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Abstract: Fosfomycin is being increasingly prescribed for multidrug-resistant bacterial infections.
In patients with systemic involvement, intravenous fosfomycin is usually administered as a
partner drug, as part of an antibiotic regimen. Hence, the knowledge of fosfomycin pharmacodynamic
interactions (synergistic, additive, indifferent and antagonistic effect) is fundamental for a proper
clinical management of severe bacterial infections. We performed a systematic review to point
out fosfomycin’s synergistic properties, when administered with other antibiotics, in order to help
clinicians to maximize drug efficacy optimizing its use in clinical practice. Interactions were more
frequently additive or indifferent (65.4%). Synergism accounted for 33.7% of total interactions,
while antagonism occurred sporadically (0.9%). Clinically significant synergistic interactions were
mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol
(39%) and cephalosporins (33%) in Enterobactaerales; with linezolid (74%), tetracyclines (72%) and
daptomycin (56%) in Staphylococcus aureus; with chloramphenicol (53%), aminoglycosides (43%) and
cephalosporins (36%) against Pseudomonas aeruginosa; with daptomycin (97%) in Enterococcus spp.
and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp. fosfomycin-based antibiotic
associations benefit from increase in the bactericidal effect and prevention of antimicrobial resistances.
Taken together, the presence of synergistic interactions and the nearly total absence of antagonisms,
make fosfomycin a good partner drug in clinical practice.
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1. Introduction

Antimicrobial resistance (AMR) is a health issue of global concern, burdened with elevated costs
and high morbidity and mortality rates. Limited therapeutic options and the increasing occurrence of
resistance to last-resort antibiotics, i.e., colistin or carbapenems, make it necessary to reassess the role
of “old” drugs while waiting for new antibiotics available on the market.
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Fosfomycin (FOS) is an inhibitor of the synthesis of the bacterial wall acting with a
unique mechanism of action. To carry out its action, FOS enters in the bacterial cell
through the L-alpha-glycerophosphate and the hexose-6-phosphate transporter systems, interfering
with the formation of the peptidoglycan precursor uridine diphosphate N-acetylmuramic acid
(UDP-MurNAc) [1].

FOS, after being discovered in 1969 [2], has long been prescribed orally for low urinary tract
infections (UTIs) and only recently has been repurposed, also intravenously and in combination, as a
meropenem- and colistin-sparing agent to treat other infections (complicated UTIs, severe soft tissue
infections, osteomyelitis, prostatitis, etc.) [1,3–5]. The excellent distribution in body sites, the safety
and tolerability profile, as well as its affordability, make FOS a therapeutic option worth considering to
treat multidrug-resistant (MDR) bacterial infections [6,7].

FOS is generally prescribed in association with at least another active agent. The association
benefits from increase in the bactericidal effect of FOS, prevention of AMR, limitation of side effects
thanks to lower dosages. Examples of commonly used empirical combination regimens including FOS
are: Carbapenems + FOS, colistin + FOS, ceftolozane/tazobactam + FOS and tigecycline (TIG) + FOS.

We performed a systematic literature review concerning in vitro and in vivo studies to evaluate
the synergistic effect of FOS in combination with other antibiotics and offer an overall view with
clinically practical tables divided by antibiotic class.

2. Materials and Methods

This systematic review was carried out following the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA).

On 14 April 2020 we performed a MEDLINE/PubMed search using the search string
“Fosfomycin"[Tw] AND (synerg*[Tw] OR association*[Tw] OR combin*[Tw] OR “together”[Tw]
OR “additive”[Tw] OR “addition”[Tw] OR “checkerboard”[Tw] OR “chequerboard”[Tw] OR “time
kill”[Tw] OR “time–kill”[Tw] OR “time–killing”[Tw] OR “time killing”[Tw])”.

1232 papers, from inception to 14 April 2020, were identified. Of these, 870 were excluded by
title screening, 84 by abstract screening, 28 after full-text reading. Fifty-eight papers were excluded
because written in a language different from English. 7 papers were excluded because full text was not
available either online or in paper version. 185 papers were reviewed and discussed independently by
seven authors (RMA, RP, AL, SDB, VV, LP, MF).

Common criteria for the evaluation of susceptibility and synergism were adopted by all authors.
Susceptibility. Susceptibility to FOS for Enterobacterales and Staphylococcus spp. was determined,

according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints,
when the minimum inhibitory concentration (MIC) was ≤ 32 µg/mL. Enterococcus spp. were considered
susceptible when exhibiting a MIC ≤ 64 µg/mL, according to the Clinical & Laboratory Standards
Institute (CLSI) breakpoints. FOS breakpoints are not defined either by EUCAST or CLSI for
Pseudomonas spp., Acinetobacter spp. and Streptococcus spp. Based on literature data, susceptibility was
defined as a MIC ≤ 128 µg/mL for Pseudomonas spp. (ECOFF value), MIC ≤ 32 for Acinetobacter spp.
and ≤64 µg/mL for Streptococcus spp. [8,9].

For all the antibiotics tested in combination, EUCAST breakpoints was considered at first and CLSI
breakpoints were considered when EUCAST breakpoints were not available. Breakpoints adopted are
specified in each paragraph.

Synergistic effect. Checkerboard assay: fractional inhibitory concentration index (FICI) ≤ 0.5.
FICI is defined as follows:

FICI =
MIC FOS in combination

MIC FOS alone
+

MIC other antibiotic in combination
MIC other antibiotic alone

.
Time–kill assay: ratio of effective concentrations concordant with FICI or ≥2 log kill.
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Additive effect. Checkerboard assay: 0.5 < FICI≤ 1. Time–kill assay: ratio of effective concentrations
concordant with FICI or 1 < log kill < 2.

Indifferent effect. Checkerboard assay: 1 < FICI < 4. Time–kill assay: ratio of effective concentrations
concordant with FICI or ± 1 log kill.

Antagonistic effect. Checkerboard assay: FICI ≥ 4. Time–kill assay: ratio of effective concentrations
concordant with FICI or < 1 log kill.

For in vitro studies using a method different from checkerboard or time–kill assay, or in case
data on effective concentrations were not available, synergism was evaluated according to the
authors’ judgment.

For studies performed in vivo, synergism was established with the same ratio of effective
concentrations considered for checkerboard assays or with the same log kill considered for
time–kill assays. When these data were not reported in the paper, synergism was evaluated according
to the authors’ judgment.

3. Results

For a better comprehension, a table with reviewed papers and a summary of most relevant results
is proposed for each antibiotic class.

3.1. Penicillins

Twenty-eight papers evaluating FOS in combination with penicillins, penicillins + β-lactamase
inhibitors, penicillinase-resistant penicillins were reviewed (Table 1). Breakpoints for penicillins
were inferred from EUCAST breakpoints [10]. Penicillins are β-lactam antibiotics that acts through
the inhibition of enzymes needed for peptidoglycans cross linking. Effect of FOS in combination
with penicillins varied greatly according with the bacterial species considered. The highest rates
of synergistic effect were observed against Enterobacterales and Acinetobacter spp. Despite this,
Avery et al. [11] reported high rates of indifferent effect of FOS + piperacillin/tazobactam (PIP/TAZ)
against PIP/TAZ-resistant Enterobacterales. Antagonistic effect was observed against one isolate of
S. aureus with the combination FOS + methicillin [12] and against 6 biofilm-producer Enterococcus
faecalis isolates with the combination FOS + ampicillin [13]. Four studies [14–17] performed in vivo
experiments, with no substantial differences in results when compared with results obtained in vitro.

The combination of penicillin + FOS retains additive/synergistic effects against ~50% of
Enterobacterales, Acinetobacter spp., Staphylococcus spp., and Streptococcus spp. strains.

3.2. Cephalosporins

Forty-one papers evaluating FOS in combination with cephalosporins and cephalosporins +

β-lactamase inhibitors were reviewed (Table 2). Breakpoints for cephalosporins were inferred
from EUCAST breakpoints [10]. Cephalosporins are β-lactam antibiotics that acts disrupting the
peptidoglycan synthesis like penicillins, but are less susceptible to β-lactamases. Some studies
reported discordant results on the effect of FOS in combination with a cephalosporin against
clinical isolates, particularly against Staphylococcus spp. [18–20] and Enterobacterales isolates [11,14,21].
Antagonistic effect was observed against 4 Pseudomonas aeruginosa isolates with the combination
FOS + ceftazidime [22], 1 S. aureus and 1 Staphylococcus epidermidis isolates with the combination
FOS + ceftriaxone [19]. 9 in vivo studies [17,23–30] performed with different strains (Escherichia coli,
P. aeruginosa, S. aureus, Streptococcus pneumoniae, Streptococcus sanguis) confirmed results obtained
in vitro or resulted in higher synergistic effect (additive effect only against 3 S. aureus isolates [25,26]).

Cephalosporins + β-lactamase inhibitors, often chosen by clinicians to treat MDR infections,
resulted in moderate rates of synergistic effect in combination with FOS. Against Enterobacterales, the
combination ceftolozane/tazobactam + FOS resulted synergistic in 16.3% of cases (49 isolates tested [11]),
while the combination ceftazidime/avibactam + FOS was synergistic in 28.8% of cases (66 isolates
tested [11,21,31]). Against P. aeruginosa, the combination ceftolozane/tazobactam + FOS resulted
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synergistic in 71.1% of cases (45 isolates tested [32–34]), while the combination ceftazidime/avibactam
+ FOS was synergistic in 31.6% of cases (38 isolates tested [21,29,33]).

The combination of cephalosporins or cephalosporins + β-lactamase inhibitors + FOS appears to
be clinically appealing especially against infections sustained by Enterobacterales and Pseudomonas spp.

3.3. Carbapenems

Forty-four papers evaluating FOS in combination with carbapenems were reviewed (Table 3).
Carbapenems are β-lactam antibiotics that inhibit bacterial cell wall synthesis by binding to
penicillin-binding proteins. Carbapenems are β-lactams “last-resort” used intravenously to treat
severe infections. Imipenem (IMI) breakpoints are ≤ 2 µg/mL for Enterobacterales, Acinetobacter spp.,
S. pneumoniae and ≤ 0.001 µg/mL for Pseudomonas spp. and Staphylococcus spp. Meropenem breakpoints
are ≤2 µg/mL for Enterobacterales, Acinetobacter spp., Pseudomonas spp., S. pneumoniae and ≤4 µg/mL
for Staphylococcus spp. Ertapenem (ERT) breakpoints are≤0.5 µg/mL for Enterobacterales, S. pneumoniae
and ≤4 µg/mL for Staphylococcus spp. [10].

Synergism rates were not unanimous on all studies, but antagonistic effect was observed only
in 2 isolates of P. aeruginosa in the study by Pruekprasert et al. [22] and in 1 isolate of S. aureus in the
study by Quentin et al. [35]. No evident differences in the synergistic effect was observed depending
on the carbapenem tested. The association FOS + carbapenem often resulted, when reported, in FOS-
and/or carbapenem-susceptibility restoration. Three authors performed in vivo experiments using
methicillin-resistant Staphylococcus aureus (MRSA) isolates: in two studies [28,36] the results in vivo
were concordant with those found in vitro, while in the third study the combination in vivo resulted
less effective [37].

From the clinical point of view the combination of carbapenems + FOS against Enterobacterales,
P. aeruginosa end Acinetobacter spp. appears appealing.

3.4. Monobactams

Five papers evaluating FOS in combination with aztreonam (ATM) were reviewed (Table 4).
ATM is a synthetic antibiotic whose susceptibility is often preserved also in those strains which
are resistant to other β-lactam antibiotics. The mechanism of action is similar to penicillins. ATM
breakpoints are ≤1 µg/mL for Enterobacterales and ≤0.001 µg/mL for Pseudomonas spp. [10].

The largest study evaluating FOS in combination with ATM on Enterobacterales isolates [33]
reported an indifferent effect on most (64.6%) isolates. The combination was reported to have an
additive effect on most isolates of P. aeruginosa [33,38], sometimes leading to ATM susceptibility
restoration [33,39]. There were no in vivo studies evaluating this combination.

3.5. Quinolones

Twenty-nine papers evaluating FOS in combination with quinolones were reviewed (Table 5).
Quinolones are bactericidal antibiotics that directly inhibit bacterial DNA synthesis. Breakpoints for
quinolones were inferred from EUCAST breakpoints [10]. Synergism rates were not unanimous on
all studies for isolates of P. aeruginosa. In 1 in vivo study synergism rate was 100% according to
Mikuniya et al. [40]. Antagonism was observed in 1 in vivo [41] and 1 in vitro studies [39]. For E. coli
isolates there was a weak synergism. In a recent in vitro study there was complete FOS and
ciprofloxacin susceptibility restoration [42]. The combinations showed different synergistic rates
for Staphylococcus spp. isolates with 100% synergistic rate in 1 in vitro study [43] and in 1 in vivo
study [44]. No antagonism was observed for E. coli and Staphylococcus spp. isolates. There were some
differences in the synergistic effect depending on the quinolone tested. The most frequent effect of FOS
+ ciprofloxacin was indifferent even though it showed in vitro 95% synergistic effect with S. aureus [45]
The combination with levofloxacin showed mainly an additive effect in P. aeruginosa [38,39,46] and in
Acinetobacter spp. [38] isolates.
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In summary good additive/synergistic effect rates are reported when quinolones + FOS are used
against S. aureus and P. aeruginosa isolates.

3.6. Aminoglycosides

Aminoglycosides (AMG) act through inhibition of protein synthesis, resulting in a potent and
broad-spectrum antibacterial activity but with a potential high nephro- and oto-toxicity [47]. In the
attempt to overcome increasing aminoglycosides resistance, development of novel AMG (such as
arbekacin and plazomicin) has occurred, but combination strategies are important opportunities to
treat resistant bacteria and to reduce toxicity. Inhaled delivery of tobramycin, allowing for greater
exposure within the lungs and reducing systemic toxicity, is also approved for the treatment of
patients with chronic P. aeruginosa lung infection associated with cystic fibrosis (CF) in United States
and Europe [47]. Overall, 41 papers evaluating FOS in combinations with AMG were reviewed
(Table 6). Available EUCAST aminoglycosides breakpoints were applied in all studies except one [48].
Due to the peculiarity of possible AMG therapeutic use (e.g. inhaled formulation in cystic fibrosis),
many studies investigated the AMG + FOS combination also when administered by inhaled topical
use; moreover, the activity of this combination on biofilm formation and in anaerobic conditions was
also evaluated. Different AMG were tested as partner of FOS towards several bacterial species in a
total of 67 evaluations: mainly gentamicin (31.3%, n = 21), amikacin (23.9%, n = 16) and tobramycin
(22.4%, n = 15) were used. Synergism rates were not unanimous on all studies, considering the different
bacteria analyzed and the different types of aminoglycosides tested. Overall, a synergistic effect of
FOS together with different AMG, even if with different percentages, was revealed in 51 evaluations
(74.6%). No synergism was reported in 16 cases (23.9%), even regarding effects on P. aeruginosa and
Acinetobacter spp. In one study, data on synergism were not available [49]: however, a potential
beneficial effect was indeed reported, demonstrating that FOS enhanced the activity of tobramycin
with a 100% additive effect during in vitro evaluation on P. aeruginosa biofilms on cystic fibrosis airway
epithelial cells. An antagonistic effect, testing the combination of FOS with gentamicin, was reported
in 1985 by Alvarez et al. in 2.7% of 148 MRSA isolates [12] and in 2005 by Pruekprasert et al. in 27% of
22 P. aeruginosa strains [22].

Focusing on different bacterial strains, generally a synergistic or additive effect of FOS + AMG was
demonstrated on KPC-producing K. pneumoniae [50–52]; however, Souli et al. observed an indifferent
effect of FOS + gentamycin combination in all of their tested KPC+ strains [53].

When tested, a generally positive effect of FOS and AMG combination on biofilm formation
and an improved AMG activity in anaerobic conditions were also reported for P. aeruginosa and
Acinetobacter spp., resulting moreover in lower required AMG doses.

Activity of FOS plus an AMG was also evaluated against Streptococcus spp. (streptomycin) and
Neisseria gonorrhoeae (both, gentamicin) in two studies [14,54]: No synergistic effect was revealed but
antagonism was not even reported. Interestingly, synergistic activity (assessed as a fourfold reduction
of MIC when fosfomycin was combined with gentamicin 1 mcg/mL) and additive effect were revealed
for 8 vancomycin-resistant E. faecium (VRE) isolates (63% and 13%, respectively) [55].

The combination of AMG + FOS against P. aeruginosa appears to be the most clinically appealing.

3.7. Macrolides

Six papers evaluating FOS in combination with macrolides, in particular with erythromycin (ERY),
azithromycin (AZT), clarithromycin (CLT), or midecamycin (MDM), were reviewed (Table 7).
Macrolides are a large class of antibiotics that act binding 50S ribosomal subunit, inhibiting bacterial
proteins synthesis. They have broad-spectrum activity, mainly against many Gram-positive bacteria
and some Gram-negative bacteria [56]. Only one in vitro study evaluated FOS + ERY combination
against Enterobacterales (87 strains of E. cloacae, E. coli, Proteus spp. and Klebsiella pneumoniae),
reporting synergistic effect against 52% of isolates and additive effect against 30% [14]; in the same
study FOS + ERY combination was also tested against P. aeruginosa and S. aureus, proving in most
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cases additive effect or, less frequently, synergistic effect [14]. When this combination was tested
against Streptococcus spp. synergistic effect was observed against 15% of isolates, while additive
(27%) or indifferent (58%) was seen against the remaining [14]. Some studies evaluated FOS + AZT
combination, reporting indifferent effect in 100% of cases, either when tested against N. gonorrhoeae
(2 studies) [54,57] or against S. epidermidis (1 study) [58]. Finally, FOS + CLT and FOS + MDM
combinations were evaluated against S. pseudointermedius and P. aeruginosa respectively; in both cases
additive or synergistic effect was demonstrated in vitro or in vivo experiments [59,60]. No antagonistic
effect was observed for any combination against any isolate.

From the clinical point of view the combination of macrolides + FOS appears the less appealing.

3.8. Glycopeptides

Eighteen articles evaluating FOS in combination with glycopeptides (vancomycin and teicoplanin)
have been reviewed (Table 8). Articles were from Spain (n = 5), Taiwan (n = 3), China (n = 2),
France (n = 2), Germany (n = 2), Italy (n = 2), Austria (n = 1), and Brazil (n = 1).

Glycopeptides possess an antimicrobial activity selectively directed against Gram-positive bacteria,
while Gram-negatives are protected by the outer membrane that is impermeable to these antibiotics.
Glycopeptides inhibit the peptidoglycan synthesis by interacting with the terminal D-alanyl-D-alanine
present on the pentapeptide side chains of the peptidoglycan precursors.

384 strains have been studied, belonging to several species as S. aureus (n = 219),
S. epidermidis (n = 52), E. faecalis (n = 39), S. pneumoniae (n = 28), Acinetobacter baumannii (n = 20),
Enterococcus faecium (n = 16) and other coagulase-negative staphylococci (CoNS) (n = 10). Synergy was
detected with FOS-vancomycin (VAN) combination (40 out of 308 strains tested, 13%) in 33.3% of
E. faecalis, 30% of E. faecium, 16.7% of S. aureus, 13.5% of S. epidermidis, and 3.6% of S. pneumoniae.
Higher rates of synergistic interactions were detected with FOS-teicoplanin (TEC) combination (63 out
of 130 strains tested, 48.5%) in 71.8% of E. faecalis, 43.7% of E. faecium, 60% of other CoNS, 34.3% of
S. aureus and 33.3% S. epidermidis. Synergistic concentration ranges were 1-64 mg/L for FOS, 1-7.5 mg/L
for VAN and only 8 mg/L for TEC. Regarding resistant isolates, FOS-VAN synergy was detected in
one heterogeneous glycopeptide-intermediate Staphylococcus aureus (hGISA), 27 MRSA, 5 S. aureus
strains with borderline MIC values for VAN (2 mg/L) and in 6 VRE strains, while FOS-TEC in 10 MRSA
and 11 VRE strains. Antagonism FOS-VAN was detected in 5 S. aureus and one S. epidermidis strains.
Only in 8 FOS-resistant S. aureus strains the activity of FOS was restored in combination with VAN.
In vivo application of FOS-VAN combinations showed significant survival of ≥50% of treated animals
or patients with infections caused by S. aureus or S. epidermidis [24,36,61–63].

In summary the combination of VAN + FOS resulted in good synergistic effect rates against
Enterococcus spp. isolates and seems to be the most clinically relevant combination.

3.9. Tetracyclines

Ten papers evaluating FOS in combination with tetracyclines, mostly with minocycline (MIN)
and in few cases with doxycycline (DOX) or tetracycline (TEC), were reviewed (Table 9). Tetracyclines
are a large class of antibiotics that acts binding the 30S ribosomal subunits, inhibiting bacterial proteins
synthesis. They have broad-spectrum activity, being active against many Gram-positive bacteria,
Gram-negative, and atypical bacteria [64]. Almost all studies evaluated in vitro FOS + MIN combination
against different bacterial species. When evaluated against Enterobacterales (20 strains), FOS + MIN
proved to have additive effect most of the time (65% of isolate), but only in few cases synergistic
effect [38]. Similar results were observed when it was tested against multidrug-resistant P. aeruginosa [38]
and A. baumannii isolates; furthermore, in the last case, complete restoration of susceptibility of MIN
was reported [65]. Only one study evaluated FOS + TEC combination against Enterobacterales
(100 isolates), observing indifference in almost 100% of cases [66]. 2 studies evaluated FOS + MIN
combination against vancomycin-resistant E. faecium or E. faecalis (51 strains), reporting most often
indifferent effect and some sporadic case of synergism [13,67]. Otherwise, FOS + DOX combination was
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tested once against 24 isolates of vancomycin-resistant E. faecium, demonstrating to have synergistic or
additive effect in most of cases [68]. Finally, when FOS + MIN was tested against MRSA (152, strains, 3
studies) proved to have synergistic effect in numerous cases [18,69,70]. No study reported any case
of antagonism.

