63,2	EPOXY-6,7-HUMULENE	0,05
36	63,8	CARYOPHYLLENOL	0,06
37	66,1	METHOXY PROPYL PHENOL	0,01
38	66,5	COMPOSÉ AROMATIQUE	0,01
39	68,2	COMPOSÉ OXYGÉNÉ	0,02
40	68,9	EPOXYDE SESQUITERPENIQUE	0,02
41	69,7	EUGENOL	82,30
42	70,5	SESQUITERPENOL	0,02
43	72,6	COMPOSÉ PHENOLIQUE	0,01
44	73,8	ACETATE D'EUGENYLE	6,40
45	73,9	COMPOSE Mw=206	0,01

Tableau de résultats 2 : EUGENIA CARYOPHYLLUS


() H	722	20	2
U1	144	29	5

Pics	Temps de rétention	Constituants	%
46	74,9	SESQUITERPENOL	0,02
47	75,5	CARYOPHYLLA-3,7-DIEN-6-OL	0,06
48	77,2	CHAVICOL	0,10
49	77,3	EPOXYDE SESQUITERPENIQUE	0,09
50	77,6	ISOEUGENOL	0,01
51	77,7	EPOXYDE SESQUITERPENIQUE	0,01
52	79,0	SESQUITERPENOL	0,06
53	87,0	VANILLINE	0,01
54	89,9	BENZOATE DE BENZYLE	0,02
		TOTAL	99,99

Figure S6 (page 4/4) – Certificate of the chemical analysis for the lot number OF22293 of Eugenia

caryophyllus (Spreng.) Bullock & S. G. Harrison. (clove) provided by Pranarôm. Screen capture made on 1st September 2020.

PRANARŌM (international >	P	
FICHE D'ANALYSE Huile essentielle	<mark>E – ANALYSIS SH</mark> e – Essential oil	<u>IEET</u>
Nom commun – french name : LEMONO Numéro du lot – lot number : OF20407	OM - GUATEMALA	
Caractéristiques d'analyse - analysis characté	eristics:	
CPG - SM HEWLETT PACKARD Colonne : HP INNOWAX 60-0.5-0.25		
Programmation de température : 6 mn à 50°		
re S7 (page 1/5) – Certificate of the ch	nemical analysis for the lot mu	nber OF2040
bopogon citratus (DC.) Staph. (lemongrass)	provided by Pranarôm. Screen ca	apture made or
	r- ,	r
ember 2020.	Jaune clair	
Odeur - odour	Citronnée caractéristique	
Densité à 20°C - density	0.896	
Densité à 15°C – density	0.900	
Indice de réfraction à 20°C - refractive index Pouvoir rotatoire à 20°C – optical rotation	- 0.5 ° 1.484 4	
Miscibilité à l'éthanol à 75% - miscibility	1,484 4 1,2 volumes d'alcool/ 1 volume d'HE	
Point d'éclair : SETAFLASH – flashpoint	85.6	·
Analyses pesticides – pesticide analysis ; Pesticides Organochlorés : Dosage par GC MS Interne validee selon la norme NF V03-110) Liste des pesticides recherchés (Pharmacopée Européenne); Methyl, Chiordane, Chiorfenvlinphos, Chiorpyriphos, Chiorypipho Cynalotinne lambda, Cypermethrine, Dichloftunaide, Dichlorivos, I Endosultan sultate, Endrine, Fenchlorphos (Ronnel), Fenchlorpho Heotachlore eoxide. Hexachloropezne. Hexachloropediotexane	Alachior, Aldrine, Bromophos Ethyl, Bromophos S Methyl, Chiorthal Dimethyl, Cyfluthrine, Dicofol (Kelthane), Dieldrine, Endosulfan, s-xxon, Fenvalerate, Filuvainate, Heptachior,	<u>Résultats</u> < LMR*
Pesticides Organochlorés : Dosage par GC M3 Interne validee selon la norme NF V03-110) Liste des pesticides recherchés (Pharmacopée Européenne): Methyl, Chiordane, Chiorfenvinphos, Chioryriphos, Chioryvipho Cyhalottine lambda, Cypermethrine, Dichloftuande, Dichlorivos, I	Alachior, Aldrine, Bromophos Ethyl, Bromophos s Methyl, Chlorthal Dimethyl, Cyfluthrine, Dicofol (Keithane), Dieldrine, Endosulfan, s-oxon, Feruvalerate, Fluvanilnate, Heptachior, a, Hexachiorocyclohexane β, thoxychiore, Mirex, Naled, o,p-DDD, o,p-DDE, oroaniline, Pentachioroaniscie, Permethrine,	
Pesticides Organochlorés : Dosage par GC M3 Interne validée selon la norme NF V03-110) Liste des pesticidées recherchés (Pharmacopée Europeenne): Methyl, Chiordane, Chiordenvinphos, Chiorgytiphos, Chio	Alachior, Aldrine, Bromophos Ethyl, Bromophos s Methyl, Chiorthal Dimethyl, Cyfluthrine, Dicofol (Keithane), Dieidrine, Endosulfan, s-oxon, Fenvalerate, Fluvanilate, Heptachior, a, Hexachiorocyciohexane β, thosychiore, Mirex, Naled, o,gr-DDD, o,gr-DDE, trosychiore, Mirex, Naled, o,gr-DDD, o,gr-DDE, sta21, Tecnazene, Tetraditon, Vinciozoline C MS détecteur FPD (méthode multiresidus Acephate, Azinphos Ethyl, Azinphos Méthyl, Iphos, Chiorgyriphos Methyl, Diazinon, Dichlorvos, thos-oxon, Fenitrothion, Fensulfohion (Dasanit), itone, Fenitrothion, Fensulfohion (Dasanit), itone, Fenitrothion, S, Malabiton, Mearatbarn,	< LMR*

Figure S7 (page 2/5) – Certificate of the chemical analysis for the lot number OF20407 of *Cymbopogon citratus* (DC.) Staph. (lemongrass) provided by Pranarôm. Screen capture made on 1st September 2020.

