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Abstract: Coated glass products, and especially the low-emissivity coatings, have become a common
building material used in modern architectural projects. More recently, these material systems became
common in specialized glazing systems featuring solar energy harvesting. Apart from achieving the
stability of optical parameters in multilayer coatings, it is also important to have improved control
over the design of visual color properties of the coated glass. We prepare metal-dielectric composite
(MDC)-based multilayer thin-film structures using the radio frequency (RF)-magnetron sputtering
deposition and report on their optical and chromaticity properties in comparison with these obtained
using pure metal-based Dielectric/Metal/Dielectric (DMD) trilayer structures of similar compositions.
Experimentally achieved Hunter L, a, b values of MDC-based multilayer building blocks of coatings
provide a new outlook on the engineering of future-generation optical coatings with better color
consistency and developing approaches to broaden the range of achievable color coordinates and
better environmental stability.

Keywords: metal-dielectric composites; multilayers; optical coatings; optical properties; color
chromaticity; environmental stability

1. Introduction

The prime cause of global warming is the continued use of fossil fuels. The excessive use
of fossil fuels could lead to the non-renewable energy reserves being depleted and that demands
exploring novel materials and alternative technologies to minimize energy consumption. Besides the
traditional industrial ways of “green” energy harvesting, the development of energy-efficient-buildings,
building-integrated photovoltaic (BIPV) systems, and window coatings can represent the most
sustainable approach to building a pathway toward a fossil-fuel-independent future and decreasing
the CO2 footprint [1–5]. During the last decades, a large number of research works have been dedicated
to broadening the practical range of technologies, components (e.g., thin-film coatings), and systems
(e.g., “smart windows”), which are expected to lead to substantial improvements in building energy
efficiency. In order to functionalize a “smart window”, making a glazing system respond to the changes
in environmental conditions, forward-looking technologies need to be embedded, employing effects
such as thermochromism and/or electrochromism [6]. Modern integrated PV technologies consisting
of specialized thin-film coated glass, known as low-emissivity (Low-E) coatings, can cut either the
heating-related or the cooling-related (or in some cases, both) electric energy usage in buildings. These
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Low-E coatings can still be expected to represent core technology in advanced windows, whether or not
additional technologies are embedded. The Low-E coatings are typically structured as metal-dielectric
multilayer thin films, which are designed to prevent heat leakage (from the inside of buildings into the
environment) by providing strong and very wide-band reflection of thermal infrared wavelengths.

In recent years, the optical properties of metal-dielectric coatings and their influence on building
energy efficiency have been studied extensively due to their superior performance compared to other
multilayer coating structure types. The metal-dielectric coatings performance mainly depends on the
choice of materials and its design philosophy [7–15]. Most (or practically all) products available today
from this category (featuring high spectral selectivity) employ at least two silver (Ag) layers within
their structure, and these coatings cannot withstand prolonged (weeks-scale) exposure to either the
ambient atmospheric air or dry-heat test temperatures in excess of 160–180 ◦C. However, the stability
problems of ultrathin Ag layers (normally of less than 20 nm thickness) originate from a range of
factors related to the metal layer growth morphology. To overcome these issues, a significant number
of research works have been proposed, conducted, and resulted in reporting various solutions, where
some of them require more complex materials processing and process parameters optimization [10–19].
Several reports have been published about the properties of various metal-dielectric composite (MDC)
thin-film layer chemistries, including Ag + SiO2, Ag + TiO2, and Ag + MgF2; however, most of them
were about metal-dielectric nanoparticle array properties of interest for various applications [20–23].
We previously proposed and partially implemented the development of optimized metal-based RF
magnetron co-sputtered MDC (e.g., Ag + MgF2) layers to replace the pure metal layer in those optical
coatings [24,25]. To the best of our knowledge, the majority of published literature describing Ag-MgF2

and similar nano-composites research relates to applications other than the product-level development
of advanced transparent heat regulating (THR) coatings for use in modern construction. We practically
prepared and demonstrated MDC layer-based optical coating building blocks with high structural
and optical durability and stability [24,25], however, until recently, we have not explored the color
chromaticity properties of those multilayer coating types. Even though this work is a continuation of
efforts reported in a broader metal-dielectric materials research area [26–28], and alternative material
system solutions might exist in industrial settings, we are unaware, to the best of our knowledge, of any
prior reports on achieving environmentally stable THR coatings based on using the same material
combination while targeting the accurate control over the chromaticity.