The combination of minocycline + FOS against A. baumannii appears interesting.

3.10. Polymyxins

Thirty-two papers evaluating FOS in combination with polymyxins were reviewed (Table 10).
Polymyxins are bactericidal drugs that bind to lipopolysaccharide (LPS) and phospholipids in the outer
cell membrane of Gram-negative bacteria and leads to disruption of this. Twenty-eight papers evaluated
colistin. Colistin breakpoints are ≤ 2 µg/mL for Enterobacterales, Acinetobacter spp. and Pseudomonas
spp. according to the EUCAST [10]. Synergism rates were not unanimous on all studies but was
reported in 23/29 papers. Synergisms rate were 100% in 2 in vitro studies against K. pneumoniae [50,71]
and 2 in vivo studies respectively against A. baumannii and E.coli [72,73]. The overall effect was
indifferent on most isolates of P. aeruginosa and Enterobacterales. Antagonism was reported in vitro
against K. pneumoniae and A. baumannii. In particular the combination was antagonist in 100% of all
K. pneumoniae OXA-48 isolates according to Evren et al. [74].

Four papers evaluated polymyxin B. Polymyxin B breakpoints for Enterobacterales, Acinetobacter
spp. and Pseudomonas spp. are ≤ 2 µg/mL according to CLSI. Synergism was observed in 100% of
in vitro isolates of CP K. pneumoniae according to Bulman et al. [75]. FOS + polymyxin had a prevalent
addictive effect in vitro against Pseudomonas spp. [76] and A. baumannii [65]. In a study there was a
complete polymyxin B susceptibility restoration [65]. No antagonistic effect was observed either in
in vitro or in vivo studies.

The combination of polymyxins and FOS appears a good option against Enterobacterales and
P. aeruginosa strains.

3.11. Daptomycin

Thirteen papers evaluating FOS in combination with daptomycin (DAP) were reviewed (Table 11).
DAP is a cyclic lipopeptide administered intravenously for Gram-positive infections, acting through
bacterial membrane depolarization [77]. Its breakpoints are ≤1 µg/mL for Staphylococcus spp. and
≤2 µg/mL for Enterococcus spp. [10,78].

When evaluated against S. aureus isolates, the combination FOS + DAP had a synergistic effect
in vitro against 37–100% of isolates (synergistic effect of the combination against 100% of the tested
isolates was reported in 4 in vitro studies [63,79–81] and 2 in vivo studies [37,79]). DAP showed
excellent synergistic activity in association with FOS against Enterococcus spp., resulting in synergistic
effect in all 34 tested isolates (4 studies). FOS + DAP also exhibited a greater efficacy against E. faecalis
biofilm formation than FOS or DAP alone. Efficacy in vivo sometimes differed from the results obtained
in vitro, resulting in greater [37] or less [82] efficacy. No antagonistic effect was observed either in
in vitro or in vivo studies.

The combination of daptomycin + FOS has good synergistic effect rates against S. aureus and
Enterococcus spp. and deserves clinical interest.

3.12. Tigecycline

Fourteen papers evaluating FOS in combination with TIG were reviewed (Table 12). TIG is
the first glycylcycline antibiotic, a broad-spectrum class of bacteriostatic derivate from tetracyclines,
that acts binding the 30S ribosomal subunits, inhibiting bacterial proteins synthesis. It is only available
for intravenous administration and shows activity against either Gram-positive or Gram-negative
or atypical bacteria [64]. Its breakpoint are ≤0.5 mg/L both for S. aureus and Enterobacterales and
≤0.25 mg/L for Enterococcus spp. [10].
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When evaluated in vitro against Enterobacterales or A. baumannii (10 studies, 338 isolates) FOS +

TIG had synergistic effect approximately in 17% of cases and additive effect in the 43%, while indifference
was reported for all remaining cases [38,73,74,83–89]. Furthermore, indifferent effect against all isolates
was observed in one in vivo experiment against E. coli [73]. Mostly indifference was observed also
when it was tested against N. gonorrhoeae or P. aeruginosa [54,86]. When tested against 61 isolates
of Enterococcus spp. (3 studies) many cases of synergistic effect was reported in vitro (about 40% of
cases) [55,90,91] and in vivo against E. faecalis [90]. Finally, 2 studies evaluated FOS + TIG combination
in vitro against MRSA, but with inconclusive results (total indifference or almost total synergism) [69,90].
In all in vitro studies only 2 cases of antagonism were reported, against K. pneumoniae [89].

According to the literature the combination of TIG + FOS appears to be particularly interesting
(good synergistic effect rates) against Enterobacterales and Enterococcus spp.

3.13. Linezolid

Thirteen papers evaluating FOS in combination with linezolid (LZD) were reviewed (Table 13).
LZD is a synthetic antibiotic which binds rRNA on both 30S and 50S ribosomal subunits, inhibiting
bacterial proteins synthesis [92]. It is used for Gram-positive infections treatment, including MRSA and
E. faecium vancomycin-resistant (VREF) infections [93]. Its breakpoint is ≤4 µg/mL both for S. aureus
and E. faecium.

When evaluated against S. aureus isolates (9 studies), combination FOS + LZD had a synergistic
effect in vitro approximately in 95% of cases (synergistic effect of the combination against 100% of
the tested isolates was reported in 6 in vitro studies [36,43,63,94,95]) and even against staphylococcal
biofilm cultures [69]; furthermore, the only 2 in vivo studies performed proved FOS + LZD combination
to have higher efficacy than FOS or LZD alone [36,95]. One study evaluated the combination on
2 strains of S. epidermidis proving synergism on both [43]. Otherwise, in the 4 studies in which it was
tested against E. faecium, this combination showed in most cases additive effect and only few cases of
synergism. In no case was reported synergistic effect against E. faecalis (2 studies). No antagonistic
effect was observed either in in vitro or in vivo studies.

The good synergistic effects reported make LZD + FOS a promising combination
against staphylococci.

3.14. Rifampin

Fourteen papers evaluating FOS in combinations with rifampin were reviewed (Table 14).
Rifampin breakpoints are ≤0.06 µg/mL for Staphylococcus spp., Streptococcus spp. and ≤0.125 µg/mL for
S. pneumoniae. Rifampin inhibits bacterial DNA-dependent RNA polymerase with a concentration
related effect. It is used for the treatment of intracellular pathogens and it has a broad-spectrum
antibacterial activity. Rifampin breakpoints are not defined either by EUCAST or by CLSI for
Acinetobacter spp., Enterobacterales and Enterococcus spp. Based on literature data, susceptibility
was defined as a MIC ≤ 1 µg/mL for Enterococcus spp. [71]. Rifampin showed synergistic activity
in association with FOS against Enterococcus spp., resulting in synergistic effect in 20−100% of cases.
High activity was reported in vitro and in vivo in a recent paper where FOS + RIFA also exhibited a
greater efficacy against E. faecalis biofilm formation [90]. When evaluated against S. aureus isolates, the
combination FOS + rifampin had a synergistic effect in vitro against 34−100% of isolates. Synergistic
effect of the combination against 100% of the tested isolates was reported in 3 in vitro studies [43,90,96]
and 2 in vivo studies [37,96]. Antagonistic effect was observed only in 33% of isolates in the study by
Quentin et al. [35] where the antibiotic combination was antagonist for the isolates susceptible and
intermediate to rifampin and indifferent for those resistant. No antagonistic effect was observed in
other studies.

In clinics RIF + FOS should be considered (usually with a third agent) against S. aureus sustained
infections, especially when biofilm production is likely.
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3.15. Miscellanea

Two papers evaluating FOS in combination with metronidazole (MTZ) were reviewed
(Table S1). MTZ is a bacteriostatic antimicrobial, active on bacteria (mainly anaerobic) and parasites.
When evaluated in vitro against Helicobacter pylori, combination FOS + MTZ had a prevalent indifferent
effect, an additive effect in only 21% of cases and an antagonist effect in 4% [97]. In vivo study showed
a significantly decrease mortality and increase cure rates if the animal treated with MTZ + FOS [98].

One paper evaluating FOS in combination with spectinomycin (SCM) was reviewed (Table S1).
SCM is an aminocyclitol aminoglycoside antibiotic with bacteriostatic activity, used to treat gonorrhea.
In vitro study reported that antimicrobial combinations of SMC + FOS no synergistic effect was
found [54].

One paper evaluating FOS in combination with sulbactam (SLB) was reviewed (Table S1). SLB is
an irreversible β-lactamase inhibitor capable to binding to penicillin-binding proteins and with weak
antimicrobial activity. When evaluated in vitro against A. baumannii OXA-23, combination FOS + SLB
had a synergistic effect in 75% of case, and an indifferent effect in 25% of cases [99].

One paper evaluating FOS in combination with lincomycin (LNM) was reviewed (Table S1).
LMN is a protein synthesis inhibitor with activity against gram positive and anaerobic bacteria.
When evaluated in vitro against S. aureus, combination FOS + LNM had a synergistic effect in 81% of
case and an additive effect in 25% of cases [14].

One paper evaluating FOS in combination with nitroxoline (NTX) was reviewed (Table S1). NTX is
a urinary antibacterial agent active against susceptible Gram-positive and Gram-negative organisms.
In vitro study, NTX was synergistic with FOS in only 12% of cases and in other cases shoed an indifferent
effect (88%) [66].

Two papers evaluating FOS in combination with quinupristin/dalfopristin (Synercid) were
reviewed (Table S1). Synercid is a protein synthesis inhibitor used to treat infections by staphylococci
and by vancomycin-resistant strain. When evaluated in vitro against methicillin resistant or susceptible
Staphyloccoccus spp., combination FOS + Synercid had a synergistic effect in 100% of case [43,100].

Three papers evaluating FOS in combination with fusidic acid (FSA) were reviewed (Table S1).
FSA is a bacteriostatic antibiotic with acts as a bacterial protein synthesis inhibitor. When evaluated
in vitro against MRSA, combination FOS + FSA had a various behavior, showing a synergistic effect in
88–100% of case or an indifferent effect in 100% of cases. No antagonism was found [69,101,102].

Four papers evaluating FOS in combination with chloramphenicol (CHL) were reviewed
(Table S1). CHL is a synthetic broad-spectrum antimicrobial, mainly bacteriostatic, active on
numerous Gram-positive and Gram-negative, aerobic and anaerobic bacteria; it acts binding 50S
ribosomal subunit, inhibiting bacterial protein synthesis [103]. Its breakpoint is ≤ 8 mg/L both for S.
aureus and Enterobacterales [10]. When evaluated in vitro against either Enterobacterales (468 isolates,
4 studies), combination FOS + CHL had synergistic effect approximately in 40% of cases, while additive
effect in 35% and indifferent effect in the remaining cases [14,66,104,105]. Furthermore, one study tested
this combination against S. aureus, with similar results (synergistic effect against 44% of isolates) [14].
No antagonistic effect was observed.

Three papers evaluating FOS in combination with trimethoprim-sulfamethoxazole (TMP-SMX)
were reviewed (Table S1). TMP-SMX is a fixed combination of 2 antimicrobials that inhibits bacterial
synthesis of tetrahydrofolate, a necessary cofactor for bacterial DNA synthesis. It is available in oral or
intravenous preparation and it is mainly used for treatment of urinary and respiratory infections [106].
Its breakpoint is ≤ 2 µg/mL both S. aureus and Enterobacterales [10]. When evaluated in vitro
against either S. aureus (148 isolates) or Enterobacterales (120 isolates), combination FOS + TMP-SMX
had indifferent effect approximately against 92% of isolates [12,38,66]. Only in few cases, against
Enterobacterales, was reported synergistic or additive effect (1 study) [38] and even antagonistic effect
was reported in 4 cases when tested against S. aureus [12].

Two papers evaluating FOS in combination with nitrofurantoin (NTF) were reviewed (Table S1).
NTF is a synthetic antibiotic administered orally mainly for treatment of lower urinary tract infections.
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Its breakpoint is ≤ 64 µg/mL both E. faecalis and Enterobacterales [10]. When evaluated in vitro against
either vancomycin-resistant E. faecium (32 isolates) or Enterobacterales (100 isolates), combination FOS
+ NTF had indifferent effect against 100% of isolates [66,67]. No synergistic, additive or antagonistic
effect was observed.

3.16. Non-Antibiotic Molecules

One paper evaluating FOS in combination with auranofin (AF) was reviewed (Table S2). AF
is an orally active gold compound for the treatment of rheumatoid arthritis. When evaluated
in vitro against Staphyloccoccus spp., combination FOS + AF had showed a reduction of bacterial
load for both MSSA and MRSA strains. In vivo, this combination had showed a synergistically
inhibition of abscess and inflammation formation. No interactions were showed against S. epidermidis
MS [107]. Three paper evaluating FOS in combination with dilipid ultrashort cationic lipopeptides,
tobramycin-efflux pump inhibitor (TOB-EPI) conjugates or amphiphilic lysine-tobramycin conjugates
(ALT) against P. aeruginosa, were reviewed (Table S2). For all combinations, in vitro studies had showed
a synergistic effect (100%). Furthermore, in presence of TOB-EPI or ALT conjugates MICs of FOS were
dramatically reduced [108–110]. One paper evaluating FOS in combination with β-chloro-L-alanine
(β-CLA) was reviewed (Table S2). β-CLA is an amino acid analog of FOS. When evaluated in vitro
against MRSA, combination FOS + β-CLA had showed a synergistic effect on biofilm production [111].
One paper evaluating FOS in combination with plectasin NZ2114, compound capable to inhibits a
cell wall biosynthesis, was reviewed (Table S2). When plectasin NZ2114 evaluated in vitro against E.
faecalis, in combination with FOS it no show a synergistic effect [112]. One paper evaluating FOS in
combination with 2 quinolone derivatives (A and B) was reviewed (Table S2). When evaluated in vitro
against E. faecalis VRE and MRSA, combination FOS + A had always showed a synergistic effect, while
FOS + B had showed a synergistic effect in 64% of cases and in other cases shoed an additive effect
(36%) [113]. One paper evaluating FOS in combination with N-acetylcysteine (NAC), a mucolytic agent,
was reviewed (Table S2). The in vitro analysis against E. coli, had showed a capable of NAC to
reduce biofilm if used in combination with FOS. The most effective combination was that obtained
using FOS at 2000 mg/L and NAC at 2 mg/mL [114]. One paper evaluating FOS in combination
with sophoraflavanone G (SFG), a phytoalexins, was reviewed (Table S2). When evaluated in vitro
against MRSA, combination FOS + SFG had showed a synergistic effect (100%) [115]. One paper
evaluating FOS in combination with arenaemycin (ARM), also called pentalenolactones, was reviewed
(Table S2). When evaluated in vitro against P. vulgaris and S. gallinarum, combination FOS + ARM had
showed a synergistic effect (100%) [116]. One paper evaluating FOS in combination with chlorogenic
acid (CHA) and caffeic acid (CFA) was reviewed (Table S2). When evaluated in vitro against Resistant
Listeria monocytogenes, combination FOS + CHA had showed a reduction in the cell growth equal to
98% and FOS + CFA as to 85,2%. Moreover, CHA restored a FOS susceptibility in 100%, if 3 mg/L [117].
One paper evaluating FOS in combination with silver (AgNPs) and zinc oxide (ZnONPs) nanoparticles,
are molecules known to affect bacterial membranes, was reviewed (Table S2). When evaluated in vitro
against S. aureus, S. enterica, and E. coli, combination FOS + AgNPs or ZnONPs had showed a synergistic
effect (100%) [118].

4. Discussion

FOS is an inhibitor of bacterial wall synthesis with a unique mechanism of action. Its use in
clinic is increasing as is often active against MDR bacteria. Intravenous FOS is often administered
in combination with other antibiotics therefore the knowledge of pharmacodynamic interactions is
of fundamental importance. In this review, we have investigated the role of FOS as partner drug,
by analyzing literature studies in which it has been used in vitro and in vivo in combination with
other antibiotics and evaluating the antimicrobial activity of combinations against the most common
bacterial pathogens. From this huge data collection, no clinically significant antagonistic effect came
out between FOS and any most common used antibiotics for the treatment of nosocomial infections.
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FOS has been studied in combination with the major antibiotic classes (penicillins, cephalosporins,
carbapenems, monobactams, quinolones, aminoglycosides, macrolides, glycopeptides, tetracyclines,
polimyxins, lipopeptides, oxazolydinones, and rifampicin) against both Gram-negative and
Gram-positive bacteria. A total of 185 literature reports accounted for 9,927 study isolates. FOS-based
synergistic interactions were detected in 33.7% of total isolates, although additive and indifferent
interactions were more prevalent (65.4%). Antagonism occurred sporadically (0.9% of total isolates).

Clinically significant synergistic interactions were mostly distributed in combination with
penicillins (51%), carbapenems (43%), chloramphenicol (39%), and cephalosporins (33%) in
Enterobactaerales; with linezolid (74%), tetracyclines (72%), and daptomycin (56%) in S. aureus;
with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against P. aeruginosa;
with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in
Acinetobacter spp.

Notably, 31.2% of synergistic interactions occurred in Enterobacterales (FOS in combination with
3 different antibiotics), followed by 31% occurred in S. aureus (FOS in combination with 4 different
antibiotics) and 7.6% occurred Enterococcus spp. (FOS in combination with 5 different antibiotics).

From a clinical point of view, taking into account the antimicrobial stewardship principles and the
priorities in terms of MDR impact, our work points out good pharmacodynamic interactions rates
(additive/synergistic effects) when FOS is especially combined with:

(1) Cephalosporins and cephalosporins + β-lactamase inhibitors, including ceftazidime/avibactam
and ceftolozane/tazobactam, for Enterobacterales and P. aeruginosa;

(2) carbapenems for K. pneumoniae and P. aeruginosa;
(3) quinolones for P. aeruginosa;
(4) polymyxins for K. pneumoniae;
(5) daptomycin for Staphylococcus spp (MRSA included), and Enterococcus spp.;
(6) linezolid for Staphylococcus spp.; and
(7) sulbactam for A. baumannii.

When FOS is combined with molecules other than antibiotics, chlorogenic acid and caffeic acid
appeared to be good partner drugs against L. monocytogenes.

Our tables (including the summarizing Table 15) could act as a useful consultation tool for
clinicians using FOS both as empirical or targeted antibiotic regimen.

5. Conclusions

In conclusion, taken together, these data, the pharmacological characteristics (i.e., excellent
distribution in body sites, the safety and tolerability profile) and the encouraging positive clinical
outcome of treated patients highlight the role of FOS as partner drug (mostly intravenously) for the
treatment of infections caused by common (including MDR) pathogens. In particular, the presence of
synergistic interactions and the almost total absence of antagonisms, make FOS a good partner drug
in clinical practice. Moreover, improving FOS-based combinations could act as a meropenem- and
colistin-sparing agent, mostly contributing to prevent AMR, especially related to last resource antibiotics.
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Table 1. Studies on combination between fosfomycin and penicillins, penicillins + β-lactamase inhibitors, penicillinase-resistant penicillins. CB: checkerboard assay;
TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Penicillin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

Fosfomycin-
Resistant

(%)

Penicillin-
Resistant

(%)

In Vitro
(Methods)/

In Vivo
(Animal and

Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

Fosfomycin
Susceptibility
Restoration

(%)

Penicillin
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Avery piperacillin/
tazobactam 49

8 E. coli: KPC
(25%), NDM
(75%), ESBL
(62.5%); 35

Klebsiella spp:
KPC (45.7%),

NDM (40%); OXA
(14.3%), VIM
(8.6%), ESBL
(88.6%), fosA

(44%); 2
Citrobacter spp:

KPC (50%), NDM
(50%), ESBL

(50%), 4 E. cloacae:
KPC (75%), NDM
(25%), ESBL (75%)

20 (40.8%) 49 (100%) in vitro (ET) 1 (2%) 2 (4%) 46 (94%) 0% - -

Data on
synergism
reported
without
distinction for
bacterial strains.
% of FOS-R
isolates
estimated on the
basis of the
reported MIC50.

[11]

2019, USA Flamm piperacillin/
tazobactam 20 - - - in vitro (CB, TK) 12 (60%) 7 (35%) 0% 0% - -

For 1 isolate the
efficacy of FOS +
PIP/TAZ
remained
indeterminate.

[38]

1978,
Spain Olay ampicillin,

carbenicillin

Ampicillin: 17 E.
coli, 11 Klebsiella
spp., 7 E. cloacae,
14 Proteus spp.,
22 Salmonella

spp.
Carbenicillin: 16

E. coli, 32 S.
marcescens, 26
Proteus spp.

- - - in vitro (CB)

ampicillin:
31 (43%);

carbenicillin:
24 (32%)

ampicillin:
31 (43%);

carbenicillin:
31 (41%)

ampicillin: 9
(12%);

carbenicillin:
19 (25%)

0% - - - [14]

E. coli

2020,
Korea Seok piperacillin/

tazobactam 2 ESBL (100%) 0% 1 (50%) in vitro (TK) 0% 0% 2 (100%) 0% - - - [119]

2018,
France Berleur temocillin 3 KPC (33.3%),

OXA (33.3%) 0% Breakpoints
NA

in vitro (CB,
TK); in vivo

(mouse,
peritonitis)

0%

in vitro: 3
(100%);

in vivo: 3
(100%)

0% 0% - - - [15]

2014,
Sweden Hickam mecillinam 2 ESBL, OXA (50%) 0% 0% in vitro (CB, TK) 2 (100%) 0% 0% 0% - - - [120]



Antibiotics 2020, 9, 500 13 of 74

Table 1. Cont.

