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Abstract: Tricholosporum goniospermum (Bres.) Guzmán ex T.J. Baroni is an excellent edible
mushroom whose compounds and biological properties are still unknown. In this study, n-hexane,
ethyl acetate and methanol extracts from fruiting bodies and liquid-cultured mycelia were compared
for the analysis of phenolic compounds, the evaluation of scavenger (DPPH, ABTS) and reducing
(CUPRAC, FRAP) activities, and the enzyme inhibition of α-amylase, acetylcholinesterase (AChE),
butyrylcholinesterase (BChE) and tyrosinase. Additionally, T. goniospermum extracts were evaluated
for antibacterial and antimycotic activities against Gram+ and Gram− bacteria, and clinical
yeast and fungal dermatophytes. Finally, based on the extract content in phenolic compounds,
in silico studies, including the docking approach, were conducted to predict the putative targets
(namely tyrosinase, lanosterol-14-α-demethylase, the multidrug efflux system transporters of E. coli
(mdtK) and P. aeruginosa (pmpM), and S. aureus β-lactamase (ORF259)) underlying the observed
bio-pharmacological and microbiological effects. The methanolic extract from mycelia was the richest
in gallic acid, whereas the ethyl acetate extract from fruiting bodies was the sole extract to show
levels of catechin. Specifically, docking runs demonstrated an affinity of catechin towards all docked
proteins, in the micromolar range. These in silico data are consistent, at least in part, with the highest
activity of ethyl acetate extract as an antimicrobial and anti-tyrosinase (554.30 mg KAE/g for fruiting
bodies and 412.81 mg KAE/g for mycelia) agent. The ethyl acetate extracts were also noted as being the
most active (2.97 mmol ACAE/g for fruiting bodies and 2.25 mmol ACAE/g for mycelia) on α-amylase.
BChE inhibitory activities varied from 2.61 to 26.78 mg GALAE/g, while the tested extracts were not
active on AChE. In conclusion, all mushroom extracts tested in this study had potent antimicrobial
activities. Particularly, among the tested extracts, the ethyl acetate extract showed the highest efficacy
as both an antimicrobial and anti-tyrosinase agent. This could be related, albeit partially, to its content
of catechin. In this regard, the bioinformatics analyses showed interactions of catechin with tyrosinase
and specific microbial proteins involved in the resistance to chemotherapeutic drugs, thus suggesting
innovative pharmacological applications of T. goniospermum extracts.
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1. Introduction

Fungi represent some of the principal components of biodiversity in all terrestrial habitats [1,2].
They are important decomposers and recyclers of organic materials; they positively or negatively
interact with plant roots in the rhizosphere or with above-ground plant components [3–7].

For centuries, mushrooms, the fruiting bodies of macroscopic filamentous fungi that grow above
the ground, have been a part of the human diet and used as both food and medicine [8]. They contain
minerals, vitamins and nutritive compounds such as proteins and polysaccharides and have a low
fat content [9]. Mushrooms are also appreciated as a delicacy. They have many flavors and nutrient
characteristics that make them an ideal addition to many dishes. Their texture and umami or savory
flavor properties make them a suitable substitute for meat [8].

While the usage of medicinal mushrooms has a long tradition in Eastern countries, in the Western
world it has increased only slightly over the last few decades [10–12].

Mushrooms have been found to have potent biological activities such as anti-bacteria, anti-fungal,
antitumor, anti-inflammatory, anti-hepatotoxic, cardio-tonic, cholesterol level lowering, antiviral and
immune-modulatory activities [13–15]. The enormous structural diversity of natural compounds
originated from mushrooms offers opportunities for discovering new drugs [16].

Antimicrobial resistance (AMR) presents one of the biggest challenges to global public health,
and it was estimated to have claimed 700,000 lives globally in 2014. Furthermore, it has been predicted
that its attributable mortality will hit 10 million by 2050 if measures are not taken to tackle it. Thus,
it has become critical to safeguard the integrity of the antimicrobials currently in use, considering that
the discovery of novel antimicrobials has stalled over recent decades [17]. Factors such as inappropriate
use of antibiotics, inadequate infection prevention and control programs, limited laboratory capacity,
poor surveillance, population growth and migration, as well as inadequate sanitation have compounded
the problem of AMR [18]. Over the past decades, fungal infections have become a major problem
in clinical practice, with immunocompromised patients being easily susceptible. Notably, systemic
fungal infections are usually associated with high mortalities [19].

Infections by multidrug resistant isolates of Trichophyton rubrum, Candida spp., Staphylococcus
epidermidis, S. aureus, Streptococcus spp., Enterococcus sp. and Escherichia coli, among others, became more
and more frequent, stimulating the search for new antibiotics with novel mechanisms of action [20–24].