Metal-dielectric thin-film coatings (spectral filters featuring controlled apparent colors) have
numerous application possibilities in the fields of building architecture, windows, printed products,
and other decorative coatings. There are several reports that have been published in the literature about
the color properties of different types of thin-film materials (most of these are single-layer), except a
couple of them were found to deal with the color properties of multilayer thin-film structures [29–39].
For example, Dalapati et al., reported about the preparation and properties of color-tunable low-cost
transparent heat reflectors using copper and titanium oxide for energy-saving applications [40].
However, they proposed to control the color properties of the multilayer structures by means of
post-deposition annealing process, which can force the metal layer to transform into an array of
nanoparticles and can change the optical properties, e.g., the transmission spectra. Hence, the color
stability of property-optimized application-specific metal-dielectric thin-film coatings and their easy
manufacturing process for industrial practices are yet to be achieved for future commercial applications.
In this work, we focus on establishing a reliable fabrication process of MDC layers, which can open
the new possibilities in engineering and development of new Dielectric/Metal/Dielectric (DMD)-type
coatings with highly durable and reproducible optical and color properties.

2. Growth and Characteristics of Thin Metallic Films, Metal-Dielectric Composites,
and Multilayer Structures

We deposited several batches of thin metallic layers, metal-dielectric composites, and multilayer
DMD-type building blocks on Corning Eagle XG glass substrates by using the experimentally
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determined, fine-tuned process parameters in RF magnetron sputtering systems. In order to achieve
very accurate film thickness control for each type of film (either the single layers or multilayer
structures), all the materials/processes used in this work were well-calibrated by way of running
multiple characterization experiments (described in the Supplementary Section, Figure S1). It is
very important to have a very precise and controlled growth process for thin metallic films to
enable developing application-specific thin film-based devices and optical components. For example,
in DMD-type multilayer structures, thin metallic films play an important role in achieving the required
optical transparency, reflectivity, and the color of the coatings. It is well known that the deposition
of high-quality thin metallic (Ag) layers (of less than 20 nm thickness) requires multi-disciplinary
work and research and involves using technical insights from the fields, such as materials chemistry,
nanoscale characterization, and vacuum technology. In the published literature, a claim for the
successful fabrication of an ultra-smooth (and ultra-thin, at around 10 nm) Ag layer by using DC
magnetron sputtering system is reported in Reference [41]; however, rather than using conventional
glass substrates, a specially prepared Indium Phosphide (InP) substrate was needed to grow this
ultra-thin Ag layer. We made multiple deposition runs to reconfirm the suitability of all the selected
process parameters as well as the tooling factor (TF %, a crucial parameter) related to the thin-film
growth. Thin Ag layer thickness was monitored during the deposition process with the help of quartz
microbalance sensor. Moreover, from the broad-bandwidth spectral fitting of the measured transmission
spectra of Ag (single layer) films with the modeled transmission spectra, the film thicknesses were
reconfirmed and then the final tooling factor for the pure metallic targets was recalculated until stable
values were identified. The details of the fine-tuning of this calibration process for thin Ag layer growth
are documented in the Supplementary Section (Figure S2).

