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Abstract: Water samples were collected at several wastewater treatment plants in southeast Florida,
and water and sediment samples were collected along and around one outfall pipe, as well as along
several transects extending both north and south of the respective outfall outlet. Two sets of samples
were collected to address potential seasonal differences, including 38 in the wet season (June 2018)
and 42 in the dry season (March 2019). Samples were screened for the presence/absence of 15 select
antibiotic resistance gene targets using the polymerase chain reaction. A contrast between seasons
was found, with a higher frequency of detections occurring in the wet season and fewer during
the dry season. These data illustrate an anthropogenic influence on offshore microbial genetics and
seasonal flux regarding associated health risks to recreational users and the regional ecosystem.
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1. Introduction

Antibiotic resistance has recently been recognized as an emerging environmental contaminant,
and molecular methods that identify these genes in microbial populations have proven to be useful
tools in assessing anthropogenic impacts in terrestrial and aquatic environments [1]. One of the primary
problems with antibiotics is their widespread use and the slow progress in identifying and developing
alternatives such as vaccines and virulence inhibitors [2]. Current estimates for antibiotic resistant
infections in the United States of America are 2 million cases annually, of which approximately 23,000
are fatal [3]. Globally, the cost associated with these types of infections is approximately 5.8 trillion
USD [4]. In the absence of mitigation, deaths from antibiotic resistant microorganisms may surpass
those caused by cancer by 2050, with an estimated economic impact of approximately 100 trillion
USD [5].

Relative to a recent increase in understanding the distribution and potential impacts of
pharmaceuticals in rivers, authors noted ‘By contrast, significantly less attention has been paid to
understanding releases of pharmaceuticals from sewage and other routes into coastal environments and
their potential marine impacts’ [6]. The presence of antibiotic resistant microorganisms in marine
sediments at a polluted site in Tolo Harbour, Hong Kong, was greater than that observed at three other
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less severely impacted locations [7]. Rivers were identified as a primary source for the discharge of
antibiotics into marine environments in a study of Bohai Bay, China, and the highest concentrations of
antibiotics coincided with an elevated human presence [8]. The ability of wastewater treatment plants
to discharge viable antibiotic resistant bacteria into a marine environment through ocean outfalls was
demonstrated in the Gulf of Gdansk, Poland [9]. A study of antibiotic resistance in total and fecal
coliforms collected in the vicinity of an ocean outfall pipe in seawater and shellfish samples in the 1970s
reported that at least seventy percent of the isolates were resistant to one or more antibiotics [10]. The
authors of that study further reported that forty-five percent of the isolates resistant to streptomycin or
tetracycline were capable of horizontal gene transfer [10]. Recent research has demonstrated that water
disinfection byproducts can increase natural transformation rates [11]. Marine aquaculture studies
have highlighted the risk to these types of operations due to their potential influences on the regional
prevalence of antibiotic resistant strains of bacteria [12,13].

Analyzing microbial communities for the presence of antibiotics enables researchers to demonstrate
at the genetic level, the influences of antibiotic laden sources such as septic systems, shallow injection
wells, storm sewer overflows and outfalls on regional ecosystems. As antibiotic resistance can affect
pathogen virulence, these sources of antibiotic laden sources of pollution can sustain the presence
of these pathogens, which can, in turn, present human recreational and ecosystem health risks.
Currently, there are six wastewater ocean outfall systems (known as Boynton-Delray to the north
and then progressing to the south, Boca Raton, Broward/North, Hollywood, Miami-Dade North and
Miami-Dade Central; Figure 1) in operation in southeast Florida that had a combined flow of 425 million
gallons per day (mgd) in 2005 and a projected flow of 474 mgd by the year 2025 [14]. Legislation was
passed in 2008 to close these systems by 2025 but this was amended in 2013 to permit occasional use
(peak flow) beyond 2025.Antibiotics 2020, 9, x 3 of 10 

 

Figure 1. The six ocean outfall systems of southeast Florida. 
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samples collected along transects centered on the exit point of a regional treated wastewater ocean 
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Additional data can be found via USGS data release [15]. 
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W, SW, S, SE, E, NE), by dive scooters or by self-propulsion, to collect samples at 25 m and 50 m from 
the centroid. Samples at 100, 200, 400 and 800 m north and south of the centroid were collected on 
single dives at those intervals. Samples collected at 100, 200, and 400 m west (shoreward) of the 
centroid were collected by one diver team using scooters to move shoreward from site to site along 
the pipeline, with anchored floats deployed from the boat marking the collection location. Samples 

Figure 1. The six ocean outfall systems of southeast Florida.