Considering the current problem of resistance to microbial drugs and the growing concern about
opportunistic infections, there is an urgent need for alternative antimicrobial drugs that could be found
in plants and mushrooms.

Over the past two decades, the health-promoting effect of mushrooms has attracted a lot of attention
due to the wide range of secondary metabolites present in fruiting bodies and submerged culture [25,26].
In particular, about 270 species are now considered as potential therapeutic or preventative agents
used to ensure human health [27].

To the best of our knowledge, the antioxidant and antimicrobial activities obtained from
wild edible fungal extracts against pathogenic fungi and bacteria have been rarely explored.
Tricholosporum goniospermum (Bres.) Guzmán ex T.J. Baroni (Tricholomataceae, Agaricales, Basidiomycota)
is a wild mushroom mainly known from northern Europe and north-central Italy. It is considered
a saprotroph that colonizes small soil patches near deciduous trees. Although it is considered an
excellent edible mushroom, the biological properties of its fruiting bodies and mycelia extracts have
not yet been studied [28]. It is apparent that, depending on the extraction solvent, the extracts from the
same mushroom will differ in the composition of bioactive compounds.
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Therefore, on the basis of these considerations, our present study aims to shed more light on this
poorly understood mushroom. Our work is as follows: (1) clearly identify the fungus by means of macro-
and micromorphological features as well as by molecular analysis (rDNA ITS sequence), (2) assess
antioxidant properties in terms of radical scavenging, reducing, total antioxidant capacity, metal
chelating and antimicrobial activities against major dermatophytes, yeasts and bacterial pathogens,
(3) evaluate the enzymatic inhibitory effects related to chronic diseases, namely diabetes mellitus type
II, neurodegenerative complications and skin disorders, and (4) make a comparison between different
extraction solvents used to prepare the samples. A composition analysis was carried out as well,
with the aim to investigate the mechanisms of action underlying the observed biological effects. In this
regard, an in silico study was also conducted towards selected human and microbial target proteins,
namely tyrosinase and multidrug efflux system transporters of E. coli (mdtK), P. aeruginosa (pmpM)
and S. aureus β-lactamase (ORF259).

2. Results

2.1. Molecular Identification of the T. goniospermum Strain

The internal transcribed spacer (ITS) region of sample PeruMyc2084 was amplified through PCR
and sequenced. A search with the BLAST confirmed that the samples belonged to T. goniospermum,
as it showed a close match (100% sequence identity) with isolates of this species. In more detail,
the phylogenetic analysis showed that the PeruMyc2084 strain belongs to the T. goniospermum clade
(Figure 1).
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Figure 1. Maximum-likelihood (Tamura-Nei model) tree showing the phylogenetic position of the
Tricholosporum goniospermum PeruMyc2084 isolate used in this study (corresponding to MT707943).
We used sequences representing different Tricholosporum species and T. goniospermum samples.
Both GenBank accession numbers and geographical origins are reported. Bootstrap values (expressed as
percentages of 1000 replications) are shown at branch points.
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2.2. High Performance Liquid Chromatography (HPLC) Analysis

The HPLC-fluorimetric analysis focused on selected phenolic compounds, namely gallic acid,
catechin, epicatechin and resveratrol. The results indicated that the T. goniospermun methanolic extract
from mycelia was the richest in gallic acid, whereas the T. goniospermum ethyl acetate from the fruiting
body displayed the best qualitative profile, alongside low levels of catechin (Table 1). Conversely,
the T. goniospermum n-hexane extract from mycelia displayed the poorest quantitative profiles with
regards to the selected phenolic compounds. The results of the HPLC-fluorimetric analysis were
consistent with the colorimetric evaluations of total phenols (expressed as mg of gallic acid per g of
dry extract) previously described, although a punctual description of the T. goniospermum phenolic
profile is still lacking. According to colorimetric analyses, the ethyl acetate extract seems to be the
most effective in terms of scavenger/reducing (Table 2) and enzyme inhibitory (Table 3) activities.
Specifically, the anti-tyrosinase effect (Table 3) of this extract was significantly higher when compared
to the other extracts, thus suggesting applications in skin disorders characterized by an increased
tyrosinase activity. Therefore, a docking analysis was conducted on catechin, in order to investigate
the mechanism of action of the extracts. The docking runs showed a good affinity of catechin towards
the selected target proteins (Figure 2).

Table 1. Phenolic compounds in n-hx, EtOAc, MeOH extracts of Tricholosporum goniospermum fruiting
bodies and mycelia.