After the successful process development for thin Ag layers, we prepared several batches of
metal-dielectric composite (single-layer) films on glass substrates using two separate sputtering targets
(Ag and MgF2) to establish the optimized process parameters to deposit MDC layers. The volumetric
content of MgF2 addition to the pure-metal layer was calculated by using the separately measured
partial deposition rates of the sputtering material targets used (calculation details are provided in the
Supplementary Section). The volumetric content of MgF2 addition was controlled by the externally
applied RF power densities to both the metallic and dielectric target materials. Figure 1 presents the
co-sputtering geometry of the growth of metal-dielectric (Ag/MgF2) nano-composites.
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Later, several batches of DMD-type multilayer coating building blocks using pure silver (Ag)
layers, as well as the MDC layers, were fabricated on clear glass substrates. Note that the multilayer
structures (D/Ag/D and D/MDC/D types) were deposited in a single deposition run by sequential
sputtering of layers using Ag, MgF2, and ceramic Al2O3 sputtering targets with material purity over
99.99%. The process parameters and conditions used to deposit pure Ag, Ag-MgF2 (single layer)
thin-films and the multilayer structures are summarized in Table 1.

Table 1. Summary of sputtering process parameters and conditions that were used to deposit single-layer
thin-films and multilayer coating building blocks.

Process Parameters Layer Structure
(Ag (Single) Layer)

Layer Structure
(Metal-Dielectric

Composite (Single) Layer)

Layer Structure
(DMD Type Multilayers)

Sputtering targets (7.62 cm
diameter) Ag Ag and MgF2 Ag, MgF2, and Al2O3

Radio frequency (RF) power 64 W Ag (30–64 W), MgF2 (83 W) Ag (64 W), MgF2 (83 W), and
Al2O3 (199 W)

Base pressure (Torr) <3 × 10−6–5 × 10−6 <3 × 10−6–5 × 10−6 <3 × 10−6–5 × 10−6

Process gas Ar Ar Ar
Process pressure 2–3 mTorr 2–3 mTorr 2–3 mTorr

Target-to-substrate distance (cm) ~18 ~18 ~18
Substrate stage rotation rate (rpm) 15–16 15–16 15–16

Substrate temperature (◦C) Room temperature Room temperature Room temperature

The optical transmission and color chromaticity properties of single and multilayer films were
characterized by using Agilent Cary 5000 spectrophotometer and Konica Minolta 508D colorimeter.
The chromaticity values of ultra-thin metallic, MDCs, and multilayer structures were characterized
based on the Hunter L, a, b color scale. Hunter L, a, b color scale is mainly based on the Opponent-Color
Theory that assumes that the receptors in the human eye perceive pairs of opposite colors such as
light vs. dark, red vs. green, and yellow vs. blue. The L value indicates the level of light or darkness
(meaning white or black perceived color) of the sample, while a and b values represent the redness or
greenness, and the yellowness or blueness, as shown in the schematic diagram (Figure 2) [42–46].
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2.1. Optical and Chromaticity Properties of Single-Layer Ultrathin Metal Layers

The spectrally fitted transmission spectra of the as-deposited Ag thin layer with the corresponding
modeled transmission spectra (as shown in Figure 3) confirm not only the film thickness but also the
successful optimization of thin Ag layer deposition process parameters. More measured transmission
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spectra (also fitted with the modeled transmission spectra) are provided in the Supplementary Section
(Figure S3), with the details of optimizing the materials’ tooling factors to deposit ultra-thin metallic
layers with minimum film thickness errors. Figure 3a represents the transmission spectrum of a
17.5 nm as-deposited Ag layer with its modeled (best fitted to 18.2 nm) spectra. From this thickness
error, the material’s tooling factor was recalculated, and we made multiple deposition runs to finalize
the material’s tooling factor, as can be confirmed by the very close matching transmission spectra of
the ultra-thin 12.6 nm Ag layer, shown in Figure 3b.