Strain Year and
Country Author Penicillin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

Fosfomycin-
Resistant

(%)

Penicillin-
Resistant

(%)

In Vitro
(Methods)/

In Vivo
(Animal and

Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

Fosfomycin
Susceptibility
Restoration

(%)

Penicillin
Susceptibility
Restoration

(%)

Comments Reference

1977,
Poland Borowski ampicillin 10 - - - in vitro (CB) 7 (70%) 1 (10%) 2 (20%) 0% - - - [121]

K. pneumoniae 2014,
Sweden Hickam mecillinam 1 ESBL, OXA

(100%) 0% 0% in vitro (CB, TK) 1 (100%) 0% 0% 0% - - - [120]

Salmonella spp.

1977,
Spain Perea ampicillin 90 - 17 (18.9%) 11 (12%) in vitro (CB, TK) 74 (82%) 7 (7%) 7 (7%) 0% - -

For 2 isolates
the effect of FOS
+ ampicillin
remained
indeterminate.
The authors
considered
synergistic the
effect for FICI
up to 0.75.

[104]

1977,
Spain Figueroa ampicillin 16 - - - in vitro (CB) 15 (93%) 1 (6%) 0% 0% - -

S. typhi. The
authors
considered
synergistic the
effect for FICI
up to < 1. They
also evaluated
different
antibiotic
combinations on
patients with
typhoid fever:
FOS + AMP
resulted in the
highest rate of
cures.

[105]

Shigella spp. 1977,
Spain Perea ampicillin 50 - 27 (54%) 30 (60%) in vitro (CB, TK) 27 (54%) 9 (18%) 14 (28%) 0% - -

The authors
considered
synergistic the
effect for FICI
up to 0.75.

[104]

P. aeruginosa

2019, USA Avery piperacillin/
tazobactam 103 - NA (at least

71) 103 (100%) in vitro (ET) 3 (2%) 26 (25%) 74 (71%) 0% - 15 (14.6%) - [33]

2019, USA Flamm piperacillin/
tazobactam 5 - - - in vitro (CB, TK) 0% 5 (100%) 0% 0% - - - [38]

2013,
Brazil dos Santos piperacillin/

tazobactam 4 - 4 (100%) 2 (50%) in vitro (CB) 4 (100%) 0% 0% 0% 2 (50%) 1 (50%) - [48]

2002,
Japan Okazaki piperacillin 30 - 15 (50%) 30 (100%) in vitro (efficacy

time index) 3 (10%) 6 (20%) 21 (70%) 0% 0% 15 (50%) - [39]

1984,
Japan Takahashi piperacillin 20 - - - in vitro (CB) 4 (20%) 16 (80%) 0% 0% - - - [122]

1978,
Spain Olay carbenicillin in vitro: 73;

in vivo: 2 - - -
in vitro (CB);

in vivo (mouse,
peritonitis)

in vitro: 21
(28%);

in vivo: 2
(100%)

in vitro: 40
(54%)

in vitro: 12
(16%) 0% - - - [14]
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Table 1. Cont.

Strain Year and
Country Author Penicillin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

Fosfomycin-
Resistant

(%)

Penicillin-
Resistant

(%)

In Vitro
(Methods)/

In Vivo
(Animal and

Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

Fosfomycin
Susceptibility
Restoration

(%)

Penicillin
Susceptibility
Restoration

(%)

Comments Reference

Acinetobacter
spp. 2019, USA Flamm piperacillin/

tazobactam

5 (A.
baumannii-calcoaceticus

species
complex)

- - - in vitro (CB, TK) 3 (60%) 1 (20%) 0% 0% - -

For 1 isolate the
efficacy of FOS +
PIP/TAZ
remained
indeterminate.

[38]

S. aureus

2015,
Spain del Río

amoxicillin +
clavulanic

acid
10

Methicillin-resistant
Staphylococcus
aureus (MRSA)

(100%)

1 (10%) 10 (100%) in vitro (TK)

in vitro: 8
(80%);

in vivo: 2
(100%)

in vitro: 2
(20%) 0% 0% - - - [28]

2003,
Japan Nakazawa ampicillin 32 MRSA (100%) 29 (91%) 31 (96%) in vitro (efficacy

time index) 4 (12%) 2 (6%) 26 (81%) 0% - - - [18]

1997, Italy Ferrara oxacillin 16 MRSA (100%) NA (at least
8) 16 (100%) in vitro (TK) 3 (18%) 3 (18%) 4 (25%) - - -

Addition or
indifference was
observed for the
remaining 6
strains (data not
shown).

[123]

1994,
Japan Komatsuzawa oxacillin 38 MRSA (60.5%) 33 (86.8%) 23 (60%) in vitro (CB) 20 (52%) 17 (44%) 1 (2%) 0% - - - [124]

1985, USA Alvarez methicillin 148 MRSA (100%) NA (< 15) 148 (100%) in vitro (CB) 69 (46%) - - 1 (1%) - -

For the 78
remaining
strains it was
not specified if
the combination
FOS +
methicillin acted
with an additive
or indifferent
effect.

[12]

1978,
Spain Olay ampicillin,

carbenicillin
ampicillin: 27;

carbenicillin: 28 - - - in vitro (CB)

ampicillin:
15 (55%);

carbenicillin:
10 (35.7%)

ampicillin: 9
(33%);

carbenicillin:
18 (64%)

ampicillin: 3
(11%);

carbenicillin:
0%

0% - - - [14]

1977,
Poland Borowski penicillin G 11 - - - in vitro (CB) 5 (45%) 2 (18%) 4 (36%) 0% - - - [121]

S. epidermidis 1997, Italy Ferrara oxacillin 12 MRSE (100%) NA (at least
6) 12 (100%) in vitro (TK) 6 (50%) 1 (8%) 1 (8%) - - -

Data of the
other 4 strains
are not shown.

[123]
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Table 1. Cont.

Strain Year and
Country Author Penicillin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

Fosfomycin-
Resistant

(%)

Penicillin-
Resistant

(%)

In Vitro
(Methods)/

In Vivo
(Animal and

Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

Fosfomycin
Susceptibility
Restoration

(%)

Penicillin
Susceptibility
Restoration

(%)

Comments Reference

Streptococcus
spp.

2017,
Germany

Gonzalez
Moreno benzylpenicillin 3 - 1 (33.3%) 0%

in vitro
(microcalorimetry

for biofilms)
0% 0% 3 (100%) 0% - -

S. agalactiae, S.
pyogenes, S.
oralis.
High-dose FOS
caused a delay
of 8 h in the
production of
heat, compared
with untreated
controls,
suggesting that
the treatment
could result in a
reduction in the
number of
viable sessile
cells, although
not in complete
biofilm
eradication.

[9]

1981,
Spain Vicente penicillin G 17 - 9 (53%) 5 (29%)

in vitro (CB,
TK); in vivo

(rabbit,
endocarditis)

in vitro: 4
(23%)

in vitro: 12
(71%);

in vivo:
100%

in vitro: 1
(6%) 0% - -

S. sanguis. The
mean log10
CFU per gram
of vegetations in
the FOS +
penicillin
groups was
significantly
lower than that
in the FOS
groups but was
not significantly
lower than that
in the penicillin
group.

[17]

1978,
Spain Olay ampicillin 37 - - - in vitro (CB) 12 (32%) 11 (29%) 14 (37%) 0% - - - [14]
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Table 1. Cont.

Strain Year and
Country Author Penicillin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

Fosfomycin-
Resistant

(%)

Penicillin-
Resistant

(%)

In Vitro
(Methods)/

In Vivo
(Animal and

Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

Fosfomycin
Susceptibility
Restoration

(%)

Penicillin
Susceptibility
Restoration

(%)

Comments Reference

S. pneumoniae

2001,
Spain

Bañón
Arias penicillin 10 - 1 (10%) 8 (80%) in vitro (TK) 10 (100%) 0% 0% 0% - -

Synergistic
effect difficult to
determine. It is
reported as
synergistic
against all
isolates based
on authors’
considerations
and on the
comparison
between
cumulative
efficacy of MIC
+ MIC and
MIC/4 + MIC/4.

[125]

1996,
France Chavanet amoxicillin 1 - 0% 1 (100%)

in vivo (rabbit,
fibrin clot
infection)

1 (100%) 0% 0% 0% - - - [23]

1995,
Japan Kikuchi benzylpenicillin 51 - 0% 51 (100%) in vitro (CB, TK) 9 (17%) 42 (82%) 0% 0% - - - [126]

Enterococcus spp.

2013,
Taiwan Tang ampicillin 10 E. faecium, 9

E. faecalis VRE (100%) 13 (68%) 9 (47%) in vitro (TK,
biofilm) TK: 3 (15%) - - biofilm: 6

(31%) - -

The 3 isolates
exhibiting
synergistic effect
were all E.
faecium. The 6
isolates
exhibiting
antagonistic
effect on biofilm
formation were
all E. faecalis.
From the data
reported in the
paper it was not
possible to
establish the
effect of the
combination
against the
other isolates.

[13]

1995,
France Pestel penicillin 10 - 10 (100%) 6 (60%) in vitro (CB, TK) 6 (60%) - - 0% - -

E. faecalis, E.
faecium, E.
casseliflavus, E.
durans. The
authors did not
distinguish
between
additive and
indifferent
effect.

[127]
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Table 1. Cont.

Strain Year and
Country Author Penicillin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

Fosfomycin-
Resistant

(%)

Penicillin-
Resistant

(%)

In Vitro
(Methods)/

In Vivo
(Animal and

Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

Fosfomycin
Susceptibility
Restoration

(%)

Penicillin
Susceptibility
Restoration

(%)

Comments Reference

E. faecalis 2011, Italy Farina ampicillin 27 - 2 (7%) 0% in vitro (ET) 2 (7%) 0% 25 (92%) 0% - -

The Authors
considered 0.5 <
FICI ≤ 4 as
indifferent.

[128]

E. faecium 2013, USA Descourouez amoxicillin 4 VRE (100%) 0% 4 (100%) in vitro (TK) 100% 0% 0% 0% - -

The
combination
resulted also
strongly
bactericidal.

[67]

Table 2. Studies on combination between fosfomycin and cephalosporins, cephalosporins + β-lactamase inhibitors. CB: checkerboard assay; TK: time–kill assay;
ET: E-test.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Avery

cefepime
(FEP),

ceftolozane/
tazobactam

(C/T),
ceftazidime

(CTZ),
ceftazidime/
avibactam

(CZA)

49 (26 tested for
CZA)

8 E. coli: KPC
(25%), NDM

(75%), ESBL (62%);
35 Klebsiella spp:

KPC (45%), NDM
(40%); OXA (14%),
VIM (8%), ESBL

(88%), fosA (44%);
2 Citrobacter spp:

KPC (50%), NDM
(50%), ESBL

(50%), 4 E. cloacae:
KPC (75%), NDM
(25%), ESBL (75%)

20 (40%) 49 (100%) in vitro (ET)

FEP: 2 (4%);
C/T: 8 (16%);
CTZ: 3 (6%);

CZA: 0%

FEP: 5 (10%);
C/T: 11

(22%); CTZ:
8 (16.3%);
CZA: 3
(11.5%)

FEP: 42
(85%); C/T:
30 (61%);
CTZ: 38

(77%); CZA:
23 (88%)

0% 0% 0%

Data on
synergism
reported
without
distinction for
bacterial strains.
% of FOS-R
isolates
estimated on the
basis of the
reported MIC50.

[11]

2019, USA Flamm ceftazidime 20 - - - in vitro (CB, TK) 8 (40%) 10 (50%) 0% 0% - -

For 2 isolates the
efficacy of FOS +
CTZ remained
indeterminate.

[38]

1978,
Spain Olay cephalexin

23 E. coli, 29
Salmonella spp.,
8 Klebsiella spp.,
11 E. cloacae, 16
S. marcescens, 16

Proteus spp.

- - - in vitro (CB) 42 (40%) 46 (44%) 15 (14%) 0% - - - [14]

E. coli

2020,
Korea Seok cefixime 4 ESBL (50%) 0% 2 (50%) in vitro (TK) 4 (100%) 0% 0% 0% - - - [119]

2014,
France Lefort cefoxitim 2 ESBL (50%) 0% breakpoints

NA

in vitro (TK);
in vivo (mouse,

urinary tract
infection)

in vitro: 2
(100%);

in vivo: 2
(100%)

0% 0% 0% - - - [30]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

K. pneumoniae

2019,
Poland Ojdana ceftazidime-

avibactam 19 NDM (52%); KPC
(42%); OXA (5%) 10 (53%) 10 (53%) in vitro (ET) 9 (47%) 7 (36%) 3 (15%) 0% - - - [31]

2019, USA Mikhail ceftazidime-
avibactam 21

fosA/fosA-like,
KPC, ESBL, OXA

(100%)
15 (71%) 0% in vitro (CB, TK) 10 (47%) 9 (42%) 2 (9%) 0% - 0% (all S)

It is reported
only the
reduction of
CZA in
combination
and time–kill
was performed
only on 2
isolates
randomly
selected,
therefore a
reduction of at
least 4 times
was considered
as synergistic. A
2-fold reduction
was considered
as additive. No
reduction was
considered as
indifferent. In
increase of MIC
in combination
was considered
antagonistic.

[21]

1977,
Spain Daza cephapirin 33 - 100% breakpoints

NA in vitro (CB) 1 (3%) - - - 0%

Breakpoints
NA

(reduction of
MIC from 16
to 4 µg/mL)

The authors
reported only
the number of
isolates on
which the
combination
had a
synergistic
effect.

[66]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

P. aeruginosa

2020,
Brazil Cuba ceftolozan/

tazobactam 27 carbapenemase-
producing (74%) 26 (96%) 2e2 (81%) in vitro (ET, TK) 24 (88%) 3 (11%) 0% 0% 24 (92%) -

It is not possible
to establish the
% of strains with
FOS
susceptibility
restoration
because the MIC
for all R strains
was > 64 ug/mL
and it is not
reported the
MIC in
combination but
the MIC fold
reduction. It is
however
strongly
reduced (range:
2–16 fold
reduction).

[32]

2020, USA Mullane
cefepime,

ceftolozane/
tazobactam

28 CEF; 15 C/T - - - in vitro (CB, TK) CEF: 5 (18%);
C/T: 5 (33%)

CEF: 20
(71%); C/T: 8

(53%)

CEF: 3 (11%);
C/T: 2 (14%) 0% - CEF: 1 (4%);

C/T: 5 (33%) - [129]

2019, USA Mikhail ceftazidime-
avibactam 21

fosA/fosA-like,
KPC, ESBL, OXA
(100% at least 1
resistance gene)

19 (90%) 5 (23%) in vitro (CB, TK) 7 (33%) 6 (28%) 8 (38%) 0% - 1 (20%)

It is reported
only the
reduction of
CZA in
combination
and time–kill
was performed
only on 2
isolates
randomly
selected,
therefore a
reduction of at
least 4 times
was considered
as synergistic. A
2-fold reduction
was considered
as additive. No
reduction was
considered as
indifferent. In
increase of MIC
in combination
was considered
antagonistic.

[21]

2019, USA Papp-
Wallace

ceftazidime-
avibactam 1 - 0% 1 (100%)

in vitro (CB,
TK); in vivo

(mouse)

in vitro:
100%;

in vivo:
100%

0% 0% 0% - - - [29]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

2019, USA Avery

cefepime
(FEP),

ceftolozane/
tazobactam

(C/T),
ceftazidime

(CAZ),
ceftazidime/
avibactam

(CZA)

92 FEP, 14 C/T,
81 CAZ, 16 CZA

Carbapenem-resistant
(100%) - 100% in vitro (ET)

FEP: 22
(23%); C/T: 7
(50%); CAZ:

42 (51%);
CZA: 4
(25%)

FEP: 53
(57%); C/T: 5
(35%); CAZ:

31 (38%);
CZA: 12

(75%)

FEP: 17
(18%); C/T: 2
(14%); CAZ:
8 (9%); CZA:

0%

0% -

FEP: 56
(60%); C/T:
10 (71%);
CAZ: 46

(56%); CZA:
11 (68%)

- [33]

2019, USA Flamm ceftazidime 5 - - - in vitro (CB, TK) 2 (40%) 3 (60%) 0% 0% - - - [38]

2018, USA Monogue ceftolozane/
tazobactam 4 - 3 (75%) 2 (50%) in vitro (TK) 1 (25%) 2 (50%) 1 (25%) 0% - - - [34]

2013,
Brazil dos Santos ceftazidime 3 - 3 (100%) 3 (100%) in vitro (CB) 3 (100%) 0% 0% 0% 1 (33%) 2 (66%) - [48]

2005,
Thailand Pruekprasert ceftazidime 18 - - - in vitro (CB) 2 (11%) 6 (33%) 6 (33%) 4 (22%) - - - [22]

2002,
Japan Okazaki ceftazidime,

cefepime 30 - 15 (50%)
CAZ: 28

(93%), CEFP:
26 (86.7%)

in vitro (efficacy
time index)

CAZ: 21
(70%); CEFP:

24 (80%)

CAZ: 8
(26%); CEFP:

1 (3.3%)

CAZ: 1 (3%);
CEFP: 5
(16%)

0%
CAZ: 3

(20%); CEFP:
6 (40%)

CAZ: 19
(67%); CEFP:

26 (100%)
- [39]

1999,
Japan Hayami ceftazidime 26 - NA (at least

13)
NA (at least

5) in vitro (CB, TK) 7 (26%) 14 (53%) 5 (19%) 0% - - - [130]

1997,
France Tessier ceftazidime 40 - 21 (52%) 14 (35%) in vitro (CB) 0% 8 (20%) 32 (80%) 0% 20 (95%) 8 (57%)

Although the
combination
had a
synergistic effect
on no tested
strains, it is of
clinical
relevance as it
restored FOS
and CTZ
susceptibility in
many resistant
isolates.

[131]

1984,
Japan Takahashi cefoperazone,

cefsulodin

20
(cefoperazone),
23 (cefsulodin)

- - - in vitro (CB)
cefoper: 17

(85%); cefsul:
19 (92%)

cefoper: 3
(15%); cefsul:

4 (17%)
0% 0% - - - [122]

A. baumannii
2019, USA Flamm ceftazidime

5 (A.
baumannii-calcoaceticus

species
complex)

- - - in vitro (CB, TK) 2 (40%) 1 (20%) 1 (20%) 0% - -

For 1 isolate the
efficacy of FOS +
CTZ remained
indeterminate.

[38]

1996,
Spain

Martinez-
Martinez ceftazidime 34 - 34 (100%) 32 (94%) in vitro (CB) 1 (3%) NA NA 0% - -

Only synergistic
and antagonistic
effect reported.

[132]

Staphylococcus
spp. 1995, Italy Marchese cefdinir

6 S. aureus, 8 S.
epidermidis, 2 S.

hominis, 2 S.
xylosus, 5 S.

saprophyticus, 2
S. haemolyticus

Penicillin-resistant
(100%) - - in vitro (CB, TK) 4 (16%) - - 0% - -

The authors
considered 0.5 <
FICI ≤ 4 as
indifferent,
therefore it is
not possible to
establish if the
effect was
additive or
indifferent for
most strains.

[114]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

S. aureus

2003,
Japan Nakazawa

flomoxef
sodium (FS),
cefmetazole

(CEM),
cefotiam

(CET),
cefoperazone/

sulbactam
(CS)

32 MRSA (100%) 29 (91%)

FS: 29 (91%);
CEM: 16

(50%); CET:
30 (94%); CS:

27 (84%)

in vitro (efficacy
time index)

FS: 7 (22%);
CEM: 26

(81%); CET:
7 (22%); CS:

19 (59%)

FS: 11 (34%);
CEM: 3 (9%);
CET: 1 (3%);
CS: 8 (25%)

FS: 14 (44%);
CEM: 3 (9%);

CET: 22
(69%); CS: 5

(15%)

0% - - - [18]

1978,
Spain Olay cephalexin 24 - - - in vitro (CB) 17 (70.8%) 7 (29.2%) 0% 0% - - - [14]

2015,
Spain del Río ceftriaxone in vitro 10;

in vivo 2 MRSA (100%) 1 (10%) 10 (100%)
in vitro (TK);

in vivo (rabbit,
endocarditis)

in vitro: 8
(80%);

in vivo: 2
(100%)

in vitro: 2
(20%) 0% 0% - -

% of sterile
vegetations:
FOS alone 0%,
IMI alone 0%,
FOS + CRO
62%.

[28]

1985,
Germany Portier

cefotaxime,
cephalotin,

cefoperazone,
cefamandole

10 MRSA (100%) 0% 10 (100%) in vitro (CB)

cefotaxime,
cephalotin,

cefoperazone,
cefamandole:

10 (100%)

0% 0% 0% - - - [20]

1990,
France Chavanet cefotaxime 1 MGRSA (100%) 0% 1 (100%)

in vivo (rabbit,
subcutaneous

fibrin clots)
1 (100%) 0% 0% 0% - -

Synergistic
effect was
observed when
both drugs were
administered in
two divided
doses.

[27]

1985,
France Kazmierczak cefotaxime 1 - 0% 1 (100%) in vivo (rabbit,

meningitis) 0% 1 (100%) 0% 0% - -

Cefotaxime:
variable drop in
bacterial
numbers from
one rabbit to
another during
the first 12 h,
then a
bacteriostasis.
FOS: rapid
bactericidal
effect during the
first 12 h,
becoming
slower during
the following 36
h (0.03%
surviving
bacteria at 48 h).
Cefotaxime +
FOS: rapid
bactericidal
effect remaining
steady over the
48-h period
(0.001%
surviving
bacteria at 48 h).