T. goniospermum Parts Solvents Gallic Acid Catechin Epicatechin Resveratrol

µg/mL µg/mL µg/mL µg/mL
n-hex 0.96 ± 0.5 0.00 0.00 0.00

Fruiting bodies EA 0.09 ± 0.01 0.03 ± 0.01 0.00 0.00
MeOH 0.65 ± 0.03 0.00 0.00 0.00
n-hex 0.95 ± 0.3 0.00 0.00 0.00

Mycelia EA 2.18 ± 0.11 0.00 0.00 0.00
MeOH 3.95 ± 0.13 0.00 0.00 0.00

Table 2. Total phenolic and antioxidant properties of the tested extracts.

T. goniospermum Parts Solvents TPC DPPH CUPRAC FRAP

(mg GAE/g) (mg TE/g) (mg TE/g) (mg TE/g)
n-hex 10.91 ± 0.56 9.35 ± 0.16 53.92 ± 1.31 14.86 ± 1.21

Fruiting bodies EA 70.51 ± 0.06 88.82 ± 1.47 307.71 ± 3.83 134.06 ± 1.50
MeOH 14.87 ± 0.79 17.69 ± 0.95 131.52 ± 0.67 20.54 ± 0.77
n-hex 9.63 ± 0.22 7.53 ± 0.70 54.35 ± 0.92 15.15 ± 1.62

Mycelia EA 33.74 ± 0.80 29.93 ± 3.54 155.31 ± 1.85 74.26 ± 1.79
MeOH 7.39 ± 0.14 7.74 ± 0.69 129.60 ± 0.56 12.94 ± 1.33

GAE: Gallic acid equivalent; TE: Trolox equivalent; Values are reported as mean ± S.D.

Table 3. Enzyme inhibitory effects of the tested extracts.

T. goniospermum
Parts

Solvents AChE Inhibition BChE Inhibition Tyrosinase Inhibition Amylase Inhibition

(mg GALAE/g) (mg GALAE/g) (mg KAE) (mmol ACAE/g)

n-hex NA 5.48 ± 0.03 83.80 ± 1.45 0.55 ± 0.01
Fruiting bodies EA NA 26.78 ± 0.21 554.30 ± 9.41 2.97 ± 0.10

MeOH NA 5.07 ± 0.02 48.48 ± 0.07 0.21 ± 0.01
n-hex NA 9.14 ± 0.07 127.76 ± 0.73 0.73 ± 0.02

Mycelia EA NA 25.21 ± 0.24 412.81 ± 1.39 2.25 ± 0.07
MeOH NA 2.61 ± 0.01 28.17 ± 0.39 0.17 ± 0.01

GALAE: Galatamine equivalent; KAE: Kojic acid equivalent; ACAE: Acarbose equivalent; NA: not active. Values are
reported as mean ± S.D.
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The free energy of binding (∆G) and affinity (Ki) are −6.7 kcal/mol and 12.4 µM, respectively (A).
Putative interaction between catechin and tyrosinase from Bacillus megaterium (PDB: 5I3B). The free
energy of binding (∆G) and affinity (Ki) are −6.6 kcal/mol and 14.7 µM, respectively (B).

2.3. Antibacterial and Antifungal Activity

Tables 4–6 show the MIC ranges and geometric means of extracts and synthetic drugs (ciprofloxacin,
fluconazole and griseofulvin) against the tested bacterial, yeasts and dermatophytes strains, respectively.
All mushroom extracts showed antimicrobial activity within the concentration range tested, but with
a wide variability in terms of potency and selectivity (Tables 4–6). Regarding bacteria, the strongest
inhibition was observed for EA and MeOH mycelia extracts (MIC 0.099 mg mL−1 against E. coli),
while the methanol extract obtained by fruiting bodies resulted in actively reducing B. cereus growth
(Table 1). Conversely, the n-hex fruiting bodies extract seemed to be the least effective against all the
tested microorganisms (Tables 4–6). All bacterial strains were sensible to EA extracts from mycelia with
MIC values lower than 0.315. The same extracts obtained from fruiting bodies gave similar results,
but with slightly higher MIC values against P. aeruginosa (0.396 mg mL−1).

All tested extract results were actively inhibitory of fungal growth, but a huge variability was
recorded between the most active (mycelia-EA on C. albicans YEPGA 6379: MIC 0.051) and the lesser
ones (fruiting bodies-n-hex on A. curreyi, A. insingulare, A. quadrifidum: MIC > 1.0; fruiting bodies-MeOH
on A. insingulare: > 1.0). Regarding dermatophytes, A. crocatum (CCF 5300) and A. gypseum (CCF 6261)
were the most sensitive fungal species to mushroom extracts, with MIC ranges of 0.031–0.46 mg mL−1.
The ethyl acetate extracts of mycelia were particularly active, showing the highest antifungal activity
among all the tested strains.