Tableau de résultats 1 : CYMBOPOGON CITRATUS LOT N° OF20407

Pics	Temps de	Constituants	%
	rétention		/0
1	4,7	ACETONE	0,02
2	5,4	ACETATE D'ETHYLE	0,01
3	6,1	ISOVALERALDEHYDE	0,01
4	6,2	ETHANOL	0,01
5	7,7	3,3,5-TRIMETHYL-1,4-HEXADIENE	0,01
6	8,4	TRICYCLENE	0,14
7	8,8	α-ΡΙΝΕΝΕ	0,22
8	8,9	α-THUYENE	0,03
9	9,1	2,6-DIMETHYL-2,4-HEPTADIENE	0,01
10	10,5	CAMPHENE	1,17
11	11,0	HEXANAL	0,01
12	12,3	β-PINENE	0,01
13	12,8	SABINENE	0,01
14	13,0	4-HEPTANONE	0,02
15	14,3	∆3-CARENE	0,01
16	14,8	β-MYRCENE	0,10
17	15,1	α-PHELLANDRENE	0,01
18	15,9	α-TERPINENE + HEPTANAL	0,01
19	16,6	2,3-DEHYDRO-1,8-CINEOLE	0,04
20	16,9	ALCOOL ISOAMYLIQUE	0,04
21	17,1	LIMONENE	1,84
22	16,6	β-PHELLANDRENE	0,03
23	17,7	1,8-CINEOLE	0,01
24	17,9	MENTHATRIENE ISOMERE + 2-HEXENAL	0,01
25	18,9	Cis-β-OCIMENE	0,30
26	19,8	γ-TERPINENE	0,01
27	20,0	Trans-β-OCIMENE	0,19
28	21.2	p-CYMENE	0.01

Figure S7 (page 3/5) – Certificate of the chemical analysis for the lot number OF20407 of

Cymbopogon citratus (DC.) Staph. (lemongrass) provided by Pranarôm. Screen capture made on 1st September 2020.

34	25,5	6-METHYL-5-HEPTEN-2-ONE	1,05
35	25,6	Trans-3-HEXEN-1-OL	0,03
36	26,1	1-HEXANOL	0,01
37	26,7	Cis-OXYDE DE ROSE	0,01
38	26,7	NONANAL	0,02
39	27,9	ALLO-OCIMENE	0,01
40	28,1	Cis-3-HEXEN-1-OL	0,01
41	29,4	TRIMETHYL ANISALDEHYDE	0,11
42	30,6	PERILLENE	0,06
43	30,8	ALDEHYDE FURANIQUE	0,01
44	31,1	ACETATE DE 7-METHYL-4-OCTYLE	0,03
45	31,3	Epi-PHOTOCITRAL ISOMERE	0,13
46	31,9	ALDEHYDE TERPENIQUE	0,02
	- 11-		-1-

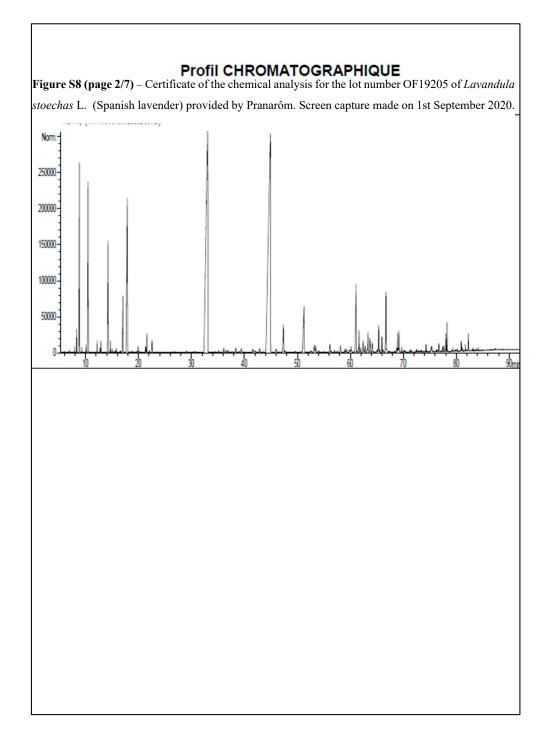
Tableau de résultats 2 : CYMBOPOGON CITRATUS LOT N° OF20407

Pics	Temps de	Constituants	%
	rétention	Constitution	/0
47	32,4	Cis-OXYDE DE LINALOL	0,02
48	33,3	6-METHYL-5-HEPTEN-2-OL	0,02
49	33,9	α-CUBEBENE	0,02
50	34,0	Trans-THUYANOL	0,01
51	34,3	Trans-OXYDE DE LINALOL	0,02
52	34,6	EPOXY-4,8-TERPINOLENE	0,03
53	35,0	CITRONELLAL	0,22
54	35,4	ISOGERANIAL	0,13
55	35,6	YLANGENE + CYCLOSATIVENE	0,19
56	36,0	α-CAMPHOLENE ALDEHYDE	0,01
57	36,3	α-COPAENE	0,02
58	36,5	DECANAL	0,16
59	37,0	ISONERAL	0,28
60	37,5	BENZALDEHYDE	0,03
61	37,6	α-BOURBONENE	0,02
62	37,8	β-BOURBONENE	0,02
63	38,0	4-UNDECANONE	0,04
64	38,6	SESQUITERPENE	0,07
65	38,9	LINALOL	1,05
66	39,2	PHOTOCITRAL A	0,82
67	39,8	SESQUITERPENE	0,06
68	40,2	Trans-p-MENTH-2-EN-1-OL	0,05
69	40,8	PHOTOCITRAL B	1,17
70	41,5	ε-CADINENE	0,23
71	42,0	SESQUITERPENE	0,04
72	42,4	β-ELEMENE	0,15
73	42,6	COMPOSÉ Mw=166	0,16
74	43,0	β-CARYOPHYLLENE + TERPINENE-4-OL	1,42
75	43,5	6,9-GUAIADIENE	0,03
76	44,1	BENZOATE DE METHYLE	0,02
77	44,2	SESQUITERPENE	0,02
78	46,5	ACETATE DE CITRONELLYLE	0,06
79	46,7	E-β-FARNESENE	0,03
80	47,0	SESQUITERPENE	0,03

Figure S7 (page 4/5) - Certificate of the chemical analysis for the lot number OF20407 of

Cymbopogon citratus (DC.) Staph. (lemongrass) provided by Pranarôm. Screen capture made on 1st September 2020.

86	49,4	FORMIATE DE GERANYLE	0,12
87	50,1	GERMACRENE D	0,16
88	50,6	β-BISABOLENE	0,08
89	51,5	GERANIAL	40,15
90	51,7	ISOPIPERITENOL	0,02
91	52,1	ACETATE DE GERANYLE	3,33
92	52,3	CITRONELLOL	0,11


