

Supplementary Materials: A Pragmatic and High-Performance Radiative Cooling Coating with Near-Ideal Selective Emissive Spectrum for Passive Cooling

Mingxue Chen ^{1,2}, Wenqing Li ^{1,2}, Shuang Tao ^{1,2}, Zhenggang Fang ^{1,2,*}, Chunhua Lu^{1,2,3,*} and Zhongzi Xu ^{1,2,3}

- ¹ State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China; cmx2017@njtech.edu.cn (M.C.); wenqingli@njtech.edu.cn (W.L.); 201861103165@njtech.edu.cn (S.T.); zzxu@njtech.edu.cn (Z.X.)
- ² Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 210009, China
- ³ Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 210009, China
- * Correspondence: zgfang@njtech.edu.cn (Z.F.); chhlu@njtech.edu.cn (C.L.)

Figure S1. (**a**) EDS spectrum of PET aluminized film; (**b**) SEM image of PET aluminized film; (**c**) Solar reflectivity of PET aluminized film.

Figure S2. (a) IR emissivity/absorptivity of the commercial cooling coating; (b) Theoretical nighttime cooling performance of commercial cooling coating with relative humidity 60%.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).