All of the ten tested fungal strains showed an increased susceptibility toward the mushroom
mycelia extract. Griseofulvin showed good activity in vitro against A. gypseum (CCF 6261)
(MIC: 1–2 µg ml−1). It was not possible to determine whether the isolates were resistant to the
griseofulvin as no breakpoints have yet been established.
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Table 4. Minimal inhibitory concentrations (MICs) of Tricholosporum goniospermum n-hexane, ethyl acetate and methanol extracts, and ciprofloxacin towards selected
Gram-negative and Gram-negative bacteria.

Bacterial Strain (ID) Extract Typology
Minimum Inhibitory Concentration (MIC)

n-hex (mg mL−1) * EA (mg mL−1) * MeOH (mg mL−1) * Ciprofloxacin (µg mL−1) **

Gram−
E. coli (ATCC 10536) mycelia 0.157 (0.125–0.25) 0.099 (0.0625–0.125) 0.099 (0.0625–0.125) <0.12

fruiting bodies 0.198 (0.125–0.25) 0.157 (0.125–0.25) 0.198 (0.125–0.250)
E. coli (PeruMycA 2) mycelia 0.315 (0.25–0.5) 0.157 (0.125–025) 0.198 (0.125–0.25) 1.23 (1.95–0.98)

fruiting bodies 0.396 (0.25–0.5) 0.315 (0.25–0.5) 0.315 (0.25–0.5)
E. coli (PeruMycA 3) mycelia 0.396 (0.25–0.5) 0.157 (0.125–0.250) 0.198 (0.125–0.250) 0.62 (0.98–0.49)

fruiting bodies 0.315 (0.125–0.25) 0.198 (0.125–0.250) 0.315 (0.25–0.5)
P. aeruginosa (PeruMyc 5) mycelia 0.63 (0.5–1) 0.315 (0.25–0.5) 0.396 (0.25–0.5) 1.23 (1.95–0.98)

fruiting bodies 0.79 (0.05–1) 0.396 (0.25–0.5) 0.63 (0.5–1)
S. typhy (PeruMyc 7) mycelia 0.79 (0.5–1) 0.315 (0.25–0.5) 0.62 (0.5–1) 0.38 (0.49–0.24)

fruiting bodies >1 0.62 (0.5–1) 0.79 (0.5–1)
Gram+

B. cereus (PeruMycA 4) mycelia 0.198 (0.125–0.5) 0.099 (0.0625–0.125) 0.157 (0.125–0.250) <0.12
fruiting bodies 0.314 (0.25–0.5) 0.157 (0.125–0.250) 0.099 (0.0625–0.125)

B. subtilis (PeruMyc 6) mycelia 0.315 (0.125–0.25) 0.078 (0.062–0.125) 0.198 (0.125–0.25) <0.12
fruiting bodies 0.396 (0.25–0.5) 0.157 (0.125–0.25) 0.314 (0.25–0.5)

S. aureus (ATCC 6538) mycelia 0.396 (0.25–0.5) 0.157 (0.125–0.25) 0.198 (0.125–0.25) 0.62 (0.98–0.49)
fruiting bodies 0.63 (0.5–1) 0.198 (0.125–0.25) 0.315 (0.25–0.5)

* MIC values are reported as the geometric means of three independent replicates (n = 3); MIC ranges are reported within brackets. ** MIC values and ranges for fluconazole are expressed
as µg mL−1. In case no growth was observed at the lowest concentration tested, MIC values are reported as < [lowest concentration tested].
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Table 5. Minimal inhibitory concentrations (MICs) of T. goniospermum n-hexane, ethyl acetate and methanol extracts, and fluconazole towards selected yeasts.

Yeasts (ID) Extract Typology
Minimum Inhibitory Concentration (MIC)

n-hex (mg mL−1) * EA (mg mL−1) * MeOH (mg mL−1) * Fluconazole (µg mL−1) **

C. albicans (YEPGA 6183) mycelia 0.314 (0.25–0.5) 0.099 (0.0625–0.150) 0.157 (0.125–0.250) 2
fruiting bodies 0.396 (0.25–0.5) 0.198 (0.125–0.250) 0.314 (0.25–0.5)

C. tropicalis (YEPGA 6184) mycelia 0.157 (0.125–0.25) 0.099 (0.0625–0.125) 0.099 (0.0625–0.125) 2
fruiting bodies 0.198 (0.125–0.25) 0.157 (0.125–0.250) 0.198 (0.125–0.250)