	LOT N° OF20407		
%	Constituants	Temps de rétention	Pics
0.34		52.5	93
- 1 -	δ-CADINENE		93
1,1	γ-CADINENE	52,9	94
0,0	CUMINAL CADINA-1.4-DIENE	53,2	95
0,04	NEROL	53,4 54,2	96
0,2	Cis-ISOGERANIOL	54,2	97
			90
0,0		54,8	
0,0	Trans-ISOGERANIOL	55,1	100
0,03	CUPARENE	56,4	101
6,0	GERANIOL	57,0	102
0,03	CALAMENENE	57,2	103
0,0	COMPOSÉ FURANIQUE	58,0	104
0,14	BUTYRATE DE GERANYLE	60,0	105
0,00	EPI-CUBEBOL	60,1	106
0,03	α-CALACORENE + PHYTADIENE ISOMERE	62,0	107
0,0	OXYDE D'HUMULENE	62,3	108
0,17	CUBEBOL	62,9	109
0,0	CYCLODODECENE	63,2	110
0,0	SESQUITERPENOL	64,1	111
0,0	CETONE CYCLOTERPENIQUE	64,5	112
0,0	OXYDE D'ISOCARYOPHYLLENE	65,2	113
0,3	OXYDE DE CARYOPHYLLENE	65,7	114
0,0	EPOXYDE SESQUITERPENIQUE	66,0	115
0,0	EPOXY-6,7-HUMULENE	66,8	116
0,04	ACIDE CAPRYLIQUE	67,6	117
0,0	CETONE TERPENIQUE	68,1	118
0,0	SESQUITERPENOL	68,7	119
0,0	CARYOPHYLLENOL	68,8	120
0,0	Epi-CUBENOL	69,1	121
0,0	CUBENOL	69,6	122
0,04	ELEMOL	69,9	123
0,0	ESTER GERANIQUE	70,4	124
0,0	COMPOSE ALIPHATIQUE	72,3	125
0,0	TRIMETHYL PENTADECANONE	73,6	126
0,0	SESQUITERPENOL	75,0	127
0,0	SESQUITERPENOL	76,7	128
0,0	ACETATE D'EUGENYLE	78,0	129
0,0	ACIDE CAPRIQUE	78,6	130
0,0	ACIDE NERIQUE	79,5	131
0,2	ACIDE GERANIQUE	81,6	132
0,3	ISOEUGENOL	82,3	133
0.0	EPOXYDE SESQUITERPENIQUE Mw=220	84.2	134
0.0	COMPOSÉ AROMATIQUE Mw=286	96.9	135
0.0	COMPOSÉ ALIPHATIQUE	101.2	136
0.0	DIONE ALIPHATIQUE	102.0	137
99.9	TOTAL		

Pranarôm Int.

Figure S7 (page 5/5) – Certificate of the chemical analysis for the lot number OF20407 of *Cymbopogon citratus* (DC.) Staph. (lemongrass) provided by Pranarôm. Screen capture made on 1st September 2020.

Figure S8 (page 1/7) – Certificate of the chemical analysis for the lot number OF19205 of *Lavandula stoechas* L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

PRANAROM () international FICHE D'ANALYSE – ANALYSIS SHEET Huile essentielle - Essential oil Nom botanique - botanical name : Lavandula stoechias Organic Nom commun - french name : LAVANDE STOECHADE BIOLOGIQUE OF19205 Numéro du lot – lot number: Origine - origin: ----PRANAROM - FRANCE Partie de la plante - part of the plant : SOMMITE FLEURIE Date de distillation - distillation date : 06/2015 Date de peremption - out of date : 06/2020 Caractéristiques d'analyse - analysis characteristics: CPG - SM HEWLETT PACKARD / CPG-FID Colonne : HP INNOWAX 60-0.5-0.25 Programmation de température : 6 mn à 50 °C - 2 °C/mn→150°C Gaz vecteur He : 23 psis 4 °C/mn→250°C - 20mn à 250 °C Caractéristiques physiques - physical characteristics: Aspect - physical state Liquide limpide Jaune clair Couleur - colour Odeur - odour Caractéristique, camphrée Densité à 20°C - density 0,944 Densité à 15°C - density 0,947 Indice de réfraction à 20°C - refractive index 1,472.4 Pouvoir rotatoire à 20°C - optical rotation Miscibilité à l'éthanol à 75% - miscibility +21.51,3 volumes d'alcool / 1 volume d'HE Point d'éclair - flashpoint 60,1 °C Analyses pesticides - pesticide analysis : Pesticides Organochlorés : Dosage par GC MS détecteur XSD (méthode multirésidus **Résultats** Presticicides Organochiores: Dosage par GC MS detecteur XSD (methode multiresidus Interne valide seion la norme NF Vo3-110) Liste des pesticides recherches (Pharmacopee Europeenne): Alachior, Aldrine, Bromophos Ethyl, Bromophos Methyl, Chiordane, Chiorfenvinphos, Chiorpyriphos Methyl, Chiorthal Dimethyl, Cyfluthrine, Cyhaothrine lambda, Cypermethrine, Dichioffuanide, Dichlorvos, Dicotol (Kethane), Dieldrine, Endosultan, Endosultan sultate, Endrine, Fenchlorphos (Ronnel), Fenchlorphos-oxon, Fervalerate, Fluvalinate, Heptachior, Heptachior epoxide, Hexachlorocyclohexane 6, Hexachlorocyclohexane 6, Hexachlorocyclohexane 6, Nevaloritor, o,p*DDE, o,p*DDD, Oxychlordane, Pp. 0-DDD, e,p*DDT, Pentachloronalline, Pentachloroanisole, Permethrine , Phosalone, Procymidone, Profenophos, Protholos, Quintozene, S421, Teonazene, Tetraditon, Vinclozoline < LMR* * Limite Maximale de Résidus autorisée resticides Organophosphores : Dosage par GC MS détecteur FPD (méthode multiresidu Interne validée selon la norme NF V03-110) Liste des pesticides recherches (Pharmacopée Européenne): Acephate, Azinphos Ethyl, Azinphos Méthyl, Bromophos Ethyl, Bromophos Méthyl, Chiorferninghos, Chiorpyriphos, Chiorpyriphos Methyl, Diazinon, Dichiorvos, Dimethoate, Ethion, Etrimphos, Fenchiorphos (Ronneil), Fenchiorphos-oxon, Fentitothion, Fensitothion (Dasant), Fensuitothion-oxon-seutorphos, Ventione, Fention-suitothion-usitone, Fention-oxon-sutorine, Fention-suon-sutorine, Fention-suitone, Fention-suorine, Maiatonio, Mecharabam, Methacritos, Methamidophos (Monitor), Methidathion, Monocrotophos, Naled, Omethoate, Paraoxon, Paraoxon Methyl, Parathion Ethyl, Parathion Methyl, Phosaione, Phosmet, Pirtmiphos Ethyl, Pirimiphos Methyl, Profenophos, Prothofos, Quinajphos. Pesticides Organophosphorés : Dosage par GC MS détecteur FPD (méthode multirésidue **Résultats** < LMR* * Limite Maximale de Résidus autorisée

Tableau de résultats 1 : LAVANDULA STOECHAS OF19205

Pics	Temps de	Constituants	%
	rétention		~~
1	4,6	ACETONE	0,02
2	5,0	METHYL PROPYL CYCLOPENTANE	0,01
3	5,9	2-METHYLBUTENAL	0,01
4	6,0	ISOVALERALDEHYDE	0,01
5	6,6	2-ETHYL FURANE	0,01
6	6,9	METHYL PROPENYL CYCLOPENTANE	0,03
7	7,1	TERPENE Mw=124	0,01
0	7.5	DIMETHVI METHVI ENE OVOLOHEVENE	0.01

