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The growing emergence of microbial resistance to conventional antimicrobials, due their
dissemination in the environment, and excessive or inadequate prescriptions, associated with the
globalization of pathogenic microorganisms’ transmission, make the discovery of new effective
therapies to combat infection of extreme urgency. It was estimated that, if nothing will be done in
the meantime, the cost of microbial resistance in terms of global production lost between 2015 and
2050 would be 100 trillion USD, and by 2050 microbial resistance will kill 10 million people per year,
outweighing the death caused by cancer [1].

As the development of new conventional antimicrobials is unlikely to solve the problem of
microbial resistance, it is a matter of time until microorganisms develop resistance to the new drugs [2].
So, the new alternative strategies must have a different mechanism(s) of action than conventional
antimicrobials. Antimicrobial photodynamic therapy (aPDT) seems to be a very promising alternative
to conventional antimicrobials to be used not only in human medicine, but also in other areas, such as
in veterinary medicine, agro-food areas and wastewater treatment [3–8].

aPDT has already demonstrated its effectiveness against a wide range of microorganisms like
Gram-positive and Gram-negative bacteria, viruses, fungi and parasites [9–16], independently of their
resistance to conventional treatment [17–19]. This approach requires the presence of a photosensitizer
(PS), light and oxygen. The PS when excited by light in the presence of dioxygen produces reactive
oxygen species (ROS), such as superoxide radical anions, hydrogen peroxide and hydroxyl radicals
(by the type I mechanism), or singlet oxygen, 1O2, (by the type II mechanism) [20,21]. These highly
cytotoxic species are extremely reactive and strongly interact, at the same time, with a variety of vital
biomolecules, mainly lipids, proteins and nucleic acids, leading to irreversible and rapid microbial
inactivation [22,23].

A great advantage of aPDT is its multi-target mechanism, which makes it highly unlikely that
microorganisms develop resistance, contrarily to what happens with conventional antimicrobials that
generally work on a one-target principle [9,23–26]. Despite the aPDT advantages and its efficacy,
there is still room for new improvements in order to transpose this technology to practice.

Some important aspects to be considered in this battle are related to the development of synthetic
routes to produce new cost-effective and efficient PSs and to design new photodynamic protocols
where the amount of PS required and/or the treatment time is reduced. It is recognized that an
easy preparation of a PS associated with a low price are important features to take into account.
Nevertheless, it is difficult to obtain a broad spectrum-of-action PS that fulfill these characteristics.
In general, although the synthetic procedure is simple, the separation and purification processes are
laborious, time-consuming and costly [27]. In fact, during the past two decades, many highly efficient
PSs have been produced, but the chances to reach the market remain extremely low, not only due
to the existing approval framework but also due to the laborious and expensive processes involved
in their preparation and purification. Recently a PS formulation (FORM), based on a non-separated
mixture of five cationic meso-tetraarylporphyrins, was equally effective in the photoinactivation
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of Gram-negative and Gram-positive bacteria, fungi, viruses and biofilms when compared with
the highly efficient 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide
(Tri-Py(+)-Me), one of the constituents of FORM [27–29]. The effective viable-cell reduction of
Gram-positive and Gram-negative bacteria with FORM provided promising indications toward its
use, which would lead to a substantial decrease in costs and production time, paving its potential
to field exploitation. Additionally, the combination of PS with different adjuvants like the inorganic
salts sodium bromide, sodium azide, sodium thiocyanate and potassium iodide (KI) demonstrated a
potentiate effect in the aPDT efficiency [29–33]. For example, the combination of different PSs with KI
allowed a reduction in the PS concentration up to 1000 times, even against biofilms which are not so
prone to inactivation with a PS when used alone [29].

Other aspect to be considered when establishing an optimal aPDT protocol is the PS mechanism of
action [20,21]. It is important to evaluate the type of ROS produced during aPDT in order to determine
the suitable conditions in which microbial photosensitization should operate and to design improved
PS molecules. Although it is well established that the efficiency of aPDT is related to the ability of a PS
to generate 1O2 (type II mechanism) and/or free radical species (type I mechanism) in the course of the
photodynamic process [20,21], the possibility of oxygen-independent photoinactivation leading to the
killing of pathogenic microorganisms, which may be termed the “Type III photochemical pathway”,
has also been suggested [34]. The proposed mechanism involves photoinduced electron transfer that
produces reactive inorganic radicals, which might be useful to treat anaerobic infections or infections
in hypoxic tissues [34].

The development of light sources optimized for the antimicrobial application is another aspect
that should be addressed. To overcome the limitations of lasers and non-coherent light sources,
more economic, homogenous and powerful arrays based on light emitting diodes (LEDs) are
needed [35]. Beside the light source, light irradiance and total light dose play an important role
in the effectiveness of the aPDT and should always be considered when establishing an optimal
antimicrobial protocol [36]. Considering the same light source and a fixed light dose applied at
different light irradiances, phage inactivation was significantly higher when low light irradiances were
used [36]. These LED systems can also be used for obtaining information on responsible endogenous
PSs. Microbial inactivation based on endogenous PSs is, at present, attracting increasing attention by
the scientific community due to its intrinsic antimicrobial effect without the addition of exogenous
PSs [8,37–39]. The applicability of endogenous PSs for aPDT, as already observed when blue light
therapy (aBLT) protocols are used, reduces the possibility of potential harmful effects on animal cells
and also the impact in non-pathogenic microorganisms [8,39].

In consideration of so many new aspects related to the optimal photodynamic approach in the
inactivation of microorganisms, it has been my pleasure to edit a joint presentation of the results from
different research groups in one special scientific publication challenging researchers to respond to
the currently underutilization in clinic and environmental applications. Besides, it is essential to raise
awareness among health authorities and policy makers about the very serious emerging problem of
microbial resistance. It is necessary to increase the current economical efforts (investment) for the
discovery of new antimicrobial drugs, but it is also essential to develop new alternative approaches to
conventional antimicrobials, such as aPDT. Otherwise, if nothing is done in the meantime, we can go
back to the pre-antibiotic era, and not only the treatment of infectious diseases would be affected, but also
several common clinical procedures, such as cesarean sections, organ transplants and chemotherapy,
which strictly depend on the use of traditional antimicrobials to prevent infections, may be at risk.
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