[26]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

1991,
Japan Matsuda cefmetazole 25 MRSA (100%) 25 (100%) 25 (100%) in vitro (CB, TK) 11 (44%) 11 (44%) 3 (12%) 0% - - - [133]

1986,
Japan Utsui cefmetazole 14 in vitro, 7

in vivo MRSA (100%) - 14 (100%)
in vitro (CB,
TK); in vivo

(mouse)

in vitro: 10
(71%);

in vivo: 5
(71%)

in vitro: 4
(28%);

in vivo: 2
(28%)

0% 0% - - - [25]

1987,
France Courcol ceftriaxone 6 - 1 (16.%) 6 (100%) in vitro (CB, TK) CB: 1 (16%);

TK: 1 (16%)
CB: 0%; TK:

-
CB: 4 (66%);
TK: 3 (50%)

CB: 1 (16%);
TK: - - -

Different
activity of the
drug
combination
with
checkerboard
assay or
time–kill assay.
The effect of
FOS +
ceftriaxone on 2
isolates
remained
indeterminate.
The authors
considered the
combination
antagonistic
when the FICI
was > 2.

[19]

1985, USA Alvarez cefamandole 148 MRSA (100%) NA (<15) - in vitro (CB) 97 (66%) - - 0% - -

For the 78
remaining
isolates it was
not specified if
the combination
FOS +
cefamandole
acted with an
additive or
indifferent
effect.

[12]

2001,
Austria Grif cefazolin 5 MRSA (20%),

GISA (20%) - - in vitro (CB, TK) 5 (100%) 0% 0% 0% - - - [43]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

S. epidermidis

2001,
Austria Grif cefazolin 2 - - - in vitro (CB, TK) 0% 0% 2 (100%) 0% - - - [43]

1987,
France Courcol ceftriaxone 6 - 2 (33.3%) 6 (100%) in vitro (CB, TK)

CB: 1 (16%);
TK: 5

(83.3%)

CB: 0%; TK:
-

CB: 5 (83%);
TK: -

CB: 1 (16%);
TK: - - -

Different
activity of the
drug
combination
with
checkerboard
assay or
time–kill assay.
The effect of
FOS +
ceftriaxone on 1
isolate remained
indeterminate.
The authors
considered the
combination
antagonistic
when the FICI
was > 2.

[19]

S. pneumoniae

2006,
Spain Ribes ceftriaxone 2 - 0% 2 (100%)

in vitro (TK);
in vivo (rabbit,

meningitis)
0%

in vitro: 1
(50%);

in vivo: 2
(100%)

in vitro: 1
(50%) 0% - - - [24]

2001,
Spain

Bañón
Arias ceftriaxone 10 - 1 (10%) 7 (70%) in vitro (TK) 10 (100%) 0% 0% 0% - -

Synergistic
effect difficult to
determine. It is
reported as
synergistic
against all
isolates based
on authors’
considerations
and on the
comparison
between
cumulative
efficacy of MIC
+ MIC and
MIC/4 + MIC/4.

[125]

1994,
France Doit ceftriaxone 26 - 0% 20 (76%) in vitro (TK) 0% 26 (100%) 0% 0% - - - [134]

1993,
France Barakett cefotaxime 7 - 0% 2 (28%) in vitro (TK) 3 (42%) 1 (14%) 3 (42%) 0% - - - [135]

1995,
France Chavanet cefotaxime,

ceftriaxone 1 - 0% 1 (100%)

in vitro (TK);
in vivo (rabbit,

fibrin clot
infection)

in vitro: 0%;
in vivo: 1

(100%,
cefotaxime)

in vitro: 1
(100%, both
cefotaxime

and
ceftriaxone);

in vivo: 1
(100%,

ceftriaxone)

0% 0% - - - [23]
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Table 2. Cont.

Strain Year and
Country Author Cephalosporin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Cephalosporin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Cephalosporin
Susceptibility
Restoration

(%)

Comments Reference

S. sanguis 1981,
Spain Vicente cefoxitim 17 - 9 (53%) 3 (16%)

in vitro (CB,
TK); in vivo

(rabbit,
endocarditis)

in vitro: 8
(47%);

in vivo:
100%

in vitro: 8
(47%)

in vitro: 1
(6%) 0% - -

The mean log10
CFU per gram
of vegetations in
the FOS +
cefoxitim
groups was
significantly
lower than that
in the FOS
groups and in
the cefoxitim
groups.

[17]

Enterococcus
spp.

1995,
France Pestel cefotaxime 50 - 48 (96%) 50 (100%) in vitro (CB, TK) 45 (90%) - 5 (10%) 0% - -

E. faecalis, E.
faecium, E.
casseliflavus, E.
durans. The
authors did not
distinguish
between
additive and
indifferent
effect.

[127]

E. faecalis 2011, Italy Farina ceftriaxone 27 - 2 (7%) 27 (100%) in vitro (ET) 15 (55%) 0% 12 (44%) 0% - -

The authors did
not distinguish
between
additive and
indifferent effect,
considering 0.5
< FICI ≤ 4 as
indifferent.

[128]

N. gonorrhoeae

2015,
Switzerland Hauser ceftriaxone 8 - 0% 1 (12.5%) in vitro (CB) 0% 0% 8 (100%) 0% - - - [57]

2015, The
Netherlands Wind cefixime,

ceftriaxone 4 - - - in vitro (ET) 0%

cefixime: 1
(25%);

ceftriaxone:
2 (50%)

cefixime: 3
(75%);

ceftriaxone:
2 (50%)

0% - - - [54]

2014, USA Barbee cefixime,
ceftriaxone 32 - 0%

cefotaxime:
29 (90%),

cefixime: 6
(18%),

ceftriaxone:
0%

in vitro (ET) 0% 0% 32 (100%) 0% - -

The authors did
not distinguish
between
additive and
indifferent effect,
considering 0.5
< FICI ≤ 4 as
indifferent.

[136]
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Table 3. Studies on combination between fosfomycin and carbapenems. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strains Year and
Country Author Carbapenem Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Carbapenem-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Carbapenem
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Avery meropenem 49

8 E. coli: KPC
(25%), NDM

(75%), ESBL (62%);
35 Klebsiella spp:

KPC (45%), NDM
(40%); OXA (14%),
VIM (8%), ESBL

(88%), fosA (44%);
2 Citrobacter spp:

KPC (50%), NDM
(50%), ESBL

(50%), 4 E. cloacae:
KPC (75%), NDM
(25%), ESBL (75%)

20 (40.8%) 49 (100%) in vitro (ET) 1 (2%) 10 (20%) 38 (77%) 0% - -

Data on
synergism
reported
without
distinction for
bacterial strains.
% of FOS-R
isolates
estimated on the
basis of the
reported MIC50.

[11]

2019, USA Flamm meropenem 20 - - - in vitro (CB, TK) 8 (40%) 10 (50%) 0% 0% - -

For 2 isolates the
efficacy of FOS +
meropenem
(MER) remained
indeterminate.

[38]

E. coli

2020,
Egypt El-Wafa imipenem 8 - 3 (37.5%) 7 (87.5%) in vitro (CB, TK) 2 (25%) 5 (62%) 0% 0% 2 (66%) 6 (87%)

For 1 isolate the
efficacy of FOS +
MER remained
indeterminate

[42]

2019, India Sugathan meropenem 50 - 0% 8 (16%) in vitro (TK) 34 (68%) 14 (28%) 2 (4%) 0% 0% (all S) 2 (25%) - [137]
2019,

Germany Loose meropenem,
ertapenem 4 - 1 (25%) 3 (75%) in vitro (CB) 4 (100%) 0% 0% 0% - - - [138]

2013,
Austria Lingscheid doripenem 10 ESBL (80%),

AmpC (20%) 0% - in vitro (CB, TK) 8 (80%) - . 0% - -

The authors
reported FICI
ranging from 0.5
to 4, without
distinction
between
additive and
indifferent
effect.

[139]

2012,
Greece Samonis

imipenem,
meropenem,
doripenem

20 ESBL (100%) 0% 0% in vitro (ET)

IMI: 11
(55%); MER:

5 (25%);
DORI: 6

(30%)

IMI: 9 (45%);
MER: 15

(75%); DOR:
14 (70%)

0% 0% - - - [86]

2010,
Thailand Netikul

ertapenem,
imipenem,

meropenem,
doripenem

8 ESBL (87%) 0% 8 (100%) in vitro (ET) 0%

ERT: 5 (62%);
IMI: 2 (25%);

MER: 2
(25%); DOR:

1 (12%)

ERT: 3 (37%);
IMI: 6 (75%);

MER: 6
(75%); DOR:

7 (87%)

0% - - - [140]
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Table 3. Cont.

Strains Year and
Country Author Carbapenem Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Carbapenem-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Carbapenem
Susceptibility
Restoration

(%)

Comments Reference

K. pneumoniae

2020, India Bakthavatchalammeropenem 50 OXA (78%), NDM
(32%) - 50 (100%) in vitro (TK) 10 (20%) 0% 40 (80%) 0% - - - [141]

2020,
Turkey

Erturk
Sengel meropenem 17 OXA (70%), NDM

(70%) 7 (41%) 17 (100%) in vitro (CB, TK) 15 (88%) 2 (11%) 0% 0% 4 (23%) - - [142]

2019,
Germany Loose meropenem,

ertapenem 3 - 3 (100%) 2 (66%) in vitro (CB) 2 (66%) 1 (33%) 0% 0% - - - [138]

2019,
Brazil

Perdigão
Neto meropenem 9

ESBL, KPC
(100%); OXA (4%),

fosA (100%)
9 (100%) 9 (100%) in vitro (CB, TK) 8 (88%) 0% 1 (11%) 0% 2 (22%) 0% - [143]

2017,
Taiwan Tseng meropenem 25 see comments 12 (48%) 24 (96%) in vitro (CB) 25 (100%) 0% 0% 0% - -

The 25 isolates
were randomly
selected among
642 isolates with
the following
resistance
determinants:
fosA3 (5.5%),
foskp96 (4.2%),
KPC (10.1%),
IMP (0.8%), VIM
(0.2%). It is not
reported which
carbapenemases
and
fosfomycinases
were present in
the 25 isolates
tested for
synergism.

[144]

2017,
China Yu imipenem,

ertapenem 136 KPC (100%) 78 (57%) 136 (100%) in vitro (CB, TK)
IMI: 21

(15%); ERT:
30 (22%)

IMI: 114
(83%); ERT:
104 (76%)

IMI: 1 (1%);
ERT: 2 (1%) 0% - - - [89]

2016,
Brazil Albiero meropenem 18 KPC (100%) 13 (72%) 16 (89%) in vitro (CB) 12 (66%) 3 (16%) 3 (16%) 0% 12 (92.3%) 4 (25%) - [145]

2014,
Sweden Tängdén meropenem 4

NDM (50%), VIM
(50%), ESBL

(100%)
2 (50%) 3 (75%) in vitro (TK) 0% 0% 4 (100%) 0% - - - [146]

2013,
Turkey Evren imipenem,

meropenem 12 OXA-48 (100%) 12 (100%) 12 (100%) in vitro (CB)
IMI: 5 (41%);

MER: 4
(33%)

IMI: 6 (50%);
MER: 6
(50%)

IMI: 1 (8%);
MER: 2
(16%)

0% - - - [74]

2013,
Austria Lingscheid doripenem 5 ESBL (60%),

AmpC (100%) 0% - in vitro (CB, TK) 5 (100%) 0% 0% 0% - - - [139]

2012,
Greece Samonis

imipenem,
meropenem,
doripenem

64 KPC (78%), ESBL
(21%) 1 (1%) 51 (78% ) in vitro (ET)

KPC: IMI: 37
(74%); MER:

35 (70%);
DOR: 37

(74%). ESBL:
IMI: 11

(78%); MER:
6 (42%);
DOR: 6
(42%)

KPC: IMI: 13
(26%); MER:

15 (30%);
DOR: 13

(26%). ESBL:
IMI: 3 (21%);

MER: 8
(57%); DOR:

8 (57%)

0% 0% - - - [86]

2011,
Greece Souli meropenem 17 KPC (100%) 4 (23%) 17 (100%) in vitro (TK) 11 (64%) 0% 6 (35%) 0% - - - [53]
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Table 3. Cont.

Strains Year and
Country Author Carbapenem Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Carbapenem-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Carbapenem
Susceptibility
Restoration

(%)

Comments Reference

2010,
Thailand Netikul

ertapenem,
imipenem,

meropenem,
doripenem

8 ESBL (87%) 4 (50%) 8 (100%) in vitro (ET) 0%

ERT: 5 (62%);
IMI: 2 (25%);

MER: 1
(12%); DOR:

2 (25%)

ERT: 3 (37%);
IMI: 6 (75%);

MER: 7
(87%); DOR:

6 (75%)

0% - - - [140]

E. cloacae

2019,
Germany Loose meropenem,

ertapenem 2 - 2 (100%) 1 (50%) in vitro (CB) 0% 2 (100%) 0% 0% - - - [133]

2013,
Austria Lingscheid doripenem 3 1 (33%) 0% - in vitro (CB, TK) 1 (33%) - - 0% - -

The authors
reported FICI
ranging from 0.5
to 4, without
distinction
between
additive and
indifferent
effect.

[139]

P. aeruginosa

2020, USA Mullane meropenem 30 - 14 (47%) 30 (100%) in vitro (CB, TK) 5 (17%) 9 (30%) 16 (53%) 0% 0% 0% - [129]

2019, USA Avery meropenem 153 - NA (at least
71) 153 (100%) in vitro (ET) 29 (19%) 55 (35%) 69 (45%) 0% - 21 (13%) - [33]

2019,
Brazil Albiero meropenem 19 MBL (52%) 17 (89%) 16 (84%) in vitro (CB) 15 (88%) 3 (15%) 1 (5%) 0% 15 (88%) 7 (43%) - [147]

2019, USA Flamm meropenem 5 - - - in vitro (CB, TK) 1 (20%) 3 (60%) 1 (20%) 0% - - - [38]
2019,
Brazil

Perdigão
Neto meropenem 1 OXA, fosA (100%) 1 (100%) 1 (100%) in vitro (CB, TK) 1 (100%) 0% 0% 0% 1 (100%) 1 (100%) - [143]

2018, USA Drusano meropenem 1 - - -
in vitro

(hollow-fiber
infection model)

1 (100%) 0% 0% 0% - -

Combination
therapy was
able to
counterselect
resistance
emergence.

[148]

2017,
Spain Hamou-Segarraimipenem 4 - 1 (25%) - in vitro (TK) 4 (100%) 0% 0% 0% - -

FOS and
imipenem (IMI)
alone lead to
bacterial
regrowth, while
no regrowth
was observed
with the
combination
FOS + IMI.

[149]

2015,
Thailand Kunakonvichaya

imipenem,
meropenem,
doripenem

70 - - 70 (100%) in vitro (CB, TK)
IMI: 38%;

MER: 40%;
DOR: 45%

- - - - -

FOS in
association with
a carbapenem
was observed to
reduce also
biofilm
formation.

[150]

2013,
Brazil dos Santos imipenem 4 - 4 (100%) 2 (50%) in vitro (CB) 4 (100%) 0% 0% 0% 3 (75%) 1 (50%) - [48]
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Table 3. Cont.

Strains Year and
Country Author Carbapenem Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Carbapenem-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Carbapenem
Susceptibility
Restoration

(%)

Comments Reference

2013,
Austria Lingscheid doripenem 18 - - - in vitro (CB, TK) 0% 0% 18 (100%) 0% - -

The authors
reported FICI
ranging from 0.5
to 4, without
distinction
between
additive and
indifferent effect,
and considered
the combination
"indifferent"
against all
isolates.

[139]

2012,
Greece Samonis

imipenem,
meropenem,
doripenem

15 - 1 (1%) 9 (60%) in vitro (ET)

IMI: 7 (46%);
MER: 8

(53%); DOR:
11 (73%)

IMI: 8 (53%);
MER: 7

(46%); DOR:
4 (26%)

0% 0% - - - [86]

2005,
Thailand Pruekprasert imipenem 29 - - - in vitro (CB) 11 (38%) 4 (14%) 12 (41%) 2 (7%) - - - [22]

2002,
Japan Okazaki imipenem,

meropenem 30 - 15 (50%)
IMI: 29

(96%); MER:
27 (90%)

in vitro (efficacy
time index)

IMI: 22
(73%); MER:

26 (86%)

IMI: 0%;
MER: 2 (6%)

IMI: 8 (26%);
MER: 2 (6%) 0%

IMI: 2 (13%);
MER: 3
(20%)

IMI: 21
(72%); MER:

16 (59%)
- [39]

1999,
Japan Hayami meropenem 26 - NA (at least

13)
NA (at least

5) in vitro (CB, TK) 3 (11%) 15 (57%) 8 (30%) 0% - - - [130]

1997,
France Tessier imipenem 40 - 20 (50%) 9 (22%) in vitro (CB) 0% 15 (37%) 25 (62%) 0% 17 (85%) 8 (88%)

Although the
combination
had a
synergistic effect
on no tested
strains, it is of
clinical
relevance as it
restored FOS
and IMI
susceptibility in
almost all R
isolates.

[131]

A. baumannii

2019, USA Flamm meropenem

5 (A.
baumannii-calcoaceticus

species
complex)

- - - in vitro (CB, TK) 1 (20%) 3 (60%) 0% 0% - -

For 1 isolate the
efficacy of FOS +
MER remained
indeterminate.

[38]

2018,
China Zhu imipenem 21 - 20 (95%) 21 (100%) in vitro (CB) 12 (57%) 3 (14.3%) 6 (28%) 0% - - - [151]

2018,
Thailand Singkham-In imipenem,

meropenem 23 OXA (100%) 23 (100%) 23 (100%) in vitro (CB, TK) IMI: 65%;
MER: 0%

IMI: 30.4%;
MER: 87%

IMI: 4%;
MER: 13% 0% - - - [152]

2016,
Brazil Leite imipenem,

meropenem 20 OXA (100%), IMP
(15%) 20 (100%) 20 (100%) in vitro (CB, TK) IMI: 0%;

MER: 0%
IMI: 4 (20%);

MER: 0%

IMI: 16
(80%); MER:

100%
0% - - - [83]

1996,
Spain Martinez-Martinezimipenem 34 - 34 (100%) NA (at least

7) in vitro (CB) 1 (3%) - - 0% - -

The Authors
reported only
the number of
isolates on
which the
combination
had a
synergistic or an
antagonistic
effect.

[132]
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Table 3. Cont.

Strains Year and
Country Author Carbapenem Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Carbapenem-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Carbapenem
Susceptibility
Restoration

(%)

Comments Reference

S. aureus

2019,
Spain Coronado-Álvarezimipenem 4 MRSA (50%) - - in vitro (TK) 4 (100%) 0% 0% 0% - - - [63]

2015,
Spain del Río imipenem 10 (in vitro); 2

(in vivo) MRSA (100%) 1 (10%) 4 (40%)
in vitro (TB);

in vivo (rabbit,
endocarditis)

in vitro: 9
(90%);

in vivo: 2
(100%)

in vitro: 1
(10%) 0% 0% - -

% of sterile
vegetations:
FOS alone 0%,
IMI alone 7%,
FOS + IMI 73%.

[28]

2013,
Austria Lingscheid doripenem 39 MRSA (100%) 0% - in vitro (CB, TK) 37 (94%) - - 0% - -

The authors
reported FICI
ranging from 0.5
to 4, without
distinction
between
additive and
indifferent
effect.

[139]

2012,
Spain Garrigós imipenem 1 MRSA (100%) 0% 0%

in vitro (TK);
in vivo (rat,

foreign-body
infection)

0% in vitro: 1
(100%)

in vitro: 0%;
in vivo: 1

(100%)
0% - - - [37]

2011,
Spain Pachón-Ibáñez imipenem 1 GISA (100%) 0% 100%

in vitro (TK);
in vivo (mouse,

peritonitis)

in vitro: 1
(100%);

in vivo: 1
(100%)

0% 0% 0% - -

FOS + IMI
reached
statistical
difference when
compared to
IMI as single
therapy in the
mouse model.

[36]

2003,
Japan Nakazawa imipenem,

panipenem 32 MRSA (100%) 29 (91%) 28 (88%) in vitro (efficacy
time index)

IMI: 16
(50%); PAN:

21 (66%)

IMI: 3 (9%);
PAN: 8
(25%)

IMI: 13
(41%); PAN:

3 (9%)
0% - - - [18]

1987,
France Quentin imipenem 5 - 1 (20%) 1 (20%) in vitro (TK) 1 (20%) 0% 3 (60%) 1 (20%) - - - [35]

S. aureus +
S. epidermidis

2001,
Austria Grif meropenem 5 S. aureus + 2 S.

epidermidis
MRSA (25%),
GISA (25%) - - in vitro (CB, TK) S. aureus: 5

(100%) 0%
S.

epidermidis:
2 (100%)

0% - - - [43]

1992,
Austria Guggenbichler imipenem 1 S. aureus + 2 S.

epidermidis - - - in vitro (TK) 3 (100%) 0% 0% 0% - -

The study was
conducted on
catheters
infected in
laboratory.
Bacterial
regrowth was
observed in
catheters treated
with FOS or IMI
alone, but did
not occurred
when the drugs
were tested in
combination.

[153]
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Table 3. Cont.

Strains Year and
Country Author Carbapenem Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Carbapenem-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Carbapenem
Susceptibility
Restoration

(%)

Comments Reference

Staphylococcus
spp. +

Enterococcus
spp.

1986, Italy Debbia imipenem 76 - - - in vitro (CB, TK) 54 (71%) 0% 22 (29%) 0% - -

% reported are
those obtained
with CB. Results
of TK showed
higher rates of
synergism, but
in the present
Table are
considered the
results of CB as
not all isolates
were tested with
TK.

[154]

E. faecalis 2011, Italy Farina imipenem 27 - 2 (7%) 0% in vitro (ET) 0% 0% 10 (37%) 17 (62%) - -

The Authors did
not distinguish
between
additive and
indifferent effect,
and defined the
effect of FOS +
IMI indifferent.