Figure S8 (page 3/7) – Certificate of the chemical analysis for the lot number OF19205 of *Lavandula*

stoechas L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

12	0,0	PRENOL	0,02
13	9,0		0,02
14	9,3	TOLUENE	0,08
15	10,1	α-FENCHENE	0,15
16	10,5	CAMPHENE	3,94
17	10,9	HEXANAL	0,01
18	12,1	β-PINENE	0,23
19	12,7	SABINENE	0,08
20	12,9	PINADIENE	0,23
21	13,1	THUYADIENE	0,01
22	14,3	Δ3-CARENE	2,89
23	14,7	β-MYRCENE	0,21
24	15,0	α-PHELLANDRENE	0,08
25	15,2	v-LIMONENE	0,01
26	15,6	o-CYMENE	0,04
27	15,8	α-TERPINENE	0,08
28	16,5	2,3-DEHYDRO-1,8-CINEOLE	0,02
29	16,6	MENTHATRIENE ISOMERE	0,03
30	16,8	ISOSYLVESTRENE	0,01
31	17,5	LIMONENE	1,65
32	17,8	1,8-CINEOLE	6,57
33	18,0	MENTHATRIENE ISOMERE	0,08
34	18,2	2-HEXENAL	0,02
35	18,7	2-PENTYL FURANE	0,03
36	19,0	Cis-β-OCIMENE	0,02
37	19,1	2-METHYL-1-HEPTEN-6-ONE	0,01
38	19,6	TERPENE ISOMERE	0,04
39	19,9	γ-TERPINENE	0,15
40	20,1	Trans-8-OCIMENE	0,03
41	20,6	MENTHATRIENE ISOMERE	0,01
42	21.3	m-CYMENE	0,14
43	21,5	p-CYMENE	0,47
44	22,0	ISOTERPINOLENE	0,05
45	22,5	TERPINOLENE	0,33

Tableau de résultats 2 : LAVANDULA STOECHAS OF19205

Pics	Temps de rétention	Constituants	%
46	23,2	DIMETHYLSTYRENE ISOMERE	0,01
47	24,0	CYMENE ISOMERE	0,01
48	24,9	ACETATE DE 3-HEXEN-1-OL	0,01
49	25,9	PINOL	0,01
50	26,2	ACETATE DE cis-3-HEXENYLE	0,02
51	26,8	6-METHYL-5-HEPTEN-2-ONE	0,03
52	29,1	COMPOSÉ AROMATIQUE	0,06
53	30,3	3-HEXEN-1-OL	0,03
54	30,7	ACETATE D'OCT-1-EN-3-YLE	0,04
55	31,0	MYRTENYL METHYL ETHER	0,01
56	33,0	FENCHONE	25,23
57	33,9	PERILLENE	0,02
58	34,4	2-METHYLBUTYRATE D'HEXYLE	0,03
59	35,1	DIMETHYLSTYRENE ISOMERE	0,07
60	36,0	α,p-DIMETHYLSTYRENE	0,18
61	36,5	CIS-OXYDE DE LINALOL	0,08
62	36,9	1-OCTEN-3-OL	0,08
63	37,6	Cis-1,2-EPOXYDE DE LIMONENE	0,03
64	37,9	COMPOSÉ AROMATIQUE Mw=150	0,02
05	00.0		0.47

Figure S8 (page 4/7) – Certificate of the chemical analysis for the lot number OF19205 of *Lavandula*

stoechas L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

70	39,7	Trans-OXYDE DE LINALOL	0,02
71	41,5	CYCLOSATIVENE + YLANGENE	0,14
72	42,0	α-CAMPHOLENE ALDEHYDE	0,15
73	42,9	α-COPAENE	0,18
74	43,5	CHRYSANTHENONE	0,06
75	44,9	CAMPHRE	29,60
76	45,5	SESQUITERPENE	0,01
77	45,8	α-GURJUNENE	0,03
78	46,0	ALCOOL CAMPHOLENIQUE	0,16
79	46,5	β-CUBEBENE	0,03
80	47,3	LINALOL	1,00
81	47,4	ALCOOL ALIPHATIQUE	0,02
82	47,6	ALCOOL CAMPHOLENIQUE ISOMERE + CETONE TERP,	0,05
83	47,8	1-OCTANOL	0,08
84	48,5	OXYDE TERPENIQUE	0,01
85	48,8	Trans-p-MENTH-2-EN-1-OL	0,02
86	49,2	DIMETHYL SULFOXIDE	0,01
87	49,6	PINOCARVONE	0,04
88	50,4	FORMIATE DE BORNYLE	0,02
89	50,8	NOPINONE	0,03
90	51,2	ACETATE DE BORNYLE	2,60

Tableau de résultats 3 : LAVANDULA STOECHAS OF19205

Pics	Temps de	Constituants	%
	rétention		70
91	51,3	FENCHOL	0,20
92	51,7	SESQUITERPENE Mw=202	0,02
93	52,5	β-ELEMENE + CETONE TERPENIQUE	0,05
94	52,6	HYDRATE DE CAMPHENE + β-CUBEBENE	0,05
95	53,2	β-CARYOPHYLLENE	0,34
96	53,4	TERPINENE-4-OL	0,25
97	54,0	HOTRIENOL	0,06
98	55,0	DEHYDROSABINACETONE	0,03
99	55,9	Trans-p-2,8-MENTHADIEN-1-OL	0,01
100	56,1	MYRTENAL	0,33
101	56,4	CAMPHELINOL	0,05
102	56,5	SABINACETONE	0,02
103	56,9	CADINA-3,5-DIENE	0,06
104	57,0	ALCOOL TERPENIQUE	0,01
105	57,6	SESQUITERPENE	0,05
106	58,0	ALLO-AROMADENDRENE	0,15
107	58,1	Cis-VERBENOL + Trans-PINOCARVEOL	0,13
108	58,9	MENTHADIENOL ISOMERE	0,09
109	59,2	ZONARENE	0,09
110	59,3	LACTONE LAVANDE	0,02
111	59,5	Cis-p-2,8-MENTHADIEN-1-OL	0,02
112	59,8	δ-TERPINEOL	0,06
113	59,9	α-HUMULENE	0,07
114	60,1	Trans-VERBENOL	0,19
115	60,3	y-SELINENE	0,02
116	60,6	Y-CURCUMENE	0,02
117	61,0	ACETATE DE MYRTENYLE	2,51
118	61,2	HEPTADECANE	0,06
119	61,4	α-TERPINEOL	0,25
120	61,6	BORNEOL	0,32
121	62,0	LEDENE	0,15
122	62,4	VERBENONE	0,22
123	62,5	SESQUITERPENE	0,20
124	62.6	GERMACRENE D	0,05