The objective of this project was to determine the prevalence of antibiotic resistance genes in
bacterial populations in impacted (close to and alongside treated wastewater outfall pipes and within



Antibiotics 2020, 9, 118 3 of 8

the wastewater stream) and reference (along transects extending away from the outfalls) sediment
samples around the Hollywood, Florida wastewater treatment plant’s ocean outfall. Sediment,
untreated wastewater, and samples from the outfall pipe outlet boil were analyzed for 15 different
antibiotic resistant gene targets via polymerase chain reaction presence/absence assays. A total of 38
samples in the wet season (June 2018) and 42 samples in the dry season (March 2019) were collected
by the Florida Department of Environmental Protection, Broward County and National Oceanic
and Atmospheric Administration (NOAA) research teams, then shipped to and analyzed at the U.S.
Geological Survey (USGS) St. Petersburg Pathogen and Emerging Contaminant Laboratory.

2. Material and Methods

2.1. Sample Sites and Collection

Sediment sample sites along the Hollywood, Florida ocean outfall pipe are illustrated in the wet
and dry season heatmap figures (Figure 2; Figure 3). Samples included sediment and water column
samples collected along transects centered on the exit point of a regional treated wastewater ocean
outfall pipe (Hollywood) and from regional wastewater treatment plants (Broward/North, Hollywood
and Miami-Dade/North). Like the Hollywood wastewater treatment plant and outfall outlet associated
samples (boil and sediment), sample sets collected at the Broward/North and Miami-Dade/North
wastewater treatment plants included untreated influent and effluent water samples, an outfall outlet
boil sample and a sediment sample collected next to the outfall outlet. Additional data can be found
via USGS data release [15].Antibiotics 2020, 9, x 7 of 10 

 
Figure 2. Wet season (June 2018) map of sampling locations and habitat type, Hollywood, Florida, 
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Figure 2. Wet season (June 2018) map of sampling locations and habitat type, Hollywood, Florida,
treated wastewater outfall pipe. The number of antibiotic (ABR) genes detected in each sediment
sample is listed in the legend. DNA extracts from water collected from the wastewater treatment plant
influent and outfall pipe boil were positive for 6 and 3 antibiotic resistance gene targets, respectively.

All sediment samples were collected by scuba divers who navigated to the sample site by
descending an anchored center-point buoy line (centroid) and attaching a measuring tape to the anchor.
Divers collected one sediment sample at the centroid of the array near the anchor (beneath the exit
point of the outfall pipe) and then navigated to the cardinal and ordinal directions (N, NW, W, SW,
S, SE, E, NE), by dive scooters or by self-propulsion, to collect samples at 25 m and 50 m from the
centroid. Samples at 100, 200, 400 and 800 m north and south of the centroid were collected on single
dives at those intervals. Samples collected at 100, 200, and 400 m west (shoreward) of the centroid were
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collected by one diver team using scooters to move shoreward from site to site along the pipeline, with
anchored floats deployed from the boat marking the collection location. Samples at 800 and 1600 m
from the centroid were collected on individual dives at those sites. Sediment samples were collected by
divers using a 50 mL centrifuge tube to scoop sediment from the seabed. Divers wore single-use nitrile
gloves to prevent cross-contamination of sediment samples. Nitrile gloves were changed between
samples (underwater) if more than one sample was collected on a dive. Outfall water samples were
collected by opening an empty sterile 50 mL centrifuge tube in the plume (identified by a change
in water color and higher velocity than surrounding water) at the mouth of the pipe. Wastewater
treatment plant effluent water samples from the three wastewater treatment plants were collected
while wearing nitrile gloves. Influent and effluent samples were collected directly from spigots using
sterile 50 mL centrifuge tubes. These effluent samples were then placed in plastic Ziploc bags and kept
on ice during transport to the Florida Department of Environmental Protection (FDEP) Coral Reef
Conservation Program (CRCP) office, and then placed in a freezer with the field samples.Antibiotics 2020, 9, x 8 of 10 
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influent and outfall pipe boil were positive for 7 and 8 antibiotic resistance gene targets respectively. 
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Figure 3. Dry season (March 2019) map of sampling locations and habitat type, Hollywood, Florida
treated wastewater outfall pipe. Number of antibiotic (ABR) genes detected in each sediment sample is
listed in the legend. DNA extracts from water collected from the wastewater treatment plant influent
and outfall pipe boil were positive for 7 and 8 antibiotic resistance gene targets respectively.