C. albicans (YEPGA 6379) mycelia 0.099 (0.0625–0.125) 0.051 (0.031–0.0625) 0.099 (0.0625–0.125) 1
fruiting bodies 0.157 (0.125–0.25) 0.198 (0.125–0.250) 0.198 (0.125–0.250)

C. parapsilopsis (YEPGA 6551) mycelia 0.314 (0.25–0.5) 0.079 (0.125–0.0625) 0.157 (0.125–0.25) 4
fruiting bodies 0.396 (0.25–0.5) 0.099 (0.0625–0.125) 0.198 (0.125–0.250)

* MIC values are reported as the geometric means of three independent replicates (n = 3); MIC ranges are reported within brackets. ** MIC values and ranges for fluconazole are expressed
as µg mL−1. In case no growth was observed at the lowest concentration tested, MIC values are reported as < [lowest concentration tested].
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Table 6. Minimal inhibitory concentrations (MICs) of T. goniospermum n-hexane, ethyl acetate and methanol extracts, and griseofulvin towards selected dermatophytes.

Dermatophytes (ID Strain) Extract Typology Minimum Inhibitory Concentration (MIC)

n-hex (mg mL−1) * EA (mg mL−1) * MeOH (mg mL−1) * Griseofulvin (µg mL−1) **

A. crocatum (CCF 5300) mycelia 0.25 (0.125–0.25) 0.084 (0.031–0.062) 0.157 (0.125–0.25) >8
fruiting bodies 0.314 (0.25–0.5) 0.46 (0.62–0.125) 0.198 (0.125–0.25)

A. curreyi (CCF 5207) mycelia 0.794 (0.5–1) 0.157 (0.125–0.25) 0.363 (0.62–0.125) >8
fruiting bodies >1 0.315 (0.25–0.5) 0.39 (0.031–0.62)

A. gypseum (CCF 6261) mycelia 0.397 (0.25–0.5) 0.099 (0.62–0.125) 0.049 (0.031–0.062) 1.587 (1–2)
fruiting bodies 0.397 (0.25–0.5) 0.181 (0.031–0.062) 0.25 (0.125–0.5)

A. insingulare (CCF 5417) mycelia 0.794 (0.5–1) 0.194 (0.125–0.5) 0.794 (0.5–1) >8
fruiting bodies >1 0.623 (0.5–1) >1

A. quadrifidum (CCF 5792) mycelia 0.623 (0.5–1) 0.198 (0.125–0.25) 0.315 (0.25–0.5) >8
fruiting bodies >1 0.623 (0.5–1) 0.794 (0.5–1)

T. mentagrophytes (CCF 4823) mycelia 0.315 (0.25–0.5) 0.157 (0.125–0.25) 0.315 (0.25–0.5) 2.52 (2–4)
fruiting bodies 0.623 (0.5–1) 0.194 (0.125–0.25) 0.397 (0.5–1)

T. mentagrophytes (CCF 5930) mycelia 0.794 (0.5–1) 0.57 (0.125–0.25) 0.63 (0.5–1) 3.174 (2–4)
fruiting bodies >1 0.198 (0.125–0.25) >1

T. rubrum (CCF 4933) mycelia 0.397 (0.25–0.5) 0.049 (0.031–062) 0.039 (0.031–0.062) 1.26 (1–2)
fruiting bodies 0.794 (0.5–1) 0.198 (0.125–0.25) 0.315 (0.25–0.5)

T. rubrum (CCF 4879) mycelia 0.397 (0.25–0.5) 0.049 (0.031–0.062) 0.315 (0.25–0.5) 3.175 (2–4)
fruiting bodies 0.794 (0.5–1) 0.157 (0.125–0.25) 0.623 (0.5–1)

T. tonsurans (CCF 4834) mycelia 0.397 (0.25–0.5) 0.039 (0.031–0.062) 0.099 (0.062–0.125) 0.198 (0.125–0.25)
fruiting bodies 0.623 (0.5–1) 0.314 (0.25–0.5) 0.397 (0.25–0.5)

* MIC values are reported as the geometric means of three independent replicates (n = 3); MIC ranges are reported within brackets. ** MIC values and ranges for griseofulvin are expressed
as µg mL−1. In case no growth was observed at the lowest concentration tested, MIC values are reported as < [lowest concentration tested].
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Considering the promising antimicrobial activity by the ethyl acetate extract, a bioinformatics
analysis was conducted through the platform STITCH, with the aim to identify microbial proteins that
could be key targets of catechin. Specifically, the bioinformatics analysis predicted microbial proteins
involved in the resistance to chemotherapic drugs, including the multidrug efflux system transporters
of E. coli (mdtK) and P. aeruginosa (pmpM), and S. aureus β-lactamase (ORF259) (Figure 3).
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Meanwhile, the docking analysis showed the micromolar binding affinities of catechin towards
these microbial proteins, further supporting the observed antibacterial activities exerted by the ethyl
acetate extract (Figures 4–6).
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Free energy of binding (∆G) and affinity (Ki) are −7.8 kcal/mol and 1.9 µM, respectively.