Figure S8 (page 5/7) – Certificate of the chemical analysis for the lot number OF19205 of Lavandula

stoechas L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

129	63,7	α-SELINENE + SESQUITERPENE	0,45
130	64,1	BICYCLOGERMACRENE + CARVONE	0,32
131	65,0	SESQUITERPENE Mw=202	0,04
132	65,1	ACETATE DE GERANYLE	0,08
133	65,4	δ-CADINENE	0,73
134	65,6	γ-CADINENE	0,06
135	66,0	δ-SELINENE	0,39

Tableau de résultats 4 : LAVANDULA STOECHAS OF19205

Pics	Temps de	Constituants	%
	rétention		/0
136	66,2	p-METHYLACETOPHENONE	0,10
137	66,7	SELINA-3,7-DIENE	1,52
138	66,8	MYRTENOL	0,40
139	67,3	α-AMORPHENE	0,03
140	67,5	SESQUITERPENE Mw=202	0,02
141	68,4	SESQUITERPENE Mw=204	0,05
142	68,7	Trans-CARVEOL	0,10
143	68,9	m-CYMEMOL + CALAMENENE	0,38
144	69,0	GERANIOL	0,10
145	69,2	p-CYMENE-8-OL	0,43
146	69,4	ESTER ALIPHATIQUE	0,02
147	69,6	ESTER MYRTENIQUE	0,13
148	70,1	COMPOSÉ Mw=220	0,04
149	70,3	ESTER MYRTENIQUE	0,05
150	71,2	COMPOSÉ INDENIQUE Mw=188	0.05
151	71,5	Epi-CUBEBOL	0,07
152	72,5	a-CALACORENE	0,06
153	72,6	PIPERITONE	0,03
154	72,7	OXYDE D'HUMULENE	0.03
155	72,9	PALUSTROL	0,04
156	73,2	CUBEBOL	0,04
157	73,4	COMPOSÉ AROMATIQUE	0,05
158	74,2	COMPOSÉ Mw=218	0,14
159	74,5	COMPOSÉ AROMATIQUE	0,03
160	74,8	OXYDE D'ISOCARYOPHYLLENE	0,02
161	75,2	OXYDE DE CARYOPHYLLENE	0,12
162	75,4	METHYL EUGENOL	0,16
163	75,6	CETONE TERPENIQUE	0,04
164	75,5	SESQUITERPENOL	0,02
165	76,2	SESQUITERPENOL	0,06
166	76,4	COMPOSÉ CETONIQUE	0,05
167	76,7	LEDOL	0,22
168	77,2	EPOXY-6,7-HUMULENE	0,03
169	77,3	GLEENOL	0,06
170	77,5	Epi-CUBENOL	0,10
171	77,6	CUBENOL	0,14
172	77,8	SESQUITERPENOL	0,15
173	78,0	COPAENOL ISOMERE	0,24
174	78,2	VIRIDIFLOROL	0,52
175	78,4	ROSIFOLIOL	0,02
176	79,1	TRIMETHYL PENTADECANONE	0,04
177	79,3	SPATHULENOL	0,10
178	79,7	SESQUITERPENOL	0,07
179	79,9	SESQUITERPENOL	0,08
180	80.2	SESQUITERPENOL Mw=220	0.07

Figure S8 (page 6/7) – Certificate of the chemical analysis for the lot number OF19205 of *Lavandula stoechas* L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

Tableau de résultats 5 : LAVANDULA STOECHAS OF19205

Pics	Temps de rétention	Constituants	%
181	80,6	T-CADINOL	0,04
182	80,9	DEHYDROVIRIDIFLOROL	0,22
183	81,0	α-MUUROLOL	0,10
184	81,3	SESQUITERPENOL	0,06
185	81,7	GERANYL-a-TERPINENE	0,16
186	81,9	SPATHULENOL ISOMERE	0,03
187	82,3	a-CADINOL	0,36
188	82,4	CADALENE	0,02
189	82,9	SESQUITERPENOL	0,07
190	83,1	SESQUITERPENONE Mw=218	0,06
191	83,6	GERANYL-p-CYMENE ISOMERE	0,04
192	83,8	SESQUITERPENOL	0,06
193	84,1	MAALIOL ISOMERE	0,07
194	84,2	ACETATE D'EUGENYLE	0,01
195	84,8	COMPOSÉ METHOXY AROMATIQUE	0,02
196	86,4	COMPOSÉ AROMATIQUE	0,02
197	87,3	SESQUITERPENONE Mw=218	0,02
		TOTAL	99,69

Date de l'analyse – date of the analysis : Juin 2015,

Pranarôm Int. C. Schulze Contrôle qualité **Figure S8 (page 7/7)** – Certificate of the chemical analysis for the lot number OF19205 of *Lavandula stoechas* L. (Spanish lavender) provided by Pranarôm. Screen capture made on 1st September 2020.

PRANARŌM (**P**

Figure S9 (page 1/5) – Certificate of the chemical analysis for the lot number OF22429 of Origanum compactum Benth. (oregano) provided by Pranarôm. Screen capture made on 1st September 2020.

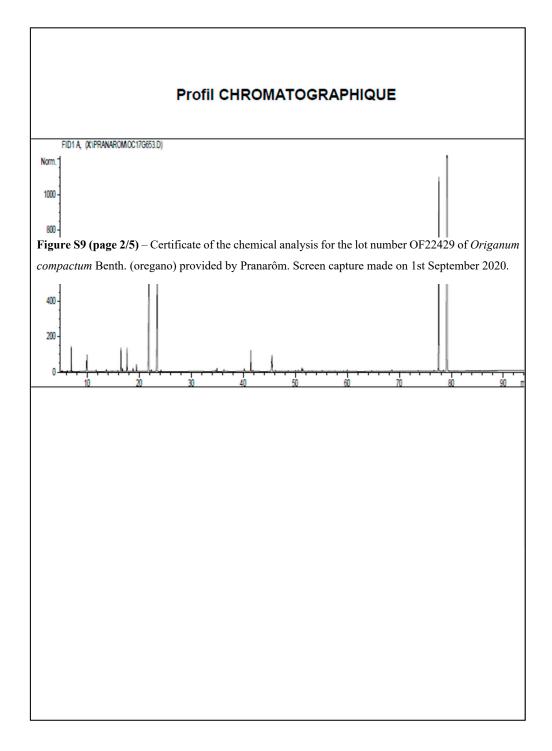
I TOTLE D'ANALI OL - ANALI OLO OTILLI

Huile essentielle – Essential oil

Nom botanique - botanical name : Nom commun – french name : Numéro du lot - lot number : Origine - origin : ---Partie de la plante - part of the plant : SOMMITÉ FLEURIE Date de distillation - distillation date : 06/2015 Date de péremption - out of date :

Origanum compactum ORIGAN COMPACT OF22429 PRANARÔM - MAROC 02/2021

Caractéristiques d'analyse - analysis characteristics:


CPG - SM HEWLETT PACKARD / CPG-FID Colonne : HP INNOWAX 60-0.5-0.25 Programmation de température : 6 mn à 50°C -2°C/mn→250°C-10mn à 250°C Gaz vecteur He : 22 psis