[128]

S. pneumoniae 1994,
France Doit imipenem 26 - 0% 0% in vitro (TK) 0% 26 (100%) 0% 0% - - - [134]

N. gonorrhoeae 2015, The
Netherlands Wind ertapenem 4 - - - in vitro (ET) 0% 3 (75%) 1 (25%) 0% - - - [54]
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Table 4. Studies on combination between fosfomycin and aztreonam. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Aztreonam-
Resistant

(%)

In Vitro
(Methods)/In

Vivo
(Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Aztreonam
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Avery 48

48 not specified
between: 8 E.

coli: KPC (25%),
NDM (75%),

ESBL (62%); 35
Klebsiella spp:
KPC (45%),

NDM (40%);
OXA (14%),

VIM (8.%), ESBL
(88%), fosA

(44%); 2
Citrobacter spp:

KPC (50%),
NDM (50%),

ESBL (50%), 4 E.
cloacae: KPC
(75%), NDM
(25%), ESBL

(75%)

20 (40%) 48 (100%) in vitro (ET) 4 (8%) 13 (27%) 31 (64%) 0% 0% 0%

Data on
synergism
reported
without
distinction
for bacterial
strains. % of
FOS-R
isolates
estimated on
the basis of
the reported
MIC50.

[11]

2019, USA Flamm 20 - - - in vitro (CB,
TK) 5 (25%) 5 (25%) 1 (5%) 0% - -

For 9
isolates the
efficacy of
FOS + ATM
remained
indeterminate.

[38]

E. coli 2014,
Sweden Hickam 2 ESBL, OXA

(50%) 0% 1 (50%) in vitro (CB,
TK) 2 (100%) 0% 0% 0% - - - [120]

K. pneumoniae 2014,
Sweden Hickam 1 ESBL, OXA

(100%) 0% 1 (100%) in vitro (CB,
TK) 0% 1 (100%) 0% 0% - - - [120]

P. aeruginosa
2019, USA Avery 103 - NA (at least 71) 103 (100%) in vitro (ET) 16 (15.5%) 68 (66%) 19 (18%) 0% - 21 (13%) - [33]

2019, USA Flamm 5 - - - in vitro (ET) 1 (20%) 3 (60%) 0% 0% - -

For 1 isolate
the efficacy
of FOS +
ATM
remained
indeterminate.

[38]

2002,
Japan Okazaki 30 - 15 (50%) 29 (96%)

in vitro
(efficacy

time index)
23 (76.%) 3 (10%) 4 (13%) 0% 4 (26%) 6 (20%) - [39]
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Table 5. Studies on combination between fosfomycin and quinolones. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Quinolone Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Quinolone-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Quinolone
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales 2019, USA Flamm Levofloxacin 20

7 MDR (of which
29% ESBL and

29%
KPC-producer)

- - in vitro (CB) 30% 60% 10% 0% - - - [38]

E. coli

2020,
Egypt El-Wafa Ciprofloxacin 8 - 100% 100% in vitro (CB, TK) 3 (37%) - - - 3 (100%) 3 (100%)

Triple
combination
(FOS/IMP/CIP o
FOS/CIP/TOB)
increased
synergism
against all
isolates.

[42]

2019, USA Wang Ciprofloxacin 8 - 25% 25% in vitro (ET,
biofilm) 2 (25%) - 6 (75%) - 0% 0% - [155]

2019, India Sugathan Ciprofloxacin 50 biofilm producers
(100%) 0% 98% in vitro (CB, TK) 3 (6%) 20 (40%) 27 (54%) 0% - 0%

The optimal
combination of
fosfomycin with
N-acetylcystein
produces the
reduction of E.
coli sessile cell
viability and
biofilm
formation up to
60–73%.

[137]

S. flexneri 2019,
China Liu Ciprofloxacin 80 - 43 (54%) 100%

in vitro (CB,
TK); in vivo

(Galleria
mellonella)

31 (38%) 0% 49 (61)% 0% 65 (81%) 3 (4%) - [156]

P. aeruginosa

2019, USA Wang Ciprofloxacin 7 - 0% 14% in vitro (ET,
biofilm) 4 (57%) - 3 (42%) - - 0% - [155]

2019, USA Flamm Levofloxacin 5

7 MDR (of which
29% ESBL and

29%
KPC-producer)

- - in vitro (CB) 1 (20%) 4 (80%) 0% - - - [38]

2016,
Australia Walsh Ciprofloxacin 4 - 75% 50% in vitro (TK) 21% (23/108) 15% (16/108) 38% (41/108) - - -

The total
number of
experiments
was 108 (9
combinations of
FOS + CIP at
different
concentrations,
in 3 different
times).

[76]

2013,
Brazil Dos Santos Ciprofloxacin 2 MDR (50%) 100% 50% in vitro (CB, TK) 2 (100%) - - - 2 (100%) 0% - [48]

2007,
Japan Mikuniya

Prulifloxacin,
ciprofloxacin,
levofloxacin

1 biofilm forming
(100%) - - in vivo (rat,

UTI) 1 (100%) - - - - -

*After 3
consecutive
days’
co-administration.

[40]

2007,
Japan Yamada Ciprofloxacin 74 - - - in vitro (CB) 20 (27%) - 54 (73%) 0% - - - [157]
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Table 5. Cont.

Strain Year and
Country Author Quinolone Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Quinolone-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Quinolone
Susceptibility
Restoration

(%)

Comments Reference

2005,
Japan Micuniya

Ciprofloxacin,
Ulifloxacin,

Levofloxacin
1 - 100% 100%

in vitro (ATP
bioluminescence

assay)
- 100% - - 0% 0% - [46]

2002,
Japan Monden Ofloxacin 4 - 3 (75%) 1 (25%) in vitro (biofilm) 3 (75%) - - - - - - [158]

2001,
Japan Okazaki Levofloxacin 30 MDR (50%) 13/30 (43%) 21/30 (70%) in vitro (Efficacy

time index) 3/30 (1%) 17/30 (56%) - 10/30 (33)% - -

ETI < 0.5
antagonism; 0.5
≤ ETI <1
indifferent; 1 ≤
ETI < 8 additive;
ETI ≥ 8
synergistic

[39]

1999,
Japan Hayami Ciprofloxacin 26 - - - in vitro (CB, TK) 10(38%) 15 (57%) 1 (3%) 0% - - - [130]

1997,
France Bugnon Pefloxacin 2 - - - in vivo (rabbit,

endocarditis) - - - 100% - - - [41]

1997,
France Tessier Ciprofloxacin 40 MDR (100%) 23 (57%) 19 (47%) in vitro (CB) 6 (15%) 32 (80%) 2 (5%) - 16 (70%) 12 (63%) - [131]

1995,
Japan Kumon Ofloxacin 1 - - - in vitro (TK) 1 (100%) - - - - - - [159]

1994,
France Xiong Ciprofloxacin 2 MDR (50%) 0% 50%

in vitro (CB);
in vivo (rabbit,
endocarditis)

2 (100%)
early thp; 1
(50%) Late

thp

0% early thp;
1 (50%) Late

thp
- - - - in vivo results. [160]

1994,
France Xiong Pefloxacin 2 MDR (50%) 0% 50%

in vitro (CB);
in vivo (rabbit,
endocarditis)

1 (50%) early
thp; 1 (50%)

late thp

1 (50%) early
thp

1 (50%) late
thp - - - in vivo results. [160]

1989,
Germany Vogt Ciprofloxacin 25 - 1 (4%) 2 (8%) in vitro (TK) 20% - - - - - - [161]

1988, USA Figueredo Ciprofloxacin - - - - in vitro (CB) 60% (EV)
17% (OS) - - 0% - - - [162]

1987,
Germany Ullmann Ciprofloxacin 37 - - - in vitro (CB) 29 (78%) 8 (22%) 0% 0% 100% - - [45]

A. baumannii 1996,
Spain

Martinez-
Martinez Ciprofloxacin 34 - 100% 100% in vitro (CB) 1 (3%) - - 0% - - - [132]

A. baumannii-A.
calcoaceticus spp.

complex
2019, USA Flamm Levofloxacin 5

7 MDR (29% ESBL
and 29%

KPC-producer)
- - in vitro (CB) 0% 4 (80%) 1 (20%) 0% - - - [38]

Gram negative 1977,
Spain Daza Nalidixic

acid 100 - 100% - in vitro (CB) 0% - 100% 0% - -

Klebsiella spp.,
Pseudomonas
spp., E. coli,
Serratia spp.,
Proteus spp.,
Enterobacter spp.,
Acinetobacter
spp., Levinea
spp.

[66]
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Table 5. Cont.

Strain Year and
Country Author Quinolone Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Quinolone-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Quinolone
Susceptibility
Restoration

(%)

Comments Reference

Staphylococcus
spp.

2003,
Japan Nakazawa Ofloxacin 32 MRSA (100%) - - in vitro (efficacy

time index) 3 (9%) 2 (6%) 27 (84%) - - -

synergism =
high efficacy;
additive =
efficacy;
indifferent =
invalid

[18]

2001,
Austria Grif Moxifloxacin 7 MRSA (100%) - - in vitro (CB) 100% - - - - - - [43]

1997, Italy Ferrara Sparfloxacin 16 MRSA (100%) >50% ∼100% in vitro (TK) 0% - - - - - - [123]
1988,

France Thauvin Pefloxacin 1 MRSA (100%) in vivo (rat,
endocarditis) 100% - - - - - - [44]

1987,
France Weber Ofloxacin 8 MRSA (37%) - - in vitro (TK) 2 (25%) 6 (75%) - - - - - [163]

1987,
Germany Ullmann Ciprofloxacin 20 - - - in vitro (CB) 19 (95%) 1 (5%) - - - - S. aureus. [45]

1987,
France Quentin Pefloxacin 6 - 16% 0% in vitro (TK) 0% 0% 100% 0% - -

S. aureus.
Indifferent
effect.

[35]

S.epidermidis 1997, Italy Ferrara Sparfloxacin 12 MRSE (100%) >50% ∼100% in vitro (TK) 6/12 (50%) - - - - - - [123]
1987,

France Quentin Pefloxacin 2 - 50% - in vitro (TK) 0% 0% 100% 0% - - Indifferent
effect. [35]

N. gonorrhoeae 2014,
Netherlands Wind Moxifloxacin 4 - - - in vitro (ET) 0% - - - - - - [54]

Table 6. Studies on combination between fosfomycin and aminoglycosides. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Aminoglycoside Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Aminoglycoside
-Resistant (%)

In Vitro
(Methods)/In
Vivo (animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Aminoglycoside
Susceptibility

Restoration (%)
Comments Reference

Enterobacterales
2019, USA Avery Tobramycin 45

45 not specified
between: 8 E. coli:
KPC (25%), NDM
(75%), ESBL (62%);
35 Klebsiella spp:

KPC (45%), NDM
(40%); OXA (14%),
VIM (8%), ESBL

(88%), fosA (44%);
2 Citrobacter spp:

KPC (50%), NDM
(50%), ESBL

(50%), 4 E. cloacae:
KPC (75%), NDM
(25%), ESBL (75%)

20/49 (40%) 45 (100%) in vitro (ET) 2 (4%) 7 (15%) 36 (80%) 0% - -

Data on
synergism
reported
without
distinction for
bacterial strains.
Percentages of
FOS-R isolates
estimated on the
basis of the
reported MIC50.

[11]

2019, USA Flamm Gentamicin 20 - - - in vitro (CB, TK) 6 (30%) 13 (65%) 1 (5%) 0% - - - [38]
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Table 6. Cont.

Strain Year and
Country Author Aminoglycoside Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Aminoglycoside
-Resistant (%)

In Vitro
(Methods)/In
Vivo (animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Aminoglycoside
Susceptibility

Restoration (%)
Comments Reference

1978,
Spain Olay

Streptomycin,
gentamicin,
kanamycin

Streptomycin:
18 E. coli.

Gentamicin: 30
E. coli, 24

Klebsiella spp.,
39 S. marcescens,
33 Proteus spp.
Kanamycin: 21

E. coli, 12
Klebsiella spp.,

16 Proteus spp.,
5 E. cloacae, 22 S.

marcescens

- - - in vitro (CB)

streptomycin:
0%;

gentamicin:
16 (12%);

kanamycin:
21 (27%)

streptomycin:
9 (50%);

gentamicin:
52 (41%);

kanamycin:
37 (48%)

streptomycin:
9 (50%);

gentamicin:
58 (46%);

kanamycin:
18 (23%)

0% - - - [14]

E. coli

2020,
Egypt El-Wafa tobramycin 8 - 3 (37.5%) 8 (100%) in vitro (CB, TK) 2 (25%) 0% 0% 0% 2 (66%) 2 (25%)

For 6 isolates the
efficacy of FOS +
TOB remained
indeterminate.

[42]

2019, USA Wang Gentamicin 8 - 0% 2/8 (25%) in vitro (ET,
biofilm) 75% (6/8) 0% (2/8) 25% 0% - 1/2 50% - [155]

2019, India Sugathan Amikacin 50 - 0% 26 (52%) in vitro (TK) 29 (58%) 21 (42%) 0% 0% 0% (all S) 22 (84%)

The Authors
also studied the
efficacy of
combination of
FOS + AMK
and found it
reduced
significantly
biofilm
formation.

[137]

2013,
Switzerland Corvec Gentamicin 1 CTX-M15, ESBL 0% 0%

in vitro (TK);
in vivo

(foreign-body
infection model)

0% 100% 0% 0% - -
Cure rate of FOS
plus gentamicin
42%.

[73]

2011,
Greece Samonis Netilmicin 20 ESBL 0% 35% in vitro (ET) 25% (5/20) - - - - - - [86]

1977,
Poland Borowski Streptomycin 10 - - - in vitro (CB) 7 (70%) 3 (30%) 0% 0% - - - [121]

K. pneumoniae

2020,
Turkey

Erturk
Sengel Amikacin 17 OXA-48, NDM 41% 76% in vitro (CB) 29% 29% 24% 0% - -

Combination of
FOS plus
amikacin seems
not a good
choice for NDM
producing
strains.

[142]

2018,
China Yu Amikacin 3 - 0% - in vitro (TK) 100% (3/3) 0% 0% 0% - - - [164]

2017,
China Yu Amikacin 3 KPC-2 0% 33% in vitro (TK) 66% 0% 33% 0% - -

FOS (8 g
q8h)/AMK (15
mg/kg qd) most
bactericidal
activity, but
resistance
occurred.

[50]

2017,
China Yu Amikacin 136 KPC (100%) 78 (57%) 80 (58%) in vitro (CB, TK) 7 (5%) 109 (80%) 20 (14%) 0% - - - [89]
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Table 6. Cont.

Strain Year and
Country Author Aminoglycoside Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Aminoglycoside
-Resistant (%)

In Vitro
(Methods)/In
Vivo (animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Aminoglycoside
Susceptibility

Restoration (%)
Comments Reference

2015,
Spain

Rodriguez-Avial
et al. Plazomicin 4 (CB); 2 (TK)

Carbapenemase-producing
strains (KPC,

VIM)
100% NA in vitro (CB, TK) 25–100% 50–0% 25–0% 0% - - - [51]

2014, USA Montgomery Amikacyn 20 KPC-2 (20%),
KPC-3 (15%) - 100%

in vitro (agar
diluition,
antibiotic

potentation
study in A:F 5:2

ratio)

100% - - 0% - -

Synergy defined:
reduction of
FOS and AMK
MIC when used
in combination.

[52]

2011,
Greece Samonis Netilmicin 65

serine
carbapenem-producing

(50/65); ESBL
(14/65); MBL

(1/65)

98% 87% in vitro (ET)

41% (27/65)
overall. In
ESBL 42%
(6/14). In

serine
enzymes

42% (21/50)

- - - - 54% (25/46) - [86]

2011,
Greece Souli gentamicin 17 KPC (100%) 4 (23%) 7 (41%) in vitro (TK) 0% 0% 15/15 (100%) - - -

Efficacy of FOS
+ GEN was not
evaluated in 2
isolates.

[53]

1977,
Spain Daza Tobramicin 23 - - - in vitro (CB) 2/23 (8%) - - 0% - - - [66]

M. morganii 1977,
Spain Daza Gentamicin 2 - - - in vitro (CB) 50% (1/2) - - 0% - - - [66]

P. aeruginosa

2019, USA Wang Gentamicin 7 - 25% 1/7 (14%) in vitro (ET,
biofilm) 4 (57%) 0% 3 (42%) 0% - 0% - [155]

2019, USA Avery tobramycin 42 - NA (at least
71) 42 (27%) in vitro (ET) 8 (19%) 13 (31%) 21 (50%) 0% - 8 (19%) - [33]

2019, New
Zealand Li Bassi Amikacin 15

Strains resistant to
nebulized

fosfomycin and
amikacin (100%)

- - in vivo (pigs,
pneumonia) 0% 0% 100% 0% - -

No difference in
P. aeruginosa
lung tissue
concentration,
bronchoalveolar
lavage
concentration
and lung
hystopathology
score when
amikacin and
FOS were
administered by
aerosol alone or
in combination
therapy.

[165]

2019, USA Flamm gentamicin,
amikacin 5 - - - in vitro (CB, TK) 0%

genta: 4
(80%);

amika: 4
(80%)

genta: 1
(20%);

amika: 1
(20%)

0% - - - [38]

2018,
Spain Diez-Aguilar Tobramycin 6 - 100% 67% in vitro (CB) 83% 17% 0% 0% - - Synergy tested

in biofilm. [166]
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Table 6. Cont.

Strain Year and
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Isolates

Known
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Mechanisms or
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Aminoglycoside
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(Methods)/In
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Effect (%)
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(%)
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Susceptibility

Restoration (%)
Comments Reference

2015,
Australia Walsh Tobramycin 3 - 1/4 (25%) in vitro (TK) 18% (15/81) 25% (20/81) - - - - - [76]

2015,
Spain Diez-Aguilar Tobramycin 8

mexZ mutation
(25%), ANT(2’)-I
enzyme (37.5%),

100% 37% in vitro (TK) 25% 0% 75% 0% - - - [166]

2014, USA Montgomery Amikacin 21

GES-1, OXA-2
plus OXA-10 plus
VIM-2, OXA 14,

VIM-4 (each,
4.8%), VIM-2

(19%)

- 100%

in vitro (agar
dilution,
antibiotic

potentation
study in A:F 5:2

ratio)

100% - - - - -

Synergy defined:
reduction of
FOS and AMK
MIC when used
in combination.

[52]

2013,
Brazil

Ferrari dos
Santos
Lima

Tobramycin 2 IMP-R (100%) 100% 100%
in vitro (broth
microdilution,

CB)
100% 0% 0% 0% 100% 0%

Authors do
NOT report FOS
and AMG MIC
(they referred to
CLSI criteria
except for
FOS-Eucast S ≤
32 µg/mL); FOS
MIC restoration
32.

[48]

2013, USA Anderson Tobramycin 1 - - -

in vitro (effects
on biofilms on

CF airway
epithelial cells)

- 100% 0% 0% - -

FOS:TOBRA
(4:1) formulas
for inhalation
treatment;
results suggest
that fosfomicon
enhanced the
activity of
tobramycin
(much less level
of tobramycin
needed). FOS
alone does NOT
result in biofilm
inhibition,
TOBRA alone
require
HIGHER doses
for biofilm
inhibition.

[49]

2012,
UK/USA McCaughey Tobramycin 15 - - - in vitro (agar

dilution, TK) 100% - - 0% - -

Synergism
defined as
FOS:TOBRA
bactericidal
activity; Time
kill studies in a
subset of
isolates; biofilm
studies were
also performed.

[167]

2011,
Greece Samonis Netilmicin 15 MDR 93% 13% in vitro (ET) 13% (2/15) - - - - - - [86]
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Strain Year and
Country Author Aminoglycoside Number of

Isolates

Known
Resistance

Mechanisms or
Determinants
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(%)

Aminoglycoside
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(Methods)/In
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and Site of
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Effect (%)
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Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Aminoglycoside
Susceptibility

Restoration (%)
Comments Reference

2009,
China Cai Amikacin 20 - - NA (MIC90

32)

in vitro (CB);
in vivo (rat,

biofilm-infected
model)

80% 15% - 0% - MIC90 decrease
of 64-fold

F + T (lowest
FICI amikacina
and
isepamicina)
had synergistic
effect on
planctonic P.
aeruginosa.

[168]

2009,
China Cai Gentamicin 20 - - NA (MIC90

16)

in vitro (CB);
in vivo (rat,

biofilm-infected
model)

70% 15% - 0% - MIC90 decrease
of 8-fold

F + T (lowest
FICI amikacina
and
isepamicina)
had synergistic
effect on
planctonic P.
aeruginosa.

[168]

2009,
China Cai Netilmicin 20 - - NA (MIC90

16)

in vitro (CB);
in vivo (rat,

biofilm-infected
model)

65% 20% - 0% - MIC90 decrease
of 8-fold

F + T (lowest
FICI amikacina
and
isepamicina)
had synergistic
effect on
planctonic P.
aeruginosa.

[168]

2009,
China Cai Tobramycin 20 - - NA (MIC90 8)

in vitro (CB);
in vivo (rat,

biofilm-infected
model)

60% 20% - 0% - MIC90 decrease
of 2-fold

F + T (lowest
FICI amikacina
and
isepamicina)
had synergistic
effect on
planctonic P.
aeruginosa.

[168]

2005,
Thailand Pruekprasert gentamicin 22 - - - in vitro (CB) 1 (4%) 9 (42%) 6 (27%) 6 (27%) - - - [22]

2002,
Japan Okazaki gentamicin 30 - 15 (50%) 19 (63%) in vitro (efficacy

time index) 0% 9 (30%) 21 (70%) 0% 0% 15 (50%) - [39]

1999,
Japan Hayami amikacin 26 - NA (at least

13) NA (< 5) in vitro (CB, TK) 0% 10 (38%) 16 (61%) 0% - - - [130]

1991,
Nigeria Chinwuba Gentamicin 8 - - 0% in vitro (CB, TK) 0% 0% 100% 0% - - - [169]

1997,
France Tessier amikacin 40 - 23 (57%) 13 (32%) in vitro (CB) 3 (7%) 21 (52%) 16 (40%) 0% 18 (78%) 11 (84%)

Although the
combination
had a
synergistic effect
on no tested
strains, it is of
clinical
relevance as it
restored FOS
and AMK
susceptibility in
many resistant
strains.