The measured Hunter Lab values of as-deposited Ag layers (10–21 nm) are summarized in Table 2.
For all single-layer thin Ag films, we focused on the L values mostly, rather than a and b values, as the
apparent films’ (single-layer Ag, or an Ag-dominant nanocomposite) color will mostly be determined by
the color (either bright white or transmissive white) that can be evaluated by the human eye. The measured
L values of the as-deposited films were found to be closer to the simulated L values (with an accuracy
of about 2%). The reason for having slightly lower L values in Ag thin-films could be due to the (well
known) tarnishing process and/or the oxidation of thin metallic surface (films were exposed to room air
after the deposition and measurement process, therefore, a native oxide could form quickly). However,
the measured a and b values for all Ag samples were found to be positive, in agreement with the simulated
values. It can be noticed that the L values (both in simulation and measurements) increased with the
increasing layer thickness, thus confirming the whitish color of silver layers.
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Figure 3. Transmission spectra of thin Ag layers deposited onto clear glass substrates plotted with the
best-fitted modeled transmission spectra of corresponding film layers: (a) 17.5 nm as-deposited Ag
layer; and (b) 12.6 nm as-deposited ultra-thin Ag layer.

Table 2. Chromaticity characterization results (simulated using OptiLayer Pro software (version 8.85),
and measured using Konica Minolta colorimeter, for the light reflected off the coating layers).

Ag Layer Thickness Simulated Hunter L, a, b (Ra) Values Measured Hunter L, a, b (Ra) Values

Experimental
(nm)

Model
Fitted (nm) L a b L a b

10.0 9.5 54.16 4.54 15.37 52.7 2.67 8.62
12.5 12.6 66.03 4.57 18.42 64.37 2.58 12
15.6 15.6 70.70 4.39 19.17 68.80 2.22 12.26
17.0 18.2 75.78 4.08 19.61 74.94 1.68 11.95
21.0 22.0 81.54 3.69 19.55 80.54 1.05 11.00

The measured optical and chromaticity properties matched and fitted well with the simulated
values for the single-layer films, confirming the successful deposition and fine control of process
parameters used during the deposition of ultrathin Ag layers.

2.2. Optical and Chromaticity Properties of Single-Layer Ultrathin Metal-Dielectric Composites

Several batches of MDC layers were deposited on glass substrates and the layer thicknesses
(during the deposition process) were in-situ controlled by measuring the deposition run time. However,
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the actual (physical) MDC layer thicknesses were later reconfirmed using the transmission spectrum
fitting (comparing the measured and modeled transmission spectra). The transmission spectra of
measured MDC layers were fitted (across wide bandwidth) with the modeled nanocomposite layer’s
transmission spectra to confirm the actual thickness of the as-deposited MDC layer. Furthermore,
the transmission spectra of these MDC layers were fitted and compared with the optically equivalent
(modeled) pure-Ag layers. The modeling of the MDC layers was performed by using a software
package (OptiLayer Pro), where the refractive index (n) and extinction coefficient (k) values for the
MDC layers were generated by using the weighted-average values of the known dielectric permittivity
spectra of both component materials (Ag and MgF2); the effective medium model was based on
Maxwell–Garnett equation.

Figure 4 presents examples of MDC layer physical thickness determination through the optical
transmission spectra fittings with the modeled transmission spectra. Figure 4 also shows the calculated
absorption coefficients of the MDC layers having different volumetric content of MgF2 dilution into
the metal-dielectric composite matrix. The measured transmission spectra of MDC layers were used to
calculate the absorption coefficient spectra of the as-deposited MDC layers by using a simple formula,
defined as T = exp [−α(λ)d], where α is the absorption coefficient, T is the transmittance (in percentage),
and d is the thickness of the films [47,48]. The absorption coefficient of the MDC layers was found to
be very similar to that of pure-Ag layer. The absorption coefficient of the MDC layers is presented with
its calculated upper and lower limits (considering having up to about 5% error in the final film-layer
thickness determination). All of the as-deposited MDC layers showed similar trends of the wavelength
and film-thickness dependent absorption coefficients. More transmission fitting and absorption coefficient
calculation results are provided in the Supplementary Section (Figures S3 and S4).
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Figure 5 represents the fitted MDC (Ag + 5 vol.% MgF2) layer thicknesses (brown-colored
dot-points) and the thicknesses optically fitted to the optically equivalent pure-Ag layers (green-colored
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diamond-points) data-points, plotted against the “apparent sum” thickness of the nanocomposite layer
(as would be determined, in a simplified way, by the simple multiplication of the algebraic sum of the
partial deposition rates for Ag and MgF2 and the process duration times). A linear trend of increasing
MDC layer thickness, as well as the optically equivalent Ag layer thickness has been observed with the
increasing deposition time. However, the actual MDC layer thicknesses were found to be lower than
the simple numerically calculated “apparent sum” thickness. For example, if Ag was deposited at
5.7 nm per minute and an additional 0.3 nm/min rate applied for the MgF2 deposition for the same
process duration, the discrepancy between the “apparent sum” and the actual fitted thickness can
then suggest that some degree of inter-solubility or the “compaction” of materials has been occurring
during the nanocomposite formation process. It is also possible that the MgF2 molecules may position
themselves in-between the nanoisland- or nanocluster-shaped thin metal volumes, and this could help
grow comparatively smoother dielectric diluted metal-dominant nanocomposite layers. We have noted
in our MDC-based Low-E film characterization experiments that an improved correspondence between
the spectral design specifications and the measured film spectra were seen frequently, compared to
using pure-metal layers; this is the reason we suggest that dielectric dilution could improve interlayer
interface quality. Further analytical studies using methods such as SEM/TEM will be required to
answer the outstanding layer morphology-related questions.