Caractéristiques physiques - physical characteristics:

Aspect – physical state	Liquide limpide
Couleur - colour	Jaune d'or clair
Odeur - odour	Caractéristique, phénolique
Densité à 20°C - density	0,938
Densité à 15°C - density	0,941
Indice de réfraction à 20°C - refractive index	1,505 2
Pouvoir rotatoire à 20°C – optical rotation	0 °
Miscibilité à l'éthanol à 80% - miscibility	1,1 volumes d'alcool / 1 volume d'HE
Point d'éclair : SETAFLASH - flashpoint	63,4 °C

Analyses pesticides – pesticide analysis :

Pesticides Organochlorés : Dosage par GC MS détecteur XSD (methode multiresidus Interne validée selon la norme NF V03-110)	<u>Résultats</u>
Liste des pesticides recherches (Pharmacopee Europeenne): Alachior, Aldrine, Bromophos Ethyl, Bromophos Methyl, Chlordane, Chlorfenvinphos, Chlorpyriphos Methyl, Chlorthal Dimethyl, Cyfluthrine, Cyhalothrine Iambda, Cypermethrine, Dichiofulanide, Dichiorvos, Dicotol (Keithane), Dielotine, Endosulfan, Endosulfan suifate, Endrine, Fenchlorphos (Ronnel), Fenchlorphos-oxon, Fervalerate, Fluvalinate, Heptachlor, Heptachlor epoxide, Hexachlorobenzene, Hexachlorocyclohexane o, Hexachlorocyclohexane B,	< LMR*
Hexachiorocyclohexane 6, Hexachiorocyclohexane s, Lindane, Methoxychiore, Mirex, Naied, og-DoD C, og-DoD E, og-DoT P, entachioroaniline, Pentachioroanisole, Permethrine, og-DoT D, xy-DoD E, pg-DoT P, Pentachioroaniline, Pentachioroanisole, Permethrine, Phosaione, Procymidone, Profenophos, Prothiofos, Quintozene, S421, Tecnazene, Tetraditon, Vinciozoline	* Limite Maximale de Résidus autorisée
Pesticides Organophosphorés : Dosage par GC MS détecteur FPD (méthode multirésidus Interne validée selon la norme NF V03-110)	<u>Résultats</u>
Liste des pesticides recherchés (Pharmacopée Européenne): Acephate, Azinphos Ethyl, Azinphos Methyl, Bromophos Ethyl, Bromophos Methyl, Chiorfenvinphos, Chiorpyriphos, Chiorpyriphos Methyl, Diazinon, Dichiorvos, Dimethoate, Ethion, Etrimphos, Fenchlorphos (Ronnel), Fenchlorphos-oxon, Fenitrothion, Fensulfothion-Oxon, Fensulfothion-oxon, Fensulfothion-oxon, Fensulfothion-oxon, Fentilothion-oxon, Fensulfothion-oxon,	< LMR*
sulfone, Fenthion-oxon-sulfoxyde, Fenthion-sulfone, Fenthion-sulfoxyde, Fonofos, Malaoxon, Malathion, Mecarbam, Methacrifos, Methamidophos (Monitor), Methidathion, Monocrotophos, Naled, Omethoate, Paraoxon, Paraoxon	

Tableau de résultats 1 : ORIGANUM COMPACTUM OF22429

Pics	Temps de rétention	Constituants	%
1	5,1	ACETONE	0.02
2	6,2	FORMIATE D'ETHYLE	0,02
3	6,8	2-METHYL BUTANAL	0,04
4	6,9	ISOVALERALDEHYDE	0,84
5	7,5	2-ETHYL FURANE	0,01
6	9,4	TRICYCLENE	0,01
7	9,6	ISOVALERATE DE METHYLE	0,02
8	9,8	α-PINENE	0,59
9	9,9	α-THUYENE	0,88
10	11,6	PENTANOATE D'ETHYLE	0,01
11	11,7	CAMPHENE	0,09
12	13,7	β-PINENE	0,12
13	14,5	SABINENE	0,01
14	14,8	PINADIENE	0,01
15	15,0	4-METHYL-3-PENTEN-2-ONE	0,03
16	15,8	∆3-CARENE	0,07
17	16,0	3-HEPTANONE	0,01
18	16,5	β-MYRCENE	1,47
19	16,8	α-PHELLANDRENE	0,19
20	17,0	ψ-LIMONENE	0,01
21	17,6	a-TERPINENE	1,57

Figure S9 (page 3/5) – Certificate of the chemical analysis for the lot number OF22429 of Origanum

compactum Benth. (oregano) provided by Pranarôm. Screen capture made on 1st September 2020.

26	20,1	2-HEXENAL	0,01
27	20,9	Cis-β-OCIMENE	0,01
28	21,8	γ-TERPINENE	12,7
29	22,0	Trans-β-OCIMENE	0,07
30	22,3	3-OCTANONE	0,11
31	23,1	m-CYMENE	0,01
32	23,4	p-CYMENE	10,2
33	24,2	TERPINOLENE	0,08
34	30,6	3-HEXEN-1-OL	0,01
35	31,2	3-OCTANOL	0,01
36	31,7	MENTHATRIENE ISOMERE	0,01
37	33,2	α-THUYONE	0,01
38	33,9	CETONE TERPENIQUE	0,01
39	34,2	MENTHATRIENE ISOMERE	0,03
40	34,6	a,p-DIMETHYLSTYRENE	0,09
41	34,8	MENTHATRIENE ISOMERE	0,06
42	34,9	1-OCTEN-3-OL	0,20
43	35,2	FURFURAL	0,01
44	36,3	Trans-THUYANOL	0,15
45	36,6	EPOXY-4,8-TERPINOLENE	0,01

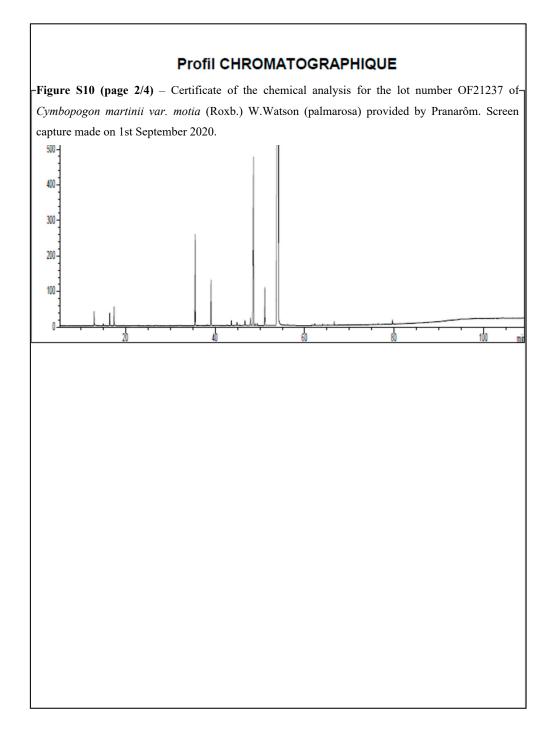
Tableau de résultats 2 : ORIGANUM COMPACTUM OF22429