[131]

1978,
Spain Olay gentamicin,

kanamycin
77 gentamicin,
15 kanamycin - - - in vitro (CB)

gentamicin:
55 (71%);

kanamycin:
4 (26%)

gentamicin:
17 (22%);

kanamycin:
8 (53%)

gentamicin:
5 (6%);

kanamycin:
3 (20%)

0% - - - [14]
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Strain Year and
Country Author Aminoglycoside Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Aminoglycoside
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(Methods)/In
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and Site of
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Effect (%)
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Effect (%)
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Effect (%)
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(%)

Aminoglycoside
Susceptibility

Restoration (%)
Comments Reference

A. baumannii

2019, USA Flamm gentamicin,
amikacin

5 (A.
baumannii-calcoaceticus

species
complex)

- - - in vitro (CB, TK)

genta: 2
(40%);

amika: 2
(40%)

genta: 3
(60%);

amika: 3
(60%)

0% 0% - - - [38]

2016,
Brazil Leite gentamicin,

amikacin 20 OXA (100%), IMP
(15%) 20 (100%)

genta: 11
(55%); amika:

19 (95%)
in vitro (CB, TK) 0%

genta: 2
(10%);

amika: 0%

genta: 18
(90%);

amika: 20
(100%)

0% - -

"2-well" method
showed
synergistic
activity in about
20% of tested
strain, but the
Authors
considered it
not fully reliable
and concluded
the association
had an
indifferent
effect.

[83]

2014, USA Montgomery Amikacyn 21

OXA-23 plus
OXA-51 (23.8%);

OXA-24 plus
OXA-51 (9.5%),

OXA-51, OXA-51
plus OXA-58
(each, 4.8%)

- 100%

in vitro (agar
dilution,
antibiotic

potentation
study in A:F 5:2

ratio)

100% - - 0% - -

Synergism
defined as
reduction of
FOS and AMK
MIC when used
in combination.

[52]

1996,
Spain

Martinez-
Martinez

amikacin,
tobramycin 34 - 34 (100%)

amika: 31
(91%); tobra:

33 (97.%)
in vitro (CB)

amika: 15
(44%); tobra:

11 (32%)
- - 0% - -

The authors
reported only
synergistic and
antagonistic
effect rates.

[132]

Gram-negative

1977,
Spain Daza Tobramycin 75 - - - in vitro (CB) 0% 0% 100% 0% - - [66]

1977,
Spain Daza Gentamicin 75 - - - in vitro (CB) 0% 0% 100% 0% - -

33 Klebsiella spp.,
21 P. aeruginosa,
3 P. cepacia, 12
E.coli,11 S.
marcescens, 9
Enterobacter spp.,
8 Proteus spp., 2
A. calcoaceticus, 1
L. malonatica, 5
K. pneumoniae
oxytoca, 5 K.
Ozenae, 5 E.
aerogenes, 2 E.
hafniae, 1 E.
cloacae, 1 E.
liquefaciens, 4 P.
mirabilis, 2 P.
rettgeri

[66]

S. aureus

2017,
Spain

Lopez
Diaz Plazomicin 12 (BC); 5 (TK)

MRSA Strains
carrying

aminoglycosides-modifying
enzymes (100%)

56% - in vitro (CB, TK) 33.3–0% 66–100% 0% 0% - - - [170]

2012,
UK/USA McCaughey Tobramycin 5 MRSA 100% - in vitro (agar

dilution, TK) 60% - - 0% - -

Synergism
defined as F:T
bactericidal
activity; Time
kill studies in a
subset of
isolates; biofilm
studies were
also performed

[167]
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(%)

Aminoglycoside
Susceptibility
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Comments Reference

2005,
Japan Morikawa Arbekacin 1 MRSA 100%

100% MIC 0.5
(no available
breakpoint)

in vivo (rat,
carboxymethyl
cellulose pouch
infection model)

100% - - - - -

NOT available
arbikacin
EUCAST
breakpoints;
Synergistic
effect was
evaluated by i)
morphological
and histological
studies showing
dramatic change
in biofilm and
inflammatory
response and by
ii) decrease in
the number of
viable bacteria
in vivo.

[171]

1994,
Japan Kono Arbekacin 96 MRSA 38% - in vitro 66% (60/90) - - 0% - -

Better results of
FOS-arbekacin
combination in
FOS susceptible
strains.

[172]

1987,
Spain Rodriguez Gentamicin 1 MRSA 0% 0%

in vivo
(endocarditis in

10 rabbits)

100% (1/1)
0% n. of
rabbits’

death (0/10)

0% 0% 0% - - - [61]

1985, USA Alvarez Gentamicin 148 MRSA - -

in vitro
(microtiter

technique in a
1:1 ratio)

(10/148) 7% 0% 90%
(134/148) (4/148) 3% - -

Synergy was
indicated if the
MICs of both
drugs decreased
by at least
one-fourth. If
the MIC of one
drug owed a
fourfold or
greater increase,
it was assumed
to be an
indication of
antagonism.

[12]

1978,
Spain Olay

streptomycin,
gentamicin,
kanamycin

18 streptomycin,
29 gentamicin,
21 kanamycin

- - - in vitro (CB)

streptomycin:
1 (5%);

gentamicin:
0%;

kanamycin:
9 (43%)

streptomycin:
10 (55%);

gentamicin:
3 (10%);

kanamycin:
7 (33%)

streptomycin:
7 (38%);

gentamicin:
26 (89%);

kanamycin:
5 (23%)

0% - - - [14]
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Streptococcus
spp.

1978,
Spain Olay streptomycin 16 - - - in vitro (CB) 0% 9 (56%) 7 (43%) 0% - - - [14]

E. faecium 2019,
Thailand Hemapanpairoa Gentamicin 8 VRE (100%) 100% 13%

in vitro (ET for
FOS, broth

microdilution
for gentamicin)

63% 13% 25% 0% 63% -

Synergistic
activity assessed
as a fourfold
reduction of
MIC when FOS
combined with
gentamicin 1
mcg/mL.

[55]

N. gonorrhoeae 2015, The
Netherlands Wind gentamicin 4 - - - in vitro (ET) 0% 1 (25%) 3 (75%) 0% - - - [54]

Miscellaneous 2009, USA MacLeod Tobramycin

27 (4 S. aureus,
17 P. aeruginosa,

5 E.coli, 1 H.
influenzae)

- - -
in vitro (CB,

TK); in vivo (rat,
pneumonia)

7% (1 P.
aeruginosa, 1

E.coli)
- 93% 0% - -

In vitro (agar
plate dilution,
broth
microdilution,
CB ON a
SUBSET of
ISOLATES, TK)
and in vivo (rat
bacterial
pneumonia). NB:
CB for 27 total
strains: 4 S.
aureus, 17 P.
aeruginosa, 5 E.
coli, 1 H.
influenzae.
FOS:TOBRA 4:1
was rapidly
bactericidal and
exhibited
concentration
-bactericidal
killing in TK,
with excellent
activity against S.
aureus and H.
influenzae, but
poor activity
against S.
maltophilia, B.
cepacia; it was
active against M.
catarrhalis, E. coli,
Klebsiella and
S. pneumoniae.

[173]
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Table 7. Studies on combination between fosfomycin and macrolides. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Macrolide Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Macrolide-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Macrolide
Susceptibility
Restoration

(%)

Comments Reference

E. coli 1978,
Spain Olay Erythromycin 14 - - - in vitro (CB) 42% 29% 28% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]

Klebsiella spp. 1978,
Spain Olay Erythromycin 44 - - - in vitro (CB) 50% 23% 27% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]

E. cloacae 1978,
Spain Olay Erythromycin 16 - - - in vitro (CB) 62% 38% 0% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]
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Susceptibility
Restoration

(%)

Comments Reference

Proteus spp.
(Indole +)

1978,
Spain Olay Erythromycin 13 - - - in vitro (CB) 53% 46% 0% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]

P. aeruginosa

1982,
Japan Kasai Midecamycin 2 - 0% 2 (100%)

in vitro
(TK)/in vivo

(Mice,
peritonitis or
subcutaneous

infection)

0% 2 (100%) 0% 0% - -

In all in vivo experiment
survival rates of mice that
received MDM + FOS
was statistically
significant higher then
when FOS or MDM were
administrated alone,
proving synergistic effect.

[59]

1978,
Spain Olay Erythromycin 29 - - - in vitro (CB) 38% 59% 3% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]
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S. aureus 1978,
Spain Olay Erythromycin 34 - - - in vitro (CB) 26% 68% 6% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]

S. epidermidis 2009,
Austria Presterl Azithromycin 11 - 2 (18%) 5 (45%)

in vitro
(Microtitre plate
assay on Biofilm

culture)

- - - - - -

Combination of
azithromycin with any of
the tested antimicrobial
agents did not reduce the
biofilm ODr compared to
the ODr of biofilms
treated with single agents

[58]

S.
pseudointermedius

2014,
Canada DiCicco Clarithromycin 8 MRSP (100%) 5 (62%) 8 (100%)

in vitro
(Microtitre plate

assay)
5 (62%) 2 (25%) 0% 0% - -

FICI for 1 strains was
reported as "Not
available".

[60]

Streptococcus
spp.

1978,
Spain Olay Erythromycin 26 - - - in vitro (CB) 15% 27% 57% 0% - -

Authors considered
Synergistic effect when
MIC of both
antimicrobials was at
least fourfold lower over
initial MIC; partial
synergy when MIC of one
antimicrobials was at
least fourfold lower and
MIC of the other one 2
times lower over initial
MIC; Indifferent effect
when MIC of both
antimicrobials was 2
times lower; antagonism
when MIC of both
increased 4 times over
initial MIC.

[14]

N. gonorrhoeae
2015,

Switzerland Hauser Azithromycin 8 (4 TK) AZT-HLR (12,%) 0% 1 (12%) in vitro (CB, TK) CK: 0%; TK:
0%

CK: 0%; TK:
0%

CK: 8
(100%); TK:

4 (100%)

CK: 0%; TK:
0% - -

Only 4 strains were tested
with TKA. Authors used
Enterobacterales FOS
breakpoint as
presumptive breakpoint
for N. gonorrhoeae
(EUCAST: S ≤ 32 mg/L;
CLSI: S ≤ 64 mg/L).

[57]

2015,
Netherlands Wind Azithromycin 4

Azithromycin and
Ceftriaxone

Resistant (100%)
- - in vitro (ET) 0% 0% 4 (100%) - - - - [54]
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Table 8. Studies on combination between fosfomycin and glycopeptides. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Glycopeptide Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Glycpeptide-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Glycopeptide
Susceptibility
Restoration

(%)

Comments Reference

A baumannii 2016,
Brazil Leite Vancomycin 20

OXA-23 (50%),
OXA-143 (35%),
IMP-type (15%),

depletion of OMP
43 kDa (20%)

19 (95%) Natural
resistance in vitro (CB, TK) 0% 0% CB: 20

(100%) 0% 0% Breakpoints
not available

TK showed
indifference in all
strains.

[83]

S. aureus

2018,
China Xu Vancomycin 3 - 1 (33%) 0% in vitro (CB) 0% 2 (66%) 1 (33%) 0% 1 (100%) No resistant

isolates

In vitro
concentrations -
VAN (0.5, 1, 2 mg/L);
FOS (32, 64 mg/L).

[174]

2017,
Spain Coronado-AlvarezVancomycin 4 Methicillin

resistance (50%) - - in vitro (TK) 0% 4 (100%) 0% 0% - -

The study also
evaluated 15
patients with
bacteremia caused
by MRSA were
treated with FOS in
combination with
VAN. Of these, 7
patients (46.7%) had
negative blood
cultures after 48 h
of combination
therapy.

[63]

2012,
Taiwan Tang Vancomycin,

teicoplanin 8 Methicillin
resistance (100%) 2 (6%) VAN: 0%;

TEC: 0% in vitro (TK) VAN: 8
(100%) 0% TEC: 8

(100%) 0% 0% No resistant
isolates

Synergistic
concentrations were
64 mg/L for FOS
and 2 mg/L for
VAN, at 24 h.
Indifference was
detected with 8
mg/L for TEC at 24
h. Significant
reduction of colony
count in biofilm
model when FOS
was in combination
with either VAN
and TEC after 5
days.

[69]

2011,
Taiwan Tang Vancomycin 5 Methicillin

resistance (100%) 0% 0% in vitro (TK) 5 (100%) 0% 0% 0% No resistant
isolates

No resistant
isolates

All strains had
borderline MIC
values for VAN (2
mg/L). In vitro
synergistic
concentrations were
2 mg/L for VAN and
64 mg/L for FOS.

[175]
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Table 8. Cont.

Strain Year and
Country Author Glycopeptide Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Glycpeptide-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Glycopeptide
Susceptibility
Restoration

(%)

Comments Reference

2010,
Spain Pachon-IbanezVancomycin 1 hGISA (100%) 0% 0%

in vitro (TK);
in vivo (mouse,

peritonitis)
1 (100%) 0% 0% 0% No resistant

isolate
No resistant

isolate

Resistant (4 mg/L)
sub-population
frequency: 3.6 ×
10−6 CFU/mL;
in vitro synergistic
concentrations were
1–2–4 mg/L for FOS
and 1–2 mg/L for
VAN at 24 h.
In vivo combination
was significant and
effective in reducing
bacteremia rates in
57% (n = 8 out of 14)
of mice treated.

[36]

2005, Italy Pistella Vancomycin,
teicoplanin 7 Methicillin

resistance (100%) 5 (71%)
VAN: 3

(42%); TEC:
6 (85.7%)

in vitro (TK)
VAN: 7

(100%); TEC:
0%

VAN: 0%;
TEC: 7
(100%)

0% 0% 7 (100%) 0%

Synergistic
concentrations were
8 mg/L for FOS and
1 ×MIC for VAN (1,
2 or 4 mg/L
respectively) at 24 h.

[176]

1987,
Spain Rodriguez Vancomycin 1 Methicillin

resistance (100%) 0% 0%
in vitro (TK);

in vivo (rabbit,
endocarditis)

1 (100%) 0% 0% 0% No resistant
isolates

No resistant
isolates

In vitro synergism
at 24 and 48 h.
Fixed
concentrations of
FOS at 8 mg/L and
VAN at 1 mg/L.
In vivo combination
was successful in 10
rabbits (100%)
showing sterile
vegetations.

[61]

1985,
Spain Alvarez Vancomycin 148 Methicillin

resistance (100%) 15 (10%) 1 (1%) in vitro (CB) 0% 0% 145 (98%) 3 (2%) - -
1 strain was
resistant to VAN
(MIC > 32 mg/L).

[12]

S. aureus, S.
epidermidis

2014,
China Shi Vancomycin 3 (2 S. aureus, 1

S. epidermidis)
Methicillin

resistance (67%) 3 (100%) 0%
in vitro (TK);

in vivo (biofilm
in rats’ tissues)

3 (100%) 0% 0% 0% 0% No resistant
isolates

In vitro synergistic
concentrations at 1
mg/L for VAN and
64 mg/L for FOS at
6h and 24 h. In vivo
significative
reduction of biofilm
formation in rats’
tissues (4, 100%).

[62]

2001,
Austria Grif Vancomycin 7 (5 S. aureus; 2

S. epidermidis)

S. aureus: GISA 1
(20%), MRSA 1

(20%)
- 0% in vitro (CB, TK) 0% 0%

CB: S.
epidermidis 2

(100%); S.
aureus 5
(71%)

CB: S.
epidermidis

0%; S. aureus
2 (28%)

- -

TK showed
indifference for all
strains, with fixed
concentration of
FOS at 40 mg/L and
VAN at 10 mg/L.

[43]

1989,
Germany Gatermann Vancomycin 33 (15 S. aureus;

18 S. epidermidis) - - - in vitro (CB)

S. aureus: 1
(6%); S.

epidermidis:
1 (5%)

S. aureus: 8
(53%); S.

epidermidis:
7 (39%)

S. aureus: 6
(40%); S.

epidermidis:
9 (50%)

S. aureus:
0%; S.

epidermidis:
1 (5%)

- -
Synergistic
concentrations not
specified.

[177]
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Table 8. Cont.

Strain Year and
Country Author Glycopeptide Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Glycpeptide-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Glycopeptide
Susceptibility
Restoration

(%)

Comments Reference

E. faecalis, E.
faecium, S.
aureus, S.

epidermidis,
CONS

1986, Italy Debbia Teicoplanin

76 strains: 30 E.
faecalis, 6 E.

faecium, 20 S.
aureus, 10 S.

epidermidis, 10
CoNS

Methicillin
resistance (50% of

S. aureus)
- - in vitro (CB, TK)

CB: 20 (67%)
E. faecalis; 4

(67%) E.
faecium; 6
(60%) S.
aureus; 6

(60%)
MRSA; 1
(10%) S.

epidermidis; 6
(60%) CONS

CB: 10 (33%)
E. faecalis; 2

(33%) E.
faecium; 4
(40%) S.
aureus; 4

(40%)
MRSA; 9
(90%) S.

epidermidis; 4
(40%) CONS

0% 0% - -

Synergistic
concentrations not
specified. 46 strains
were tested also by
TK. TK
results-Synergism:
11 (92%) E. faecalis; 4
(100%) E. faecium; 6
(100%) S. aureus; 8
(100%) MRSA; 6
(75%) S. epidermidis;
8 (100%) CoNS.
Additive effect: 1
(8%) E. faecalis; 2
(25%) S. epidermidis.

[178]

S. pneumoniae
2006,
Spain Ribes Vancomycin 2

Resistance to
penicillin (50%)
and ceftriaxone

(100%)

0% 0%
in vitro (TK);

in vivo (rabbit,
menigitis)

1 (50%) 1 (50%) 0% 0% No resistant
isolates

No resistant
isolates

In vitro synergism
at 24 h, at
concentrations
achievable in CSF.
In vivo combination
significant and
effective in
eradicating
meningitis with
sterile blood
cultures (8, 100%).

[24]

1994,
France Doit Vancomycin 26

Isolates not
susceptible to

penicillin (100%)
0% 0% in vitro (TK) 0% 0% 100% 0% No resistant

isolates
No resistant

isolates

Fixed
concentrations of
FOS at 40 mg/L and
VAN at 3 mg/L.

[134]

S. epidermidis
1990,

France Gaillanrd Vancomycin 1 - 0% 0% in vitro (TK) 1 (100%) 0% 0% 0% No resistant
isolates

No resistant
isolates

Synergism at 4 h.
Fixed
concentrations of
FOS at 12.5 mg/L
and VAN at 7.5
mg/L. Effective to
reduce biofilm
formation (1; 100%).

[179]

1990,
Germany Simon Vancomycin,

teicoplanin 20 Methicillin
resistant (100%) 10 (50%) VAN: 0%;

TEC: 2 (10%) in vitro (CB)
VAN: 4

(20%); TEC:
9 (45%)

VAN: 5
(25%); TEC:

6 (30%)

VAN: 11
(55%); TEC:

5 (25%)

VAN: 0%;
TEC: 0% -

VAN: no
resistant
isolates;
TEC: NS

Synergistic
concentrations at 0.5
X MIC for FOS, TEC
and VAN. Good
efficacy in artificial
biofilm model when
isolates were fully
susceptible to FOS.

[180]



Antibiotics 2020, 9, 500 48 of 74

Table 8. Cont.

Strain Year and
Country Author Glycopeptide Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Glycpeptide-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Glycopeptide
Susceptibility
Restoration

(%)

Comments Reference

E. faecalis - E.
faecium

2013,
Taiwan Tang Vancomycin,

teicoplanin

19 strains: 9 E.
faecalis; 10 E.

faecium

Vancomycin
resistant (100%)

5 (55%) E.
faecalis; 7 (70%)

E. faecium

VAN: 19
(100%) both;
TEC: 1 (11%)
E. faecalis; 6

(60%) E.
faecium

in vitro (TK)

VAN: 3
(33%) E.
faecalis, 3
(30%) E.

faecium; TEC:
8 (89%) E.
faecalis, 3

(30%)
E. faecium

0%

VAN: 6
(67%) E.
faecalis, 7
(70%) E.

faecium; TEC:
1 (11%) E.
faecalis, 7

(70%)
E. faecium

0% 0%

VAN: 3
(33%) E.
faecalis; 3
(30%) E.

faecium; TEC:
0%

Synergistic
concentrations were
64 mg/L for FOS, 4
mg/L for VAN and 8
mg/L for TEC, at 24
h. FOS-TEC had
synergistic effect
against
biofilm-producing
E. faecalis (4; 44%)
and one E. faecium
(1; 10%) isolates.
FOS-VAN had
synergistic effect
against only one
biofilm-producing
E. faecalis isolate
(1; 11%).

[13]

Table 9. Studies on combination between fosfomycin and tetracyclines. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Tetracycline Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Tetracycline-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Tetracycline
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Flamm Minocycline 20

7/30 MDR strains
(A. baumannii,

Enterobacterales e P.
aeruginosa)

included 2 ESBL e
2 KPC

Enterobacterales

- - in vitro (CB) 4 (20%) 13 (65%) 1 (5%) 0% - -

Authors considered
Partial Sinergy when FICI
was between 0.5–1 and
Additive effect for FICI =
1. Results for 2/20 strains
(10%) were
indeterminate.

[38]

1977,
Spain Daza Tetracycline 100 - 100 (100%) - in vitro (CB) 2 (2%) - 98% 0% - -

Authors considered
Synergistic effect when
MIC was at least fourfold
lower over initial MIC.

[66]

P. aeruginosa 2019, USA Flamm Minocycline 5

7/30 MDR strains
(A. baumannii,

Enterobacterales e P.
aeruginosa)

- - in vitro (CB) 2 (40%) 3 (60%) 0% 0% - -

Authors considered
Partial Sinergy when FICI
was between 0.5–1 and
Additive effect for
FICI = 1.