2.2. Sample Storage and Shipping

Field sediment and water samples representing the wet (11–20 June 2018) and dry (4–11 March
2019) seasons were brought to the surface, where they were kept on ice on the boat and during
transport to the FDEP CRCP office in Miami, FL, and then placed in a cryogenic freezer (wet season) or
refrigerator (dry season). Effluent samples were also stored in a cryogenic freezer. Wet season samples
were shipped overnight on dry ice to the USGS lab in St. Petersburg, FL (received 24 July 2018) once
the interagency agreements were completed. Dry season samples were shipped overnight once the last
of the samples had been collected (received 12 March 2019). All samples were stored at −20 ◦C upon
receipt by the USGS until processed for DNA extraction.

2.3. Antibiotic Resistance Presence/Absence Polymerase Chain Reaction Assays

DNA was extracted from samples as previously published [1]. In short, ~250 µl of water samples
and 0.25 g of sediment were utilized to extract DNA using the DNeasy PowerSoil Kit (Qiagen, Hilden,
Germany). The only modification to the Kit protocol instructions was the elution with Qiagen AE
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buffer (100µl, limits DNA degradation during frozen storage vs the traditional MoBio PowerSoil
Kit eluent) instead of the Kit eluent. An amount of 2 µl microliters of this purified DNA was were
utilized for templates in duplicate reactions for each gene target. Applied Biosystems TaqMan Fast
Universal Master Mix and TaqMan Exogenous Internal Positive Control reagents were utilized in all
20µl reactions. Primer/probe sequences (Table 1), probe labels, amplification profiles, PCR plate layouts
and master mix conditions were as previously published and are available as previously published
and via USGS data release [1,15]. TaqMan exogenous internal positive control reagents were used in
duplicate reactions for each target gene. Target genes are listed in Table 2 and included aadA2, ampC,
blaPSE, blaSHV, ermB, floR, mecA, tetB, tetG, tetL, tetM, tetO, tetQ, tetW and vanA. Positive controls
were gene target sequences synthesized with ~15–25 base pair extensions beyond the 5′ and 3′ ends
of the primer binding sequences. The controls were synthesized by Integrated DNA Technologies
(gBlock double-stranded DNA fragments).

Table 1. Antibiotic resistance gene primer and probe set sequences.

Gene
Target Upstream Primer Downstream Primer Probe Reference

aadA2 CAGCCAYGATCGACATTGATCT CCAAGGCAACGCTATGTTCTC CTGCTTACAAAAGC [16]

ampC GGGAATGCTGGATGCACAA CATGACCCAGTTCGCCATATC CCTATGGCGTGAAAACCAACGTGCA [17]

blaPSE GATTTGGTGCTCGGAGTATT CATTGAAGCCTGTGTTTGAG CTTGATGCTCACTCCA [16]

blaSHV AACAGCTGGAGCGAAAGATCCA TGTTTTTCGCTGACCGGCGAG TCCACCAGATCCTGCTGGCGATAG [18]

ermB GGATTCTACAAGCGTACCTTGGA GCTGGCAGCTTAAGCAATTGCT CACTAGGGTTGCTCTTGCACACTCAAGTC [18]

floR GGCAGGCGATATTCATTACT CGAGAAGAAGACGAAGAAGG CTAAAGCCGACAGTGTA [16]