Pics	Temps de	Constituants	%
	rétention		
46	36,7	Trans-OXYDE DE LINALOL	0,02
47	37,6	ALDEHYDE TERPENIQUE	0,01
48	38,6	α-COPAENE	0,01
49	39,6	EPOXYDE TERPENIQUE	0,01
50	39,9	EPOXYDE TERPENIQUE	0,03
51	40,1	CAMPHRE	0,23
52	40,2	CÉTONE TERPENIQUE Mw=152	0,07
53	41,0	β-BOURBONENE	0,01
54	41,4	α-GURJUNENE	0,01
55	41,5	LINALOL	1,36
56	41,6	1-NONEN-3-OL	0,02
57	41,8	Cis-THUYANOL	0,07
58	42,1	β1-CUBEBENE	0,02
59	42,5	4-ACETYL-1-METHYLCYCLOHEXENE	0,02
60	42,8	Trans-p-MENTH-2-EN-1-OL	0,03
61	43,5	MENTHADIENE ISOMERE	0,02
62	45,4	METHYL CARVACROL ETHER	0,73
63	45,5	β-CARYOPHYLLENE + TERPINENE-4-OL	1,36
64	46,2	Cis-DIHYDROCARVONE + AROMADENDRENE	0,10
65	46,9	Trans-DIHYDROCARVONE	0,03
66	47,3	Cis-p-MENTH-2-EN-1-OL	0,02
67	48,4	α-HIMACHALENE	0,02
68	48,6	ALLO-AROMADENDRENE + COMPOSÉ Mw=152	0,05
69	49,3	ZONARENE	0,01
70	49,7	δ-TERPINEOL	0,02
71	50,0	α-HUMULENE	0,09
72	50,6	NERAL	0,08
73	50,8	CARVOTANACETONE	0,02
74	51,2	α-TERPINEOL	0,26
75	51,4	BORNEOL	0,20
76	51,6	SESQUITERPENE	0,01
77	51,8	LEDENE	0,02
78	52,4	VERBENONE +	0,06
79	52,9	COMPOSÉ TERPENIQUE Mw=152	0,04
80	53,2	8-BISABOLENE	0,05

Figure S9 (page 4/5) – Certificate of the chemical analysis for the lot number OF22429 of Origanum

compactum Benth. (oregano) provided by Pranarôm. Screen capture made on 1st September 2020.

36 37	55,1 55,4	δ-CADINENE	0,08
38	56,3	METHYLACETOPHENONE	0,01
39	56,4	MENTHADIENOL ISOMERE	0,01
90	56,7	CUMINAL	0,01


Tableau de résultats 3 : ORIGANUM COMPACTUM OF22429

Pics	Temps de	Constituants	%
	rétention	Constituants	/0
91	56,8	MYRTENOL + CURCUMENE ISOMERE	0,01
92	57,6	SABINOL ISOMERE	0,04
93	57,7	2-HYDROXY PIPERITONE	0,01
94	58,1	SABINOL ISOMERE	0,01
95	58,6	CURCUMENE ISOMERE	0,01
96	59,3	Trans-CARVEOL	0,04
97	59,7	CALAMENENE	0,01
98	60,0	p-CYMENE-8-OL + ACETATE DE CARVACRYLE	0,12
99	60,9	ESTER TERPENIQUE	0,01
100	61,7	ESTER TERPENIQUE	0,03
101	64,7	METHYL CARVACROL	0,04
102	65,6	COMPOSÉ Mw=166	0,02
103	67,3	METHYL PROPENYL PHENOL Mw=148	0,01
104	68,3	OXYDE D'ISOCARYOPHYLLENE	0,01
105	68,6	OXYDE DE CARYOPHYLLENE	0,16
106	73,6	CUMINOL	0,09
107	75,4	SPATHULENOL	0,01
108	76,6	ISOTHYMOL	0,08
109	77,2	COMPOSÉ ACÉTOXY CÉTONIQUE	0,01
110	77,6	THYMOL	14.89
111	78,4	ISOCARVACROL	0,09
112	79,2	CARVACROL	48.0
113	80,4	COMPOSÉ PHÉNOLIQUE	0,02
114	81,1	COMPOSÉ PHÉNOLIQUE	0,01
115	83,0	VINYL-QUAJACOL	0,03
116	83,8	CARYOPHYLLA-3,7-DIEN-6-OL	0,01
117	85.5	COMPOSÉ PHÉNOLIQUE	0.01
118	87,4	COMPOSÉ PHÉNOLIQUE	0,02
119	88,9	COMPOSÉ PHÉNOLIQUE	0,03
		TOTAL	99,99
Date de l	'analyse – date of t	he analysis : Mars 2016, Pranarôm Int.	
		C. Schulze	
		Contrôle qualité	

Figure S9 (page 5/5) – Certificate of the chemical analysis for the lot number OF22429 of *Origanum compactum* Benth. (oregano) provided by Pranarôm. Screen capture made on 1st September 2020.