[38]
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Table 9. Cont.

Strain Year and
Country Author Tetracycline Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Tetracycline-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Tetracycline
Susceptibility
Restoration

(%)

Comments Reference

A. baumannii 2013,
China Zhang Minocycline 25 Pan-Drug-Resistant

(100%) 100% See
Comments in vitro (CB) 12% 56% 32% 0% 0% 100%

Mean MIC for
Minocycline was 16, MIC
range 4-16. Authors used
CLSI breakpoint for MIN
(S ≤ 4 mg/L).

[65]

S. aureus

2012,
Taiwan Tang Minocycline 33 (8 TK) MRSA (100%) 6% 61%

in vitro (TK,
Biofilm

MTT-staining
method)

- - - - - -

Only 8 strains were tested
with TK. Biofilm cultures
were 94% MIN resistant
and 94% FOS resistant.
Cases of synergism were
observed with FOS+MIN
combination. Percentages
or other data were not
reported by authors.
Combination of FOS +
MIN determined a
statistically significant
reduction on ODRs in
biofilm cultures
compared to single drugs.

[69]

2011,
China Sun Minocycline 87 MRSA (100%) 35 (40%) 13 (14%) in vitro (CB) 76 (87%) - 11 (12%) 0% 100% 92%

Authors considered
Indifferent effect for FICI
between 0,5 and 4. CLSI
breakpoint was used for
MIN (S ≤ 4 mg/L) and E.
faecalis FOS breakpoint as
presumptive breakpoint
for MRSA (S ≤ 64 mg/L).

[70]

2003,
Japan Nakazawa Minocycline 32 MRSA (100%) 29 (91%) 26 (81%) in vitro (Efficacy

Time Index) 10 (31%) 1 (3%) 21 (65%) - - - - [18]

E. faecalis 2013,
Taiwan Tang Minocycline 9 VRE (100%) 56% 89% in vitro (TK,

Biofilm Model)

TKA: 2
(22%); BM: 1

(11%)
- - - - -

Additive, Indifferent and
antagonistic effect were
not evaluated.

[13]

E. faecium

2013,
Taiwan Tang Minocycline 10 VRE (100%) 70% 80% in vitro (TK,

Biofilm Model)

TKA: 4
(40%); BM: 1

(10%)
- - - - -

Additive, Indifferent and
antagonistic effect were
not evaluated.

[13]

2012, USA Descourouez Minocycline 32 VRE (100%) 9% See
Comments in vitro (TK) 0% 0% 100% 0% - -

The authors considered
MIC ≤ 64 mg/L as FOS
breakpoint. Most of
strains were minocycline
resistant (MIC range 4–32,
mean MIC 16 mg/L).

[67]

2019, USA Davis Doxycycline 24 VRE (100%) 96% 8% in vitro (ET, TK)
CK: 11

(46%); TK:
10 (41%)

CK: 13
(54%); TK: 4

(16%)

CK: 0%; TK:
10 (41%)

CK: 0%; TK
0% - -

Authors used CLSI
breakpoint for DOX (S ≤
4 mg/L) and E. faecalis
FOS breakpoint as
presumptive breakpoint
for E. faecium
(S ≤ 64 mg/L).

[68]

N. gonorrhoeae 2015,
Netherlands Wind Minocycline 4

Azithromycin and
Ceftriaxone

Resistant (100%)
- - in vitro (ET) 0% 0% 4 (100%) - - - - [54]
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Table 10. Studies on combination between fosfomycin and polymyxins. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Polymyxin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Polymyxin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Polymyxin
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Flamm Colistin 20
carbapenem-resistant
(5%), KPC (10%),

ESBL (10%)
- - in vitro (CB, TK) 1 (5%) 5 (25%) 8 (40%) 0% - -

For 6 isolates the
effect of the
combination was
indeterminate.

[38]

2015, UK Albur Colistin 6 NDM-1 (100%) 3 (50%) 0% in vitro (TK) 3 (50%) 0% 3 (50%) 0% - -

The combination was
synergistic against
FOS-S isolates.
Against FOS-R
isolates, an additive
effect was observed
after 12h, but then
regrowth occurred.

[181]

E. coli

2013,
Switzerland Corvec Colistin 1 CTX-M15, ESBL

(100%) 0% 0%

in vitro (TK),
in vivo

(foreign-body
infection model)

1 (100%) 0% 0% 0% - - - [73]

2011,
France Berçot Colistin 1 NDM-1 0% 0% in vitro (CB, TK) 0% 1 (100%) 0% 0% - - E. coli J53 [85]

2011,
Greece Samonis Colistin 20 ESBL (100%) 0% 0% in vitro (ET) 3 (15%) - - 0% - - - [86]

E. cloacae 2011,
France Berçot Colistin 2 NMD-1 1 (50%) 0% in vitro (CB, TK) 0% 2 (100%) 0% 0% - - - [85]

K. pneumoniae

2020,
Turkey

Buket
Erturk
Sengel

Colistin 17 KPC (OXA-48,
NDM) (100%) 41% 65% in vitro (CB, TK) 7 (41%) 3 (18%) 5 (29%) 2 (12%) - - - [142]

2019, India BakthavatchalamColistin 50 CR-Kp, NDM,
OXA-43 (100%) 24 (48%) 14 (30%) in vitro (TK) 8 (16%) 0% 42 (84%) 0% - - - [141]

2020,
Sweden Wistrand-YuenPolymyxin B 5 (4 used for

FOS+PMB)

KPC-2, KPC-3,
NMD-1, OXA-48,

VIM-1 (100%)
3 (60%) 2 (40%) in vitro (TK) 5 (31%) 2 (12%) - - - -

Synergistic rate
inferred from 4
isolates monitored at
different times. If
evaluated only after
24 h, syn: 40%; add
20%.

[182]

2019,
France Crémieux Colistin 1 carbapenem-resistant

(100%) 0% 0%
in vitro (TK);

in vivo (rabbit,
osteomyelitis)

1 (100%) 0% 0% 0% - - - [71]

2018,
China Wang Colistin 4 carbapenem-resistant

(100%) 2 (50%) 0% (75%
heteroresistant) in vitro (TK) 31 (43%) 8 (11%) 33 (46%) 0% - -

3 isolates showed
heteroresistance: the
total number of
experiments was 72 (3
different colistin
concentrations tested
in 6 different times).

[183]

2018,
China Yu Colistin 3 KPC (100%) 1 (33%) 3 (100%) in vitro (TK) 2 (66%) 1 (33%) 0% 0% - - - [164]

2017,
Taiwan Ku Colistin 9

ESBL-producing
KP (5/9

carbapenem-R,
4/9 carbapenem-S)

4 (45%) 1 (11%) in vitro (TK) 5 (55%) 0% 4 (45%) 0% - - - [84]

2017,
China Yu Colistin 3 KPC2 (100%) 0% 1 (33%) in vitro (TK) 3 (100%) 0% 0% 0% - - - [50]

2017,
China Yu Colistin 136 KPC-Kp (100%) 78 (57%) 1 (1%) in vitro (CB, TK) 5 (3%) 109 (80%) 22 (16%) 0% - - - [89]

2018, USA Bulman Polymyxin B 2 KPC-2 (100%) 0% 0%

in vitro (TK);
in vivo

(hollow-fibre
infection model)

2 (100%) - - - - - - [75]
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Table 10. Cont.

Strain Year and
Country Author Polymyxin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Polymyxin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Polymyxin
Susceptibility
Restoration

(%)

Comments Reference

2014,
Sweden Tängdeén Colistin 4 VIM (50%), NDM

(50%) 2 (50%) 0% in vitro (TK) 3 (75%) 0% 1 (25%) 0% - -

Synergism in 1 VIM-
and 2
NDM-producing
isolates, although
NDM-producing
isolates were FOS-R.

[146]

2013,
Turkey Evren Colistin 12 OXA-48 (100%) 11 (92%) 2 (17%) in vitro (CB) 0% 0% 0% 12 (100%) - - - [74]

2011,
France Berçot Colistin 3 NDM-1 (100%) 0% 0% in vitro (CB, TK) 0% 1 (33%) 2 (66%) 0% - - - [85]

2011,
Greece Samonis Colistin 50 carbapenem-resistant

(100%) 3% 25% in vitro (ET) 18 (36%) - - 0% - - - [86]

2011,
Greece Samonis Colistin 14 ESBL (100%) 3% 25% in vitro (ET) 1 (7%) - - 0% - - - [86]

2011,
Greece Souli Colistin 17 KPC-2 (100%) 4 (23%) 7 (41%) in vitro (TK) 2 (12%) 0% 15 (88%) 0% - - - [53]

K. oxytoca 2011,
France Berçot Colistin 1 NDM-1 0% 0% in vitro (CB, TK) 0% 100% 0% 0% - - - [85]

P. rettgeri 2011,
France Berçot Colistin 1 NDM-1 0% 100% in vitro (CB, TK) 0% 0% 100% 0% - - - [85]

P. aeruginosa

2019, USA Flamm Colistin 5 - - - in vitro (CB, TK) 0% 1 (20%) 4 (80%) 0% - - - [38]

2016,
Australia Walsh Polymyxin B 4 MDR (75%) 50% 50% in vitro (TK) 19 (18%) 27 (25%) - - - -

FOS in combination
with polymyxin B
increased bacterial
killing, but did not
suppress emergence
of FOS resistance.
The total number of
experiments was 108
(9 combinations of
FOS + CIP at different
concentrations, in 3
different times).

[76]

2011,
Greece Samonis Colistin 15 MDR (100%) 6% 0% in vitro (ET) 2 (13%) - - 0% - - - [86]

2015,
China Di Colistin 87 CRPA (100%) 75% 4% (5/87) in vitro (CB, TK) 19 (21%) 29 (33)% 39 (44%) 0% - 3 (60%) - [184]
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Table 10. Cont.

Strain Year and
Country Author Polymyxin Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Polymyxin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Polymyxin
Susceptibility
Restoration

(%)

Comments Reference

A. baumannii-A.
calcoaceticus spp.

Complex
2019, USA Flamm Colistin 5 MDR (20%) - - in vitro (CB, TK) 2 (40%) 1 (20%) 1 (20%) 0% - -

For 1 isolate the effect
of the combination
was indeterminate.

[38]

A. baumannii

2020,
South
Korea

Su Ku Colistin 1 OXA-23 (100%) 100% 0%

in vitro (TK);
in vivo (mouse,

nasal
inoculation)

1 (100%) 0% 0% 0% - - - [72]

2019,
Turkey Sertcelik Colistin 23 carbapenem-resistant

(100%) 100% 26% in vitro (CB) 1 (4%) 10 (43%) 12 (52%) 0% - - - [185]

2019,
China Bian Colistin 9 carbapenem-resistant

(100%) - 0% in vitro (CB, TK) 1 (11%) - - - - - - [186]

2018,
China Zhu Colistin 21 - 100% 61% (13/21) in vitro (CB) 0% 2 (9%) 19 (90%) 0% - -

The authors reported
8 isolates to be
colistin-R, but only 3
isolates had MIC > 2.

[151]

2018,
Thailand Leelasupasri Colistin 15 carbapenem-resistant

(100%) 100% 0% in vitro (CB, ET) 4 (26%) 7 (46%) 4 (26%) 0% - - - [187]

2017,
Thailand Lertsrisatit Colistin 17

CoR-AB;
carbapenemase-producing;

efflux-pump
(100%)

100% 100% in vitro (CB, ET) - - - 0% - -

Treatment in vivo
(patients) with COL +
FOS lead to
death (2/2).

[188]

2016,
China Fan Colistin 12 XDR (100%) 100% 0% in vivo (mouse,

thigh-infection)model 1 (8%) - - 0% - - - [189]

2016,
Brazil Leite Colistin 20 OXA-23, OXA-143

(100%) 100% 35% (7/20) in vitro (CB, TK,
2-well) 0% - - - - - - [83]

2015,
China Wei Colistin 50 XDR (100%) 94% 50% in vitro (CB) 25 (50%) 0% 22 (44%) 3 (6%)

Synergism (FICI: =<
0.5). Indifference
(FICI: 0.5–4).
Antagonism (FICI: >=
4).

[190]

2013,
China Zhang Polymyxin B 25 PDR (100%) 100% 100% in vitro (TK) 4 (16%) 11 (44%) 10 (40%) 0% 0% 25 (100%) - [65]

2011,
Thailand SantimaleeworagunColistin 8 carbapenem-resistant

(100%) 0% - in vitro (CB, TK) 13% - - - - - - [99]

N. gonorrhoeae 2014,
Netherlands Wind Colistin 4 - - - in vitro (ET) 0% - - - - - - [54]
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Table 11. Studies on combination between fosfomycin and daptomycin. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strains Year and
Country Author Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Daptomycin-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility
Restoration

(%)

Daptomycin
Susceptibility
Restoration

(%)

Comments Reference

S. aureus

2019,
Taiwan Lee 100 MRSA (100%) 15 (15%) 0% in vitro (CB) 37 (37%) 44 (44%) 19 (19%) 0% - -

All isolates had MIC daptomycin
= 1 (previously selected among
1353 isolates).

[191]

2019,
Spain Coronado-Alvarez 4 MRSA (50%) - - in vitro (TK) 4 (100%) 0% 0% 0% - -

The authors also performed a
retrospective review of 75
patients with severe
Gram-positive infections and
found that DAP + FOS (30) was
the most effective combination.

[63]

2018,
Spain Garcìa-de-la-Mària 5 (in vitro); 1

(in vivo) MRSA (100%) 0% 0%
in vitro (TK),

in vivo (rabbit,
endocarditis)

in vitro: 5
(100%); in vivo:

1 (100%)
0% 0% 0% - - - [79]

2017,
Turkey Aktas 25 MRSA (100%) 11 (44%) 0% in vitro (CB) 25 (100%) 0% 0% 0% - - - [80]

2015,
Austria Lingscheid 1 MRSA (100%) 0% 0%

in vivo (rats,
implant-associated

osteomyelitis)
1 (100%) 0% 0% 0% - - - [81]

2013,
Spain Garrigós 1 MRSA (100%) 0% 0%

in vitro (TK),
in vivo (rat,

foreign-body
infection)

in vitro: 0%;
in vivo: 1

(100%)
0% in vitro: 1

(100%) 0% - - - [37]

2012,
Spain Miró 14 MRSA (35%);

GISA (14%) 0% 1 (7%) in vitro (TK) 11 (79%) 3 (21%) 0% 0% - -

The combination was
bactericidal against 8 (57%)
isolates. The authors also
reported the case reports of 3
patients with S. aureus (1 MSSA, 2
MRSA) endocarditis successfully
treated with high-dose DAP
(10/kg/day) + FOS.

[192]

2011,
Austria Poeppl 1 MRSA (100%) 0% 0% in vivo (rats,

osteomyelitis) 0% 0% 1 (100%) 0% - -

FOS and FOS + DAP were
significantly superior to placebo
and to DAP alone. FOS + DAP
was not more effective than FOS
alone.

[193]

E. faecalis

2019,
China Zheng

4 (TK) + 4
(biofilm
assay)

- 1 (12%) 2 (25%) in vitro (TK,
biofilm assay)

TK: 4 (100%).
Biofilm assay: 3

(75%)
0%

TK: 0%.
Biofilm
assay: 1
(25%)

0% - -

TK performed on 4 linezolid-R
isolates. Biofilm assay performed
on 4 linezolid-S isolates. DAP +
FOS demonstrated significantly
more anti-biofilm activities then
DAP or FOS alone.

[194]

1992, USA Rice 1 - 0 1 (100%)
in vitro (TK),
in vivo (rats,
endocarditis)

in vitro: 1
(100%)

in vitro: 0%;
in vivo: 1

(100%)
0% 0% - in vitro: 1

(100%)

The isolate was highly R to
gentamicin. DAP + FOS
sterilized more valves (59% VS
35%) than DAP alone. Despite
this, the combination in vivo was
considered "additive" because it
was not possible to demonstrate
a statistically significant
superiority in comparison with
DAP alone.

[82]

1989, USA Rice 21 - 0 0 in vitro (TK) 21 (100%) 0% 0% 0% - -

All isolates were highly R to
gentamicin. The bactericidal
effect of DAP alone was not
increased by the addition of FOS.

[195]

E. faecium 2013, USA Descourouez 4 VRE (100%) 0% 0% in vitro (TK) 4 (100%) 0% 0% 0% [196] - - The combination resulted
strongly bactericidal. [67]

Staphylococcus spp.,
Enterococcus spp. 1988, Italy Debbia 50 - - in vitro (CB, TK) CB: 80%TK: 95% 0% CB: 20%TK:

5% 0% - -
A total of 50 strains was tested
with CB, and only 20 strains
were tested with TK.

[197]
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Table 12. Studies on combination between fosfomycin and tigecycline. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Number of

Isolates

Known Resistance
Mechanisms or

Determinants (%)

FOS-Resistant
(%)

Tigecycline-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility

Restoration
(%)

Tigecycline
Susceptibility
Restoration

(%)

Comments Reference

Enterobacterales

2019, USA Flamm 20

7/30 MDR strains (A.
baumannii,

Enterobacterales e P.
aeruginosa) included 2

ESBL e 2 KPC
Enterobacterales

- - in vitro (CB) 5 (25%) 10 (50%) 5 (25%) 0% - -

Authors considered Partial
Sinergy when FICI was
between 0.5–1 and Additive
effect for FICI = 1.

[38]

2017,
Taiwan Ku 9 ESBL KP producing

(100%) 4 (44,4%) 4 (44%) in vitro (TK) 6 (66%) 0% 3 (33%) 0% - - - [84]

2011,
France Berçot 9 NDM-1 KPC (100%) 2 (22%) 3 (33%) in vitro (CB) 0% - 9 (100%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4.

[85]

E. coli

2013,
Switzerland Corvec 1

Bj HDE-1 (100%)
(ESBL and

Ciprofloxacin
resistant)

0% 0%

in vitro (TK);
in vivo (Guinea

pigs, cage
infection)

TK: 0%; in vivo:
0%

TK: 100%;
in vivo: 0%

TK: 0%;
in vivo:
100%

0% - - - [73]

2011,
Greece Samonis 20 ESBL (100%) 0% 1 (5%) in vitro (ET) 5 (25%) - 15 (75%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4. In vivo
experiment: bacterial count
using FOS + TIG
combination was reduced ≥ 2
log over single antimicrobials

[86]

K. pneumoniae

2019,
China Huang 30 KPC (100%) 19 (63%) 11 (36%) in vitro (ET, CB) ET: 5 (16%); CK:

4 (13%)
ET: 9 (30%);

CK: 11 (36%)

ETt: 16
(53%); CK:
15 (50%)

0%
ET: 14/19

(73%); CK:
6/15 (40%)

ET: 5/11
(45%); CK:
7/13 (53,%)

ET and CB showed different
rates of FOS and TIG
resistance and different rates
of susceptibility restoration;
otherwise the 2 methods had
similar resulted in
establishing synergistic,
additive or indifferent effect.

[88]

2019,
Greece Papoutsaki 11 KPC (100%) 35% 96% in vitro (ET, TK) ET: 16/33 (48%);

TKA: 1/22 (4%)

ET: 17/33
(51%); TKA:
21/22 (95%)

0% 0% - -

ET was performed three
times with different methods:
a) Etest/Agar method; b)
Cross formation method; c)
MIC/MIC ratio method. TK
was performed two times: a)
TIG 1,3 mg/L + FOS 0,5xMIC
and b) TIG 1,3 mg/L + FOS 30
mg/L.

[87]

2017,
China Yu 136 KPC (100%) 78 (57%) 25 (18%) in vitro (CB, TK) CK: 2 (1%);

TKA: 0%

CK: 113
(83%); TKA:

3 (75%)

CK: 19
(14%); TKA:

1 (25%)

CK: 2 (1%);
TKA: 0% - - Only 4 strains were tested

with TK. [89]

2013,
Turkey Evren 12 OXA-48 (100%) 11 (92%) 5 (41%) in vitro (CB) 4 (33%) 6 (50%) 2 (16%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4. In vivo
experiment: bacterial count
using FOS + TIG
combination was reduced ≥ 2
log over single antimicrobials

[74]

2011,
Greece Samonis 65

Serine-KPC (77%) -
MBL (1%) - ESBL

(21%)
1 (1%) 10 (15%) in vitro (ET) 18 (27%) - 47 (72%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4. In vivo
experiment: bacterial count
using FOS + TIG
combination was reduced ≥ 2
log over single antimicrobials

[86]
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Table 12. Cont.

Strain Year and
Country Author Number of

Isolates

Known Resistance
Mechanisms or

Determinants (%)

FOS-Resistant
(%)

Tigecycline-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility

Restoration
(%)

Tigecycline
Susceptibility
Restoration

(%)

Comments Reference

P. aeruginosa 2011,
Greece Samonis 15 MDR (100%) 1 (6%) 15 (100%) in vitro (ET) 2 (13%) - 13 (86%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4. In vivo
experiment: bacterial count
using FOS + TIG
combination was reduced ≥ 2
log over single antimicrobials

[86]

A. baumannii

2019, USA Flamm 5

7/30 MDR strains (A.
baumannii,

Enterobacterales e P.
aeruginosa)

- - in vitro (CB) 0% 4 (80%) 1 (20%) 0% - -

Authors considered Partial
Sinergy when FICI was
between 0.5–1 and Additive
effect for FICI = 1.

[38]

2016,
Netherlands Leite 20 Colistin-Resistant

(65%) 20 (100%) 5% in vitro (CB,
2-Well Method) 0% - - - - -

Any synergistic effect was
reported. Additive,
Indifferent and antagonistic
effect were not evaluated.

[83]

S. aureus

2018, Italy Simonetti 15 MRSA (100%) 0 0%

in vitro (CB);
in vivo (mice,

wound
infection)

12 (80%) - 3 (20%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4. In vivo
experiment: bacterial count
using FOS + TIG
combination was reduced ≥ 2
log over single
antimicrobials.