mecA CATTGATCGCAACGTTCAATTTAAT TGGTCTTTCTGCATTCCTGGA CTATGATCCCAATCTAACTTCCACATACC [18]

tetB ACACTCAGTATTCCAAGCCTTTG GATAGACATCACTCCCTGTAATGC AAAGCGATCCCACCACCAGCCAAT [17]

tetG CGGTACTTCTGGCTTCTCTT GAATCGGCAATGGTTGAG CAGGAGCCGCAGTCGATTACACG [16]

tetL GGTTTTGAACGTCTCATTACCTGAT CCAATGGAAAAGGTTAACATAAAGG CCACCTGCGAGTACAAACTGGGTGAAC [17]

tetM GGTTTCTCTTGGATACTTAAATCAATCR CCAACCATAYAATCCTTGTTCRC ATGCAGTTATGGARGGGATACGCTATGGY [17]

tetO AAGAAAACAGGAGATTCCAAAACG CGAGTCCCCAGATTGTTTTTAGC ACGTTATTTCCCGTTTATCACGG [17]

tetQ AGGTGCTGAACCTTGTTTGATTC GGCCGGACGGAGGATTT TCGCATCAGCATCCCGCTC [17]

tetW GCAGAGCGTGGTTCAGTCT GACACCGTCTGCTTGATGATAAT TTCGGGATAAGCTCTCCGCCGA [17]

vanA CTGTGAGGTCGGTTGTGCG TTTGGTCCACCTCGCCA CAACTAACGCGGCACTGTTTCCCAAT [17]

Table 2. Antibiotic resistance genes and the antibiotics to which they provide resistance.

Antibiotic Resistance Gene Examples of Affected Antibiotics/Drugs

aadA2 Streptomycin, spectinomycin

ampC beta-lactams (ampicillin, penicillin, etc.)

blaPSE beta-lactams

blaSHV beta-lactams

ermB Macrolides (erythromycin, etc.), lincosamides
(lincomycin, etc.), streptogramins (synercid, etc.)

floR Florfenicol, chloramphenicol

mecA Methicillin

tetB Tetracycline

tetG Tetracycline

tetL Tetracycline

tetM Tetracycline

tetO Tetracycline

tetQ Tetracycline

tetW Tetracycline

vanA Vancomycin
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3. Results

3.1. Wet Season

The southeast Florida wet season sample set was composed of six wastewater samples collected
at three different wastewater treatment plants (Broward/North, Hollywood, and Miami-Dade/North),
their respective outfalls, and 32 sediment samples collected at those outfalls, and in an array and along
transects centered on the Hollywood outfall. Nine of the antibiotic resistance genes were detected
in the sample set. The most prevalent antibiotic resistance genes detected in the samples were tetW
and aadA2 at 68.4% and 60.5%, respectively. Seven (tetB, tetW, ampC, vanA, ermB, mecA and tetQ) of
the fifteen antibiotic resistance genes were detected in the wastewater treatment plant samples/outlet
boil samples and six (tetO, tetW, ampC, vanA, mecA and aadA2) were detected in the offshore sediment
samples. tetB, ermB and tetQ were only detected in the wastewater samples and tetO and aadA2 were
only detected in the sediment samples. tetL, tetM, blaSHV, blaPSE, floR and tetG were not detected in
any of these samples. Table 3 lists the number and identification of antibiotic resistance gene detections
per sample type. Figure 2 illustrates the occurrence of the different numbers of antibiotic resistance
genes detected at each site in the offshore environment around the Hollywood, Florida, outfall pipe.
Tabled site-specific sample data are available via USGS data release [15].

Table 3. Number and identification of antibiotic resistance gene detections per sample type.