Note that the color chromaticity values (Hunter L, a, b) of the MDC layers were also found to be
very close to those of optically fitted equivalent thin Ag layers. The obtained Hunter L, a, b values (both
measured and simulated) of all the as-deposited MDC layers (Ag + 5–10 vol.% MgF2) are summarized
in Table 3. The measured L values for all of the as-deposited MDC layers were found to be close to the
simulated L values.

Coatings 2019, 9, x FOR PEER REVIEW 7 of 14 

 

Figure 4. Wavelength-dependent transmission and optical absorption spectra of metal-dielectric 
composite (MDC) layer deposited onto clear glass substrates; (a,c) transmission spectrum of thin 
MDC layer plotted with the best-fitted modeled transmission spectra of spectrally corresponding film 
layer and the best-matched optically equivalent pure-Ag layer; and (b,d) the calculated absorption 
coefficient spectra of MDC layers considering the estimated maximum 5% thickness errors. 

Figure 5 represents the fitted MDC (Ag + 5 vol.% MgF2) layer thicknesses (brown-colored dot-
points) and the thicknesses optically fitted to the optically equivalent pure-Ag layers (green-colored 
diamond-points) data-points, plotted against the “apparent sum” thickness of the nanocomposite 
layer (as would be determined, in a simplified way, by the simple multiplication of the algebraic sum 
of the partial deposition rates for Ag and MgF2 and the process duration times). A linear trend of 
increasing MDC layer thickness, as well as the optically equivalent Ag layer thickness has been 
observed with the increasing deposition time. However, the actual MDC layer thicknesses were 
found to be lower than the simple numerically calculated “apparent sum” thickness. For example, if 
Ag was deposited at 5.7 nm per minute and an additional 0.3 nm/min rate applied for the MgF2 
deposition for the same process duration, the discrepancy between the “apparent sum” and the actual 
fitted thickness can then suggest that some degree of inter-solubility or the “compaction” of materials 
has been occurring during the nanocomposite formation process. It is also possible that the MgF2 
molecules may position themselves in-between the nanoisland- or nanocluster-shaped thin metal 
volumes, and this could help grow comparatively smoother dielectric diluted metal-dominant 
nanocomposite layers. We have noted in our MDC-based Low-E film characterization experiments 
that an improved correspondence between the spectral design specifications and the measured film 
spectra were seen frequently, compared to using pure-metal layers; this is the reason we suggest that 
dielectric dilution could improve interlayer interface quality. Further analytical studies using 
methods such as SEM/TEM will be required to answer the outstanding layer morphology-related 
questions. 