[90]

2012,
Taiwan Tang 33 (8 TK) MRSA (100%) 6% 0%

in vitro (TK,
Biofilm

MTT-staining
method)

0% - 100% 0% - -

Only 8 strains were tested
with Time–kill Assay. Biofilm
cultures were 100% TIG
resistant and 94% FOS
resistant. No FICI were
reported by authors, no
synergistic effect was seen on
any strains.

[69]

E. faecalis

2018, Italy Simonetti 15 - 0% 0%

in vitro (CB);
in vivo (mice,

wound
infection)

12 (80%) - 3 (20%) 0% - -

Authors considered
Indifferent effect for FICI
between 0.5 and 4. In vivo
experiment: bacterial count
using FOS + TIG
combination was reduced ≥ 2
log over single
antimicrobials.

[90]

2013,
Taiwan Tang 9 VRE (100%) 56% 0% in vitro (TK,

Biofilm Model)
TKA: 3 (33%);
BM: 5 (56%) - - - - -

Additive, Indifferent and
antagonistic effect were not
evaluated.

[13]

E. faecium

2019,
Thailand Hemapampairoa 12 VRE (100%) 12 (100%) 3 (25%) in vitro (CB) 1 (8%) 9 (75%) 2 (16)% 0% - - - [55]

2018, Italy Simonetti 15 - 0% 0% in vitro (CB) 10 (66)% - 5 (33%) 0% - -
Authors considered
Indifferent effect for FICI
between 0.5 and 4.

[90]

2013,
Taiwan Tang 10 VRE (100%) 70% 0% in vitro (TK,

Biofilm Model)
TKA: 3 (30%);
BM: 1 (10%) - - - - -

Additive, Indifferent and
antagonistic effect were not
evaluated.

[13]

N. gonorrhoeae 2015,
Netherlands Wind 4

Azithromycin and
Ceftriaxone Resistant

(100%)
- - in vitro (ET) 0% 0% 4 (100%) - - - - [54]
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Table 13. Studies on combination between fosfomycin and linezolid. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Linezolid-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility

Restoration
(%)

Linezolid
Susceptibility
Restoration

(%)

Comments Reference

S. aureus

2018,
China Chen 11 (3 TK) MRSA (50%) 0% 0% in vitro (CB, TK) CK: 8 (72%); TK:

3 (100%)
CK: 3 (27%);

TK: 0%
CK: 0%; TK:

0%
CK: 0%; TK:

0% - -

Only 3 strains were
tested with TK. For
the same 3 strains, the
authors also
evaluated.
Post-Antibiotic Effect
(PAE) of LZD alone
and in combination
with FOS. PAE of
LZD + FOS seemed to
be increased with the
increase in time of
exposure, even if no
statistically
significant difference
was found.

[198]

2018,
Spain Coronado-Alvarez 2 MRSA (100%) - - in vitro (TK) 2 (100%) 0% 0% 0% - -

Synergy was defined
as a reduction > 3 log
CFU/mL over
antimicrobial agent
alone, additive effect
was defined as
areduction < 3 log
CFU/mL. Synergistic
effect was
demonstrated only
when 4 x MIC LZD +
2 x MIC FOS were
used; 1 ×MIC LZD +
2 ×MIF FOS regimen
showed Additive
effect.

[63]

2016,
China Chai 3 (1 TK) MRSA (100%) 2 (66%) 0% in vitro (CB, TK) CK: 3 (100%);

TK: 1 (100%)
CK: 0%; TK:

0%
CK: 0%; TK:

0%
CK: 0%; TK:

0% - -

Only 1 strain was
tested with Time–kill
Assay. The authors
also evaluated
in vitro and in vivo
efficacy of LIN + FOS
on MRSA biofilm (all
3 strains),
demonstrating a
synergistic effect only
in vitro when using
1/2 MIC LZD + 1/2
MIC FOS and not
with lower
concentrations.

[94]

2014,
China Xu-Hong 102 MRSA (100%) **MIC range

16-128 mg/L 0% in vitro (CB) 100 (98%) - 2 (2%) 0% 100% 100%

The authors
considered Indifferent
effect for FICI
between 0.5 and 4.
Fosfomycin MIC
range in combination
was 2-32 mg/L, LZD
MIC in combination
was 0,125–1 mg/L.

[199]
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Table 13. Cont.

Strain Year and
Country Author Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Linezolid-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility

Restoration
(%)

Linezolid
Susceptibility
Restoration

(%)

Comments Reference

2012,
Taiwan Tang 33 (8 TK) MRSA (100%) 6% 0%

in vitro (TK,
Biofilm

MTT-staining
method)

- - - - - -

Only 8 strains were
tested with Time–kill
Assay. Biofilm
cultures were 100%
LZD resistant and
94% FOS resistant.
Combination of FOS +
LZD determined a
statistically
significant reduction
on ODRs in biofilm
cultures.

[69]

2010,
Spain Pachón-Ibáñez 1

GISA 100%
(Gentamicin

Intermediate S.
aureus)

- -

in vitro (TK);
in vivo (Murine

peritonitis
model)

1 (100%) 0% 0% 0% - -

In vivo experiment
on mice showed a
higher rate of blood
culture negativization
when using FOS +
LZD therapy (57%)
then using FOS or
LZD alone (43% and
27% respectively).

[36]

2006,
Spain

Sahuquillo
Arce 5 (4 TK) - 0% 0% in vitro (CB, TK) CK: 4 (80%); TK:

4 (100%)
CK: 1 (20%);

TK: 0%
CK: 0%; TK:

0%
CK: 0%; TK:

0% - -
Synergistic effect at
CB was confirmed
with TK on 4 strains.

[200]

2001,
Austria Grif 5 (1 TK) MRSA (60%) 0% 0% in vitro (CB, TK,

TEM)
CK: 5 (100%);

TK: 0% - CK: 0%; TK:
(1) 100%

CK: 0%; TK:
0% - -

The authors did not
consider additive
effect. They also
performed
Transmission Electron
Microscopy,
demonstrating
profound
morphological
alteration of 2 strains
when using FOS +
LZD, which were not
seen using FOS or
LZD alone.

[43]

2018,
China Li 4 MRSA (50%) 0% 0%

in vitro (CB,
TK); in vivo

(Galleria
melonella

Survival Assay)

CK: 4 (100%);
TK: 4 (100%)

CK: 0%; TK:
0%

CK: 0%; TK:
0%

CK: 0%; TK:
0% - -

TKA showed
synergism, but
bacteriostatic effect.
In vivo experiment
showed statistically
significant higher
efficacy of high-dose
LZD + FOS
combination, then
high dose of FOS or
LZD alone, but
low-dose
combination had no
significant differences
with monotherapy
orhigh-dose
combination.

[95]
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Table 13. Cont.

Strain Year and
Country Author Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Linezolid-
Resistant

(%)

In Vitro
(Methods)/In
Vivo (Animal

and Site of
Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility

Restoration
(%)

Linezolid
Susceptibility
Restoration

(%)

Comments Reference

S. epidermidis 2001,
Austria Grif 2 - 0% 0% in vitro (CB) 2 (100%) - 0% 0% - -

The authors did not
consider additive
effect. They also
performed
Transmission Electron
Microscopy,
demonstrating
profound
morphological
alteration of 2 strains
when using FOS +
LZD, which were not
seen using FOS or
LZD alone.

[43]

E. faecalis

2013,
Taiwan Tang 9 VRE (100%) 56% 0% in vitro (TK,

Biofilm Model)
TKA: 0%; BM:

0% - - - - -

The authors did not
consider additive,
indifferent or
antagonistic effect.

[13]

2019,
China Qi 2 VRE (50%) 2 (100%) 0% in vitro (CB, TK,

TEM) CK: 0%; TK: 0%)
CK: 2

(100%); TK:
1 (50%)

CK: 0%; TK:
1 (50%)

CK: 0%; TK:
0% 2 (100%) 2 (100%)

Transmission Electron
Microscopy,
demonstrated more
morphological
alterations when
using FOS + LZD,
then using FOS or
LZD alone.

[201]

E. faecium

2019,
Thailand Hemapampairoa 12 VRE (100%) 12 (100%) 0% in vitro (CB) 3 (25%) 9 (75%) 0% 0% - - - [55]

2013,
Taiwan Tang 10 VRE (100%) 70% 80% in vitro (TK,

Biofilm Model)
TKA: 1 (10%);

BM: 0% - - - - -

The authors did not
consider additive,
indifferent or
antagonistic effect.

[13]

2012, USA Descourouez 32 VRE (100%) 9% 3% in vitro (TK) See comments See
comments 0% 0% - -

The authors
considered MIC ≤ 64
mg/L as FOS
breakpoint. FOS
combined with LZD
was either synergistic
or additive yet
bacteriostatic.
Percentages of strains
on which there was
synergistic effect were
not reported

[67]

2019,
China Qi 4 VRE (75%) 4 (100%) 1 (25%)

in vitro (CB, TK,
TEM); in vivo

(Galleria
Melonella

Survival Assay)

CK: 2 (50%); TK:
2 (50%)

CK: 1 (25%);
TK: 1 (25%)

CK: 1 (25%);
TK: 1 (25%) 0% 3 (75%) 4 (100%)

Transmission Electron
Microscopy,
demonstrated more
morphological
alterations when
using FOS + LZD,
then using FOS or
LZD alone. In vivo
experiment showed
higher survival rates
of larvae when using
FOS + LZD then LZD
alone, but similar
rates using FOS alone.

[201]
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Table 14. Studies on combination between fosfomycin and rifampin. CB: checkerboard assay; TK: time–kill assay; ET: E-test.

Strain Year and
Country Author Number of

Isolates

Known
Resistance

Mechanisms or
Determinants

(%)

FOS-Resistant
(%)

Rifampin-
Resistant

(%)

In Vitro (Methods)/In Vivo
(Animal and Site of Infection)

Synergistic
Effect (%)

Additive
Effect (%)

Indifferent
Effect (%)

Antagonistic
Effect (%)

FOS
Susceptibility

Restoration
(%)

Rifampin
Susceptibility
Restoration

(%)

Comments Reference

E. coli 1978,
Spain Olay 17 - - - in vitro (CB); in vivo (mouse,

peritonitis) 1 (5,9%) 9 (52,9%) 7 (41,2%) 0% - - - [14]

A. baumannii 2016,
Brazil Leite 20

OXA-51,
OXA-23,

OXA-143 (100%)
20 (100%) 20 (100%) in vitro (CB, TK) 0% - - - - - - [83]

S. aureus

2018, Italy Simonetti 16 MRSA (100%) 0% 2 (12%) in vitro (CB, TK); in vivo
(mouse, wound infection) 16 (100%) 0% 0% 0% - - - [90]

2014,
Switzerland Mihailescu 1 MRSA (100%) 0% 0% in vitro (ET, TK); in vivo

(foreign-body infection model)

in vitro: 1
(100%); in vivo:
100% at day 12

0% 0% 0% - - - [96]

2013,
China Tang 8 MRSA (100%) 0% 8 (100%) in vitro (biofilm assay) 4 (50%) - - - - - - [91]

2012,
Spain Garrigos 1 MRSA (100%) - - in vitro (TK); in vivo (rat,

tissue cage infection)

in vivo: 1
(100%) at day 8

and day 11
- - in vitro: 1

(100%) - - In vitro FOS antagonized the
effect of RIF. [37]

2012,
Taiwan Tang 33 MRSA (100%) 6% (planktonic)

94% (biofilm)

0%
(planktonic)

79%
(biofilm)

in vitro (TK) 0% - - - - - - [69]

2001,
Austria Grif 5 MRSA (100%) - - in vitro (CB, TK) 100% - - - - - - [43]

1987,
France Quentin 6 - 33% 0% in vitro (TK) 0% 0% 33% 33% - -

RIF antagonizes FOS. In
particular, it antagonizes FOS
against susceptible and
intermediate isolates to RIF.
The combination resulted
indifferent against
RIF-resistant isolates. For 2
isolates it was not possible to
infer their susceptibility to RIF.

[35]

1984,
Germany Traub 6 GRMR (100%) 0% 0% in vitro (CB); in vivo (mouse,

peritonitis) - - 2 (33%) - - - - [202]

1978,
Spain Olay 38 - - - in vitro (CB); in vivo (mouse,

peritonitis) 13 (34%) 24 (63%) 1 (2%) - - - - [14]

S. pneumoniae 1994,
France Doit 26 - 0% 0% in vitro (TK) 0% 0% 100% 0% - - - [134]

S. agalactiae, S.
pyogenes, S.

oralis

2017,
Germany

Gonzalez
Moreno 3 - 33% 0% in vitro (ET) 1 (100%) S. oralis -

1 (100%) S.
agalactiae; 1
(100%) S.
pyogenes

- - - - [9]

E. feacalis

2018, Italy Simonetti 16 - 0% 2 (12%) in vitro (CB, TK); in vivo
(mouse, wound infection) 12 (75%) 0% 4 (25%)* 0% - - *The FICIs were interpreted as

indifferent if > 0.5 and < 4. [90]

2013,
Taiwan Tang 9 VRE (100%) 56% 11% in vitro (TK, biofilm)

TK: 3 (33%);
biofilm: 9

(100%)
- - 0% - - - [13]

E. faecium

2018, Italy Simonetti 15 - 0% 2 (13%) in vitro (CB, TK); in vivo
(mouse, wound infection) 11 (73%) 0% 4 (27%)* 0% - - *The FICIs were interpreted as

indifferent if > 0.5 and < 4. [90]

2013,
Taiwan Tang 10 VRE (100%) 70% 90% in vitro (TK) TK: 2 (20%);

biofilm: 4 (40%) - - - - - - [13]

S. epidermidis

2011,
Austria Grif 2 MRSA (100%) - - in vitro (CB, TK) 2 (100%) - - - - - - [43]

1987,
France Quentin 3 - NA NA in vitro (TK) 0% 0% 50% - - - For 1 isolate it was not possible

to infer its susceptibility to RIF. [35]

N. gonorrhoeae 2015,
Netherlands Wind 4 - - - in vitro (ET) 1 (25%) - - - - - - [54]



Antibiotics 2020, 9, 500 60 of 74

Table 15. Effect of FOS in combination with different antibiotics: overview.

Antibiotic Class Strains Number of Studies Number of Isolates Synergistic Effect (%) Additive Effect (%) Indifferent Effect (%) Antagonistic Effect (%) Comments

Penicillins, penicillins + β-lactamase
inhibitors, penicillinase-resistant

penicillins

Enterobacterales 9 267 51 19 28
One study [11] reported high rates of
indifferent effect of FOS + PIP/TAZ
against PIP/TAZ-R isolates.

P. aeruginosa 6 235 15 40 45 -

Acinetobacter spp. 1 5 60 20 0 -

Staphylococcus spp. 7 295 42 15 33 -

Streptococcus spp. 6 119 30 55 15 -

Enterococcus spp. 4 60 25 0 42 10 Antagonistic effect observed in
biofilms of some E. faecalis isolates.

Cephalosporins, cephalosporins +
β-lactamase inhibitors

Enterobacterales 8 251 33 33 20

One study [11] reported high rates of
indifferent effect of FOS + 4 different
cephalosporins against
cephalosporin-R isolates.

P. aeruginosa 13 318 36 40 23 1 Antagonistic effect against 4 P.
aeruginosa isolates [22].

Acinetobacter spp. 2 39 8 3 3 Effect of the combination
indeterminate on 33 isolates.

Staphylococcus spp. 12 284 57 12 9 1 Great heterogeneity of results.

Streptococcus spp. 6 63 33 59 8 -

Enterococcus spp. 2 77 78 0 22 -

N. gonorrhoeae 3 44 0 5 95 -

Carbapenems

Enterobacterales 23 542 43 37 19
P. aeruginosa 15 445 29 25 36 1 -
Acinetobacter spp. 5 103 28 17 22 -

Gram + cocci 12 231 56 13 22 8

S. aureus, S. epidermidis, Enterococci
spp., S. pneumoniae. High rates of
antagonistic effect reported on E.
faecalis isolates.

N. gonorrhoeae 1 4 0 75 25 -

Monobactams
Enterobacterales 4 71 15 27 45 -
P. aeruginosa 3 138 29 54 17 -

Quinolones

Enterobacterales 6 264 17 12 69 -

P. aeruginosa 18 263 42 36 38 5 Synergism rates not concordant in all
studies.

Acinetobacter spp. 3 41 2 10 7 -
Staphylococcus spp. 7 90 37 9 34 -
N. gonorrhoeae 1 4 0 0 100 -

Aminoglycosides

Enterobacterales 19 713 20 31 36 Synergism rates not concordant in all
studies.

P. aeruginosa 23 440 43 29 27 1 Synergism rates not concordant in all
studies.

Acinetobacter spp. 5 102 37 5 18 Synergism rates not concordant in all
studies.

S. aureus 8 301 26 4 53 1 Antagonistic effect of FOS +
gentamicin against 4 isolates [12].

Streptococcus spp. 1 16 0 52 48 -
E. faecium 1 8 62 13 25 -
N. gonorrhoeae 1 4 0 25 75 -
H. influenzae 1 1 0 0 100 -
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Table 15. Cont.

Antibiotic Class Strains Number of Studies Number of Isolates Synergistic Effect (%) Additive Effect (%) Indifferent Effect (%) Antagonistic Effect (%) Comments

Glycopeptides

A. baumannii 1 20 0 0 100 -

Staphylococcus spp. 12 229 17 16 65 2

In 2 studies [69,176] VAN exhibited
higher synergistic rates than TEC.
Antagonistic effect with FOS + VAN
against 5 isolates of S. aureus [12,43].

Enterococcus spp. 2 55 55 22 24 -
S. pneumoniae 2 28 4 4 92 -

Macrolides

Enterobacterales 1 87 53 34 14 -
N. gonorrhoeae 2 12 0 0 100 -
P. aeruginosa 2 31 19 79 2 -
S. aureus 1 34 26 68 6 -
S. epidermidis 1 11 0 0 100 -
S. pseudointermedius 1 8 62 25 12 -

Streptococcus spp. 1 26 15 27 58

Only erythromycin was tested in
combination with FOS. Against almost
half of strains additive or, less
frequently, synergistic effect was
observed.

Tetracyclines

Enterobacterales 2 120 5 11 84

Indifferent effect when tetracycline
was tested, but one study showed
additive or synergistic effect when
using minocycline + FOS
combination [38].

P. aeruginosa 1 5 40 60 0 -

Acinetobacter spp. 1 25 12 56 32
In all experiment minocycline
susceptibility restoration was
observed [65].

S. aureus 3 152 72 1 27 -

Enterococcus spp. 3 75 24 10 20

Indifferent effect when minocycline
was tested, but one study showed
additive or synergistic effect when
using doxicycline + FOS
combination [68].

N. gonorrhoeae 1 4 0 0 100 -

Polymyxins

Enterobacterales 18 381 26 35 35 4
Antagonistic effect of FOS + colistin
observed against 14 isolates of K.
pneumoniae.

P. aeruginosa 4 111 27 41 31 -

Acinetobacter spp. 12 206 19 15 32 1
Antagonistic effect of FOS + colistin
observed against 3 isolates of A.
baumannii.

N. gonorrhoeae 1 4 0 0 100 -

Daptomycin emphStaphylococcus spp. 13 186 56 31 14 -

Enterococcus spp. 5 49 97 0 3 -
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Table 15. Cont.

Antibiotic Class Strains Number of Studies Number of Isolates Synergistic Effect (%) Additive Effect (%) Indifferent Effect (%) Antagonistic Effect (%) Comments

Tigecycline

Enterobacterales 9 313 17 44 34 1

One in vivo study observed indifferent
effect in 100% of cases against E. coli
[73] and one in vitro study reported 2
cases of antagonistic effect against K.
pneumoniae isolates [89].

P. aeruginosa 1 15 13 0 87 -
Acinetobacter spp. 2 25 0 16 4 -

S. aureus 2 48 21 0 79 Conflicting results (total indifference
or almost total synergistic effect).

Enterococcus spp. 3 61 61 0 9 -
N. gonorrhoeae 1 4 0 0 100 -

Linezolid

Enterococcus spp. 4 69 17 29 6 Synergistic effect was never observed
for E. faecalis (2 studies) [13,201].

S. aureus 9 166 74 2 2 -
S. epidermidis 1 2 100 0 0 -

Rifampin

E. coli 1 17 6 53 41 -
A. baumannii 1 20 0 0 100 -

S. aureus 9 114 35 21 4 3 Antagonistic effect of FOS + RIF
against 3 isolates [35,37].

S. epidermidis 2 5 40 0 40 -
Streptococcus spp. 2 29 3 0 97 -
Enterococcus spp. 2 50 59 0 12 -
N. gonorrhoeae 1 4 25 0 75 -

Metronidazole

Intestinal bacteria
(not specified) 1 NA - - - -

H. pylori 1 24 0 21 80 -
Spectinomycin N. gonorrhoeae 1 4 0 0 100 -

Sulbactam A. baumannii 1 8 75 0 25 -
Lincomycin S. aureus 1 37 81 19 0 -
Nitroxoline P. aeruginosa 1 8 12 0 88 -

Dalfopristin-Quinupristin Staphylococcus spp. 2 12 100 0 0 -
Fusidic acid S. aureus 3 239 63 4 33 -

Chloramphenicol

Enterobacterales 4 468 39 34 25 -
P. aeruginosa 1 19 53 37 10 -
S. aureus 1 48 44 37 19 -

Nitrofurantoin
Enterobacterales 1 100 0 0 100 -
Enterococcus spp. 1 32 0 0 100 -

Trimethoprim-Sulfamethoxazole
Enterobacterales 2 120 2 5 89 -

S. aureus 1 148 3 0 95 3 Antagonistic effect was reported for 4
isolates [12].
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