Sample Type Number of
Samples

Total Number of Antibiotic
Resistance Gene Detections

Antibiotic Resistance Genes
Detected

Wet Season samples

Wastewater treatment plant 3 11 tetB, tetQ, ampC, ermB, vanA

Outfall boil 3 6 tetB, tetQ, tetW, ermB

Sediment 32 77 tetO, tetQ, tetW, ampC, ermB, vanA,
mecA, aadA2

Dry Season samples

Wastewater treatment plant 7 46 tetB, tetM, tetO, tetQ, tetW, ampC,
ermB, vanA, mecA, blaSHV

Outfall boil 3 22 tetB, tetO, tetQ, tetW, ampC, ermB,
mecA, blaSHV

Sediment 32 11 tetW, ampC, ermB, vanA

3.2. Dry Season

The dry season sample set was composed of 10 wastewater samples collected at three different
wastewater treatment plants (Broward/North, Hollywood, and Miami-Dade/North), their respective
outfalls, and 32 sediment samples collected at those outfalls, and in an array and along transects
centered on the Hollywood outfall. Ten of the antibiotic resistance genes were detected in the sample
set. The most prevalent antibiotic resistance genes detected in the samples were ermB and tetW at 35.7%
and 31.0%, respectively. Ten (tetB, tetM, tetO, tetW, ampC, vanA, ermB, mecA, blaSHV and tetQ) of the
fifteen antibiotic resistance genes were detected in the wastewater plant/outfall boil samples and four
(tetW, ampC, vanA and ermB) were detected in the sediment samples. tetB, tetM, tetO, mecA, blaSHV and
tetQ were only detected in the wastewater associated samples and all of the four antibiotic resistance
genes found in the sediment samples were also detected in the wastewater samples. tetL, blaPSE, floR
and tetG were not detected in any of these samples. Figure 3 illustrates the occurrence of the different
numbers of antibiotic resistance genes detected at each site in the offshore environment around the
Hollywood, Florida outfall pipe. Tabled site-specific data are available via USGS data release [15].

4. Conclusions

The southeast Florida data illustrates that antibiotic resistance genes are readily detectable in the
wastewater stream and in sediments close to and alongside the outfall outlet and along the outfall pipe.
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The shoreward run of the outfall pipe lies in a trench so it may act as a sink for sediment at the pipe
outlet that are resuspended during storm conditions and advected shoreward. The wet season data
set shows widespread occurrence of multiple antibiotic resistance genes, with the highest instances
occurring in the wastewater stream, alongside the Hollywood outfall pipe, and in close proximity to
the outfall outlet. The dry season results show a concentrated occurrence in the wastewater stream but
less offshore occurrence relative to the wet season data. The offshore positive samples are associated
along the outfall pipe, the outfall outlet, and along the southern transit. The prevalent data between
the seasons are interesting, with the wet season showing a lower prevalence in the wastewater stream
and higher prevalence in the sediment samples and the opposite trend occurring in the dry season.
This observed trend of a greater prevalence of these antibiotic resistance genes in microbial sediment
communities in close proximity to the outfall system may be due to a seasonal temperature flux. The
wet season occurs during the warmer months of the year, and these higher temperatures likely result
in elevated metabolic rates and genetic exchange within these communities. Seasonal differences in
antibiotic usage may also influence the presence or prevalence of resistance genes in these environments.
Outfall discharge rates could also contribute to exposure and genetic response in these microbial
communities, but in this case, similar outfall discharge rates between these two sample seasons were
noted at 11.9 mgd for June 2018 and 12.1 mgd for March 2019 (data courtesy of the City of Hollywood).

Sewage associated wastewater is well known to carry numerous antibiotics due to public health
use. Microbial communities under the influence or stress of antibiotic laden wastewater will acquire
resistance. Microbial communities are known to share resistant genes within and across genera when
there is an exposure source, even at a heightened metabolic cost [19,20]. The southeast Florida ocean
outfall sediment and water sample data illustrate that type of microbial response. The assay results
indicate that there is a heightened prevalence of these genes in the wet season that may be due to
factors such as seasonal water temperatures, increased seasonal wastewater discharge flows, seasonal
antibiotic usage and coastal flow dynamics. Members in these coastal microbial communities may
present risks to recreational water use and to the ecosystem itself. In regard to these southeast Florida
outfall systems and their permitted peak flow use beyond 2025, these peak flow events usually occur
during Florida’s wet season, which typically starts in June of each year. The data observed in this study
should be considered in future seasonal scale risk analyses that are conducted in regard to ocean outfalls
that are in close proximity to sensitive marine ecosystems and waters utilized for recreational use.
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