Note that the color chromaticity values (Hunter L, a, b) of the MDC layers were also found to be 
very close to those of optically fitted equivalent thin Ag layers. The obtained Hunter L, a, b values 
(both measured and simulated) of all the as-deposited MDC layers (Ag + 5–10 vol.% MgF2) are 
summarized in Table 3. The measured L values for all of the as-deposited MDC layers were found to 
be close to the simulated L values. 

 
Figure 5. Plot of best-fitted MDC layer thicknesses and the optically equivalent fitted thicknesses of 
pure Ag layers. 
Figure 5. Plot of best-fitted MDC layer thicknesses and the optically equivalent fitted thicknesses of
pure Ag layers.

Note that the actual accuracy of colorimeter measurements was well within ±0.01, confirmed
by way of repeatably acquiring data points from the same sample area (even though the instrument
output display showed two digits after the decimal point, suggesting a ±0.005 accuracy).



Coatings 2020, 10, 251 8 of 14

Table 3. Chromaticity characterization results (Hunter L, a, b) of the as-deposited MDC (single) layers.

Sample Type
Layer Information Simulated Hunter

L, a, b (Ra) Values
Measured Hunter
L, a, b (Ra) Values

Deposition
Run (s)

Estimated Layer
Thickness (nm) L a b L a b

MDC layers (Ag + 5 vol.% MgF2)

240 ± 1 14.3 ± 0.1 65.99 4.62 18.52 62.56 1.34 8.37
276 ± 1 18.6 ± 0.1 74.85 4.18 19.70 70.50 2.17 11.19
300 ± 1 19.8 ± 0.1 76.86 4.03 19.79 71.04 1.38 9.49
360 ± 1 22.6 ± 0.1 80.88 3.71 19.74 79.41 1.29 11.16
420 ± 1 26 ± 0.1 84.73 3.38 19.34 83.00 0.84 10.34
480 ± 1 30 ± 0.1 88.13 3.10 18.63 86.67 0.43 9.09

MDC layer (Ag + 10 vol.% MgF2) 900 ± 1 22 ± 0.1 78.50 3.87 19.84 70.80 1.41 8.94

We have noticed that the volumetric fraction of the additional MgF2 introduced into the composite
system had also a significant influence on the color values. An estimated 22 nm MDC layer having
10 vol.% of additional MgF2 content showed much lower L values compared to the MDC layer with
5 vol.% (of nearly the same film thickness 22.6 nm), while the a and b values remained almost the same.

2.3. Metal Layer-Based DMD Type Multilayer Structures

DMD-type thin-film multilayers are a widespread and active area of current research in the field of
thin-film nanomaterials due to multiple possible applications in optics, photonics, plasmonics, energy
generation, and optoelectronics. Despite the relatively extensive history of these studies, especially the
silver-based DMD multilayers, these are considered as the prime candidates to be used in heat-mirror
applications for many years. This is due to their suitability for adjusting the spectral selectivity (high
transmission in the visible spectrum and high reflection in the IR region). We opted to prepare a
simple DMD-type structure Al2O3/Ag/Al2O3 to use as a reference guide to investigate and compare the
features, properties, and feasibility of the metal-dielectric nanocomposite layers and their integration
into the DMD-type multilayer structures. We prepared pure-Ag layer-based trilayer structure (where
a 15 nm Ag layer was sandwiched in between two Al2O3 layers of the same thickness) using the
optimized process parameters for each material system. The multilayer structures were deposited on
optically clear glass substrates using a single sequential deposition run in an RF magnetron sputtering
system. Figure 6 shows the optical and color chromaticity properties (both measured and simulated)
of the trilayer thin-film structures.