Furthermore, considering the involvement of bacterial and fungal opportunistic infections
occurring in inflammatory skin disorders, including hyperpigmentation [29], the present findings
support further biological investigations with the aim to confirm the application of the ethyl acetate
extract of T. goniospermum in inflammatory dermatological disorders.

3. Materials and Methods

3.1. Mushroom Material

The fruiting bodies of the strain T. goniospermum PeruMyc2084 were collected in Pian Grande
(Castelluccio di Norcia, PG, Italy) in June 2018. The Vaucher specimen (PeruMyc 2084) was identified
on the basis of macromorphological and micromorphological features [28] and was deposited in
the herbarium at the University of Perugia (Department of Chemistry, Biology and Biotechnology).
In order to isolate mycelium in a pure culture, small pieces of context (about 10 mm3) were aseptically
drawn from the fresh fruiting bodies and inoculated into Rose Bengal Chloramphenicol agar [30].

Incubation was performed in the dark at 25 ◦C for 14 days. Mycelium discs (5 mm in diameter)
were then inoculated in each Petri dish [placed in the center of the Malt Extract Agar (Sigma-Aldrich,
Milan, Italy) medium] under aseptic conditions. Free mycelium was obtained by culturing the isolated
strain in 250 mL Erlenmeyer flasks containing 50 mL of 2% Malt Extract Broth (Sigma-Aldrich, Milan,
Italy) supplemented with 1% glucose, pH 5.5. Four agar plugs (9 mm in diameter) were drawn
from seven-day old cultures of T. goniospermum on Malt Extract Agar and inoculated into each flask.
Incubation was performed statically at 25 ◦C for 10 days.

3.2. Molecular Identification

Genomic DNA was isolated from 15-day old mycelium grown in Malt Extract Agar (Sigma−Aldrich,
Milan, Italy), according to [31]. The genomic DNA quality and quantity was evaluated by BIO-RAD
model 200/2.0 Power Supply gel electrophoresis [0.8% agarose gel in 1 × TBE buffer (89 mM Tris, 89 mM
boric acid, 2 mM EDTA, pH 7.6)] in the presence of SafeView Nucleic Acid Stain (NBS Biologicals) and
a MassRuler DNA Ladder, Mix (Thermo Scientific, Lithuania), and visualized with Safe ImagerTM
2.0 Blue-Light Transilluminator Invitrogen (Thermo Fisher Scientific, Israel); DNA samples were
consequently diluted by up to 10 µg/µL with nuclease-free water before PCR amplification. The internal
transcribed spacer (ITS) region was amplified through polymerase chain reactions (PCRs) with ITS1F
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and ITS4 primers, according to Angelini et al. [31]. SimpliAmp Thermal Cycler AppliedBiosystems
(Thermo Fisher Scientific, Singapore) was programmed as follows: one cycle of denaturation at 95 ◦C
for 2.5 min; 35 cycles of denaturation at 95 ◦C for 20 s, annealing at 55 ◦C for 20 s and extension at 72 ◦C
for 45 s; one final extension cycle at 72 ◦C for 7 min. Electrophoresis of PCR amplicons was carried
out on 1.2% agarose gel as described above. The PCR-amplified ITS fragment was purified using the
ExoSap-IT PCR Cleanup reagent (Affymetrix UK Ltd., High Wycombe, United Kingdom) and then
sequenced by Macrogen Europe (Holland). The ITS sequence (GenBank accession no. MT707943) was
checked for similarities by using the nucleotide Basic Local Alignment Search Tool (BLAST), available
from the U.S. National Center for Biotechnology Information. The sequences showing the highest
similarity with our query sequence were retrieved and aligned using Clustal W [24]. The phylogenetic
analysis was performed by the Maximum Likelihood method and Tamura-Nei model, where gaps
and missing data were eliminated (complete deletion option) [32]. Bootstrapping of the datasets
was performed with 1000 replications. The Entoloma sericeum ITS sequence, retrieved from GenBank,
was used as the outgroup. The phylogenetic analysis was conducted in Mega X [33,34].