PRANARŌM (P international			
		- ANALYSIS SHE	ET
nulle ess	sentie	ne - Essential on	
Nom commun – french name : Numéro du lot – lot number:	PÁLMARO OF21237 PRANARÔ PARTIE A	M -NEPAL	
Caractéristiques d'analyse – analysi			
CPG - SM HEWLETT PACKA Colonne : HP INNOWAX 60-0.		D	
Programmation de température : Caractéristiques physiques – physic	Gaz vecte	: −2 °C/mn→250 °C-10mn à 250 °C ur He : 22 psis <u>ristics:</u>	
Caractéristiques physiques – physics	Gaz vecte	ur He : 22 psis ristics:	1
	Gaz vecte	ur He : 22 psis	
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour	Gaz vecte	ur He : 22 psis <u>ristics:</u> Liquide limpide Jaune pâle Rosée et herbacée	
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density	Gaz vecte	ur He : 22 psis ristics: Liquide limpide Jaune pâle Rosée et herbacée 0,885	
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density	Gaz vecte al characte	ur He : 22 psis ristics: Liquide limpide Jaune pâle Rosée et herbacée 0.885 0.889	
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive ind	Gaz vecte al characte	ur He : 22 psis <u>ristics:</u> Jaune pâle Rosée et herbacée 0,885 0,889 1,475 4	
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive ind Pouvoir rotatoire à 20°C - optical rotation	Gaz vecte al characte	ur He : 22 psis ristics: Jaune pâle Rosée et herbacée 0.885 0.889 1.475 4 - 0.5 °	E
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive ind	Gaz vecte al characte	ur He : 22 psis <u>ristics:</u> Jaune pâle Rosée et herbacée 0,885 0,889 1,475 4	E
Caractéristiques physiques – physics Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive inc Pouvoir rotatoire à 20°C - optical rotation Miscibilité à l'éthanol à 70% - miscibility	Gaz vecte al characte deater of the second s	ur He : 22 psis <u>ristics:</u> Liquide limpide Jaune pâle Rosée et herbacée 0,885 0,889 1,475 4 - 0,5 ° 1,2 volumes d'alcool / 1 volume d'H 100,8 °C détecteur XSD (methode multireeldus lachior, Aldrine, Bromophos Ethyl, Bromophos Methyl, Chiorthal Dimethyl, Cyfluthrine, octol (Keithane), Dieldme, Endosuffan, oxon, Fenvalerate, Fluvalinate, Heptochlor, Hexachiorocylothexane B, Permethrine .	E C LMR* * Limite Maximale de Residus autorisée
Caractéristiques physiques – physica Aspect – physical state Couleur - colour Odeur - odour Densité à 20°C - density Densité à 15°C - density Indice de réfraction à 20°C - refractive ind Pouvoir rotatoire à 20°C - optical rotation Miscibilité à l'éthanol à 70% - miscibility Point d'éclair : SETAFLASH - flashpoint Analyses pesticides – pesticide analysis Pesticides Organochlorés : Dosage Interre valide eston la norme NF V03-110) Liste des pesticides recherchés (Pharmacopes E Methyl, Chiordane, Chiorfenvinphos, Chiorpyrphos, Cynalothine lambda, Cypermethine, Dichofluande Endosufan sufate, Endrine, Penologrone, Hexachlor Heyachlorocyclohexane 6, Hexachlorocyclohexane 1 ox-DDT, Oxohordane, 0-DDD, ox-DDE, ox-ODE, so-DDE, so-DDE	Gaz vecte al characte dex dex dex dex dex dex dex dex dex de	ur He : 22 psis <u>ristics:</u> Liquide limpide Jaune pâle Rosée et herbacée 0,885 0,889 1,475 4 - 0,5 ° 1,2 volumes d'alcool / 1 volume d'H 100,8 °C détecteur XSD (méthode multiresidus lachior, Aldrine, Bromophos Ethyl, Bromophos Methyl, Chiothal Dimethyl, Cyfluthrine, cotol (Keithane), Dieldrine, Endosultan, con, Fervalerate, Fluvalinate, Heptachior, , Hexachiorocytohexane ß, loxychiore, Mirze, Naied, o,p'-DDD, o,p'-DDE, loxychiore, Mirze, Naied, o,p'-DDD, o,p'-DDE, 21, Tecnazene, Tetradifon, Vinciozoline	Résultats < LMR*

Figure S10 (page 1/4) – Certificate of the chemical analysis for the lot number OF21237 of *Cymbopogon martinii var. motia* (Roxb.) W.Watson (palmarosa) provided by Pranarôm. Screen capture made on 1st September 2020.

Tableau de résultats 1 : CYMBOPOGON MARTINII LOT OF21237

Pics	Temps de rétention	Constituants	%
1	5,2	ACETONE	0,01
2	9,6	CAMPHENE	0,01
3	11,0	β-PINENE	0,01
4	11,8	Δ2-CARENE	0,01
5	13,0	β-MYRCENE	0,47
6	13,5	α-PHELLANDRENE	0,02
7	14,0	o-CYMENE	0,01
8	15.0	LIMONENE	0.07

Figure S10 (page 3/4) - Certificate of the chemical analysis for the lot number OF21237 of

Cymbopogon martinii var. motia (Roxb.) W.Watson (palmarosa) provided by Pranarôm. Screen capture made on 1st September 2020.

14	26,7	ALLO-OCIMENE	0,03
15	31,7	CITRONELLAL	0,02
16	32,4	α-COPAENE	0,02
17	34,7	PLINOL ISOMERE	0,01
18	35,5	LINALOL	2,89
19	40,1	β1-CUBEBENE	0,01
20	40,6	1-OCTANOL	0,02
21	40,7	ACETATE DE LINALYLE	0,02
22	41,9	SESQUITERPENE	0,01
23	42,5	ISOCARYOPHYLLENE	0,01
24	42,6	ESTER ALIPHATIQUE	0,01
25	38,5	β-ELEMENE	0,02
26	38,2	PLINOL ISOMERE	0,03
27	39,1	β-CARYOPHYLLENE	1,75
28	40,4	SESQUITERPENE	0,01
29	40,9	SESQUITERPENE	0,01
30	41,0	GUAIADIENE ISOMERE	0,01
31	42,6	SESQUITERPENE	0,02
32	42,7	SESQUITERPENE	0,02
33	43,6	α-HUMULENE	0,20
34	44,9	NERAL	0,13
35	45,4	SESQUITERPENE	0,01
36	45,8	γ-MUUROLENE	0,02
37	46,1	FORMIATE DE GERANYLE	0,01
38	46,3	GERMACRENE D	0,01
39	46,6	ACETATE DE NERYLE	0,23
40	46,8	VALENCENE	0,02
41	47,4	β-CURCUMENE	0,01
42	47,9	GERANIAL	0,31
43	48,6	ACETATE DE GERANYLE	8,49
44	48,7	E,E-α-FARNESENE	0,01
45	48,9	CITRONELLOL	0,08

Tableau de résultats 2 : CYMBOPOGON MARTINII LOT OF21237

Pics	Temps de	Constituants	%
	rétention		
46	49,4	Cis-a-BISABOLENE	0,10
47	51,1	NEROL	1,33
48	54,2	GERANIOL	81,92
49	54,3	ISOGERANIOL	0,04
50	56,2	BUTYRATE DE GERANYLE	0,02
51	57,5	METHYLBUTYRATE DE GERANYLE	0,01
52	51,6	ALCOOL TERPENIQUE Mw=152	0,01
53	61,7	OXYDE D'ISOCARYOPHYLLENE	0,02
54	61,9	Z-NEROLIDOL	0,01
55	62,3	OXYDE DE CARYOPHYLLENE	0,07
56	64,0	E-NEROLIDOL	0,04
57	65,1	EPOXY-6,7-HUMULENE	0,01
58	66,6	CAPROATE DE GERANYLE	0,12
59	67,7	ESTER GERANIQUE	0,01
60	69,6	COMPOSE ALIPHATIQUE	0,02
61	75,3	ACETATE DE FARNESYLE	0,01
62	76,4	ESTER GERANIQUE	0,03
63	79,6	FARNESOL	0,15
		TOTAL	99,99

Pranarôm Int.

Figure S10 (page 4/4) – Certificate of the chemical analysis for the lot number OF21237 of *Cymbopogon martinii var. motia* (Roxb.) W.Watson (palmarosa) provided by Pranarôm. Screen capture made on 1st September 2020.