The fitted optical transmission spectra of the trilayer structure (shown in Figure 6a) confirm the
successful deposition of DMD type multilayer structure with high accuracy in layer thicknesses. It can
be noted that the middle thin metal layer was closely fitted with 16 nm, while we deposited 15 nm in the
trilayer structure. The measured Hunter L, a, b values (Figure 6b) of the as-deposited trilayer building
block were found to be quite close to the simulated values for the same trilayer structure. However,
we noticed that the color values of pure Ag layer-based trilayer structures changed (as expected due
to high oxidation rate of the pure metal layer) drastically within a couple of days of air exposure in
lab conditions (detailed results are presented in Section 2.4). It is important to achieve the color of
the structural coating with good colorimetric accuracy and durability by way of using repeatable and
reliable production methods. Metal-dominant nanocomposites can represent a suitable alternative
to replace the pure metal layers in DMD-type multilayer structures and to engineer highly durable
application-specific structural coatings with the desired optical and color chromaticity properties.
We prepared several batches of MDC layer-based DMD-type multilayer building blocks to investigate
the possibility of integration of MDC layers into more complex multilayer coating systems. The optical
and color chromaticity properties of MDC-based DMD building blocks are detailed in Section 2.4.
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Figure 6. Optical and color chromaticity properties of Al2O3/Ag/Al2O3 multilayer building block;
(a) measured transmission spectrum plotted with the best-fitted simulated transmission spectrum;
the figure legend shows the physical thickness of each particular layer, the inset of the figure shows
the simulated color point of film area that matched with the color of the as-deposited trilayer films,
(b) shows the Chromaticity diagram (CIE xyz 1931) obtained for the same Dielectric/Metal/Dielectric
(DMD) structure using OptiLayer Pro together with the Hunter L, a, b (measured and simulated) values.

2.4. MDC Layer-Based DMD-Type Multilayer Structures

Al2O3/MDC (Ag + 5 vol.% MgF2)/Al2O3 trilayer building blocks were deposited onto glass
substrates where the nanocomposite layer was sandwiched in-between two metal-oxide layers of same
type and thickness. Figure 7 shows an example of physical appearance and the optical transmission
spectrum obtained from a MDC layer-based trilayer structure. It can be seen (by eye) that the
apparent color of the MDC-based structure is quite similar to that of the pure Ag layer-based structure
(Figure 7a,b). The obtained transmission spectrum of the MDC-based structures confirms the possibility
of engineering and producing new optical coatings, filters, or redesigning and modifying the existing
coatings by using metal-dominant composite layers, which can then offer better environmental stability
properties compared to similar structures based on pure Ag layers. This can be tested and confirmed
by running dry-heat exposure tests in air atmosphere; some of the relevant results were previously
reported by our group [24,25,49]. The measured and simulated color chromaticity (Hunter L, a, b)
values for several MDC-based D/MDC/D type structures are summarized in Table 4.
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structure compared to those of pure Ag layer-based DMD trilayer; (a) an image of an as-deposited
pure Ag layer-based DMD structure, (b) photo of an as-deposited MDC-based trilayer structure,
and (c) measured transmission spectra of DMD trilayer structures (pure Ag, and MDC based).

Table 4. Chromaticity characterization results (simulated and measured) for pure Ag layer and MDC
layer-based trilayer structures.

Sample Type
Simulated Hunter L, a,

b (Ra) Values
Measured Hunter L, a,

b (Ra) Values

L a b L a b

30 nm Al2O3/16 nm Ag/30 nm Al2O3 55.21 7.77 25.31 53.12 6.56 21.07
30 nm Al2O3/11.8 nm MDC/30 nm Al2O3 39.64 8.58 19.12 39.28 6.40 15.03
30 nm Al2O3/18.6 nm MDC/30 nm Al2O3 59.85 7.29 26.52 55.80 4.80 20.29

30 nm Al2O3/19.8 MDC/30 nm Al2O3 62.77 6.86 27.09 60.43 4.85 21.86

From the obtained results, it can be concluded that it is possible to fabricate multilayer structures
using a slightly thicker MDC layer (compared to pure Ag option) without changing the design-targeted
optical and chromaticity properties (as confirmed by the optical transmission spectra of Figure 7c
and the L values for the structures 30 nm Al2O3/16 nm Ag/30 nm Al2O3 and 30 nm Al2O3/18.6 nm
MDC/30 nm Al2O3). Figure 8a shows the measured optical transmission spectra of several MDC-based
as-deposited trilayers where the MDC layer thickness varied