3.3. Preparation of Mushroom Extracts

The fruiting bodies were finely ground and, after determination of humidity, were macerated
in n-hexane for seven days at 20 ◦C (1:10 w:v). After filtration, the residue was macerated in ethyl
acetate and then in methanol under the same conditions [seven days at 20 ◦C (1:10 w:v)]. The dry
weight of the three extracts was determined. For biological tests, a known aliquot of each extract
was brought to dryness at rotavapor (temperature 50 ◦C) and taken back into a known volume of
DMSO. After washing with distilled water, the free mycelia were dried at 40 ◦C in a ventilated oven.
After determination of residual moisture, they were extracted using the same extraction protocol used
for the fruiting bodies.

3.4. Antioxidant and Enzyme Inhibitory Properties

The chemicals were purchased from Sigma−Aldrich (Darmstadt, Germany). They were: 2,2’-azino-,
1,1-diphenyl-2-picrylhydrazyl (DPPH), gallic acid, electric eel acetylcholinesterase (AChE) (type-VI-S,
EC 3.1.1.7), horse serum butyrylcholinesterase (BChE) (EC 3.1.1.8), galantamine, acetylthiocholine
iodide (ATChI), butyrylthiocholine chloride (BTChI) 5,5-dithio-bis(2-nitrobenzoic) acid (DTNB),
tyrosinase (EC1.14.18.1, mushroom), amylase (EC. 3.2.1.1, from porcine pancreas), sodium carbonate,
Folin−Ciocalteu reagent, hydrochloric acid, trolox, neocuproine, cupric chloride, ammonium acetate,
kojic acid and acarbose. All chemicals were of analytical grade. The spectrophotometric measurements
were performed by using a one microplate reader (Thermo Scientific Multiskan GO, Thermo Fisher
Scientific Inc, Waltham, MA USA).

The total phenolic content was determined by using the colorimetric method (Folin−Ciocalteu
method), and the result was expressed as the gallic acid equivalent. For the evaluation of the in vitro
antioxidant activity, different assays were employed, namely DPPH, CUPRAC and FRAP. The detailed
procedures regarding each method are described in previous works [35]. Briefly, in the DPPH assay,
the methanolic DPPH solution (0.004%) was mixed with mushroom extract solution, after which the
absorbances were recorded at 517 nm after a 30 min incubation. The CUPRAC assay measures the
reduction of Cu2+ to Cu, and the absorbance of the final solution was read at 450 nm. Similar to the
CUPRAC assay, the FRAP assay includes the transformation of Fe3+ to Fe2+, and the final absorbance
was measured at 595 mm. The results were finally reported as mg Trolox equivalents (TE)/g extract.

To detect inhibitory effects on enzymes, we used colorimetric enzyme inhibition assays, and these
assays included tyrosinase, α-amylase and cholinesterases. Some standard inhibitors (galatamine,
kojic acid and acarbose) were used as positive controls, and the results were expressed as equivalents
of these standards (GALAE, KAE and ACAE, respectively). Extracts were analyzed in triplicate [36].
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3.5. HPLC Analysis

T. goniospermum n-hexane, ethyl acetate and methanolic extracts from fruiting bodies
(2.3, 4.5 and 3 µg mL−1, respectively), and mycelia extracts (3.3 and 1.5 µg mL−1) were analyzed
for a phenol quantitative determination using a reversed-phase HPLC-fluorimeter in gradient elution
mode. The analyses were carried out by using a liquid chromatograph (MOD. 1525, Waters Corporation,
Milford, MA, USA) equipped with a fluorimetric detector (MOD. 2475, Waters Corporation), a C18
reversed-phase column (AcclaimTM 120, 3 µm, 2.1 × 100 mm, Dionex Corporation, Sunnyvale, CA,
USA) and an on-line degasser (Biotech 4-CH degasi compact, LabService, Anzola Emilia, Italy).
The gradient elution was achieved by a mobile phase consisting of methanol/acetic acid/water (10:2:88,
v/v) as solvent A and methanol/acetic acid/water (10:2:88, v/v) as solvent B, in agreement with already
published papers [37,38]. Accordingly, λex = 278 nm and λem = 360 nm wavelengths were selected in
order to analyze the following phenolic compounds: gallic acid, catechin, epicatechin and resveratrol.
Phenolic compound peaks were identified via a comparison with the retention time of pure standard.
Their concentrations in the samples were calculated via a linear regression curve (y = mx + m) obtained
with standard. The standard stock solutions of gallic acid, catechin, epicatechin and resveratrol at
2 mg/mL were prepared in bidistilled water containing 0.004% EDTA and 0.010% sodium bisulfite.
The stock solutions were stored at 4 ◦C, whereas the work solutions (1–20 ng/mL) were obtained daily
and progressively by diluting the stock solutions in mobile phase A. The standards of gallic acid,
catechin, epicatechin and resveratrol were purchased from Sigma−Aldrich (Milan, Italy).

3.6. Antimicrobial Susceptibility Testing

The culture media and chemicals were purchased from Sigma−Aldrich (Milan, Italy). They were:
Mueller−Hinton broth (MHB), Rose Bengal Chloramphenicol Agar (RBCA), Roswell Park Memorial
Institute (RPMI) 1640, Sabouraud Dextrose Agar (SDA), 2,3,5-Triphenyl-Tetrazolium Chloride (TTC),
Tryptic Soy Agar (TSA), morpholinepropanesulphonic acid (MOPS), Ciprofloxacin, Fluconazole
and Griseofulvin.

The in vitro antimicrobial activity of n-hexane (n-hx), ethyl acetate (EtOAc) and methanolic
extracts (MeOH) of T. goniospermum fruiting bodies and mycelia were assessed against eight bacterial
strains (CLSI M07-A9), namely E. coli (ATCC 10536), E. coli (PeruMycA 2), E. coli (PeruMycA 3),
B. cereus (PeruMycA 4), P. aeruginosa (PeruMyc 5), B. subtilis (PeruMyc 6), S. typhy (PeruMyc 7), S. aureus
(ATCC 6538); and 14 yeasts and dermatophytes strains, namely C. albicans (YEPGA 6183), C. tropicalis
(YEPGA 6184), C. albicans (YEPGA 6379), C. parapsilopsis (YEPGA 6551), A. crocatum (CCF 5300),
A. curreyi (CCF 5207), A. gypseum (CCF 6261), A. insingulare (CCF 5417), A. quadrifidum (CCF 5792),
T. mentagrophytes (CCF 4823), T. mentagrophytes (CCF 5930), T. rubrum (CCF 4933), T. rubrum (CCF 4879)
and T. tonsurans (CCF 4834).

Two yeast strains, Candida parapsilosis (ATCC 22019) and C. krusei (ATCC 6258), were used as
quality controls (CLSI 2008a, b; CLSI 2012; CLSI 2017) for the antifungal assays.

Voucher microbial cultures were maintained in the PeruMyc culture collection of the Department
of Chemistry, Biology and Biotechnology (DCBB) (University of Perugia, Italy) and are available
upon request.

The determination of Minimum Inhibitory Concentration (MIC) was performed according to the
methods described in our earlier studies [31]. Ciprofloxacin was used as the standard for antibacterial
activity. Fluconazole and griseofulvin were used as the controls for antifungal agents.

3.7. Bioinformatics Analysis

Chemical structures were prepared and converted in .mol files using ChemSketch software.
A compound-target analysis was also conducted through the bioinformatics platform STITCH (http:
//stitch.embl.de/cgi/network.pl), with the aim to predict microbial targets. Regarding the docking
analysis, the routine steps for the docking calculations involved the preparation of the inhibitors

http://stitch.embl.de/cgi/network.pl
http://stitch.embl.de/cgi/network.pl
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and the protein. The crystal structures of the proteins were downloaded from the Protein Data Bank
(PDB: https://www.rcsb.org/). The PDB codes were: 5I3B (tyrosinase from Bacillus megaterium), 5M8P
(Human Tyrosinase Related Protein 1), 3MKT [multidrug efflux system transporters of E. coli (mdtK)],
5Y50 [MATE transporter AtDTX14], 3ESH [S. aureus β-lactamase (ORF259)]. In order to prepare the
protein for docking calculations, all water molecules and co-crystalized compounds were removed.
This step was followed by adding polar hydrogen atoms and neutralization using Autodock4 program
(Molinspiration Database). The starting structures of secondary metabolites were optimized to their
ground state structures using the AM1 semiempirical method, and the 3D structures were saved in
mol2 format. The protein was immersed in a 3D grid box with 60 × 60 × 60 dimensions with 0.375 Å
distance between points. The Lamarckian genetic algorithm was used to calculate the docking free
energy of 250 conformations for each inhibitor. The docking results were clustered and organized
according to the docking free energy. The binding site was localized, and the non-bonding interactions
were elucidated using the Discovery Studio 5.0 visualizer.

4. Conclusions

In conclusion, all mushroom extracts tested in this study had potent antimicrobial activities.
Particularly, among the tested extracts, the ethyl acetate extract showed the highest efficacy in
all proposed experimental paradigms, which could be related, albeit partially, to the content of
catechin. The bioinformatics analyses also suggested interactions between this compound and specific
microbial proteins involved in the resistance to chemotherapeutic drugs, thus suggesting innovative
pharmacological applications of T. goniospermum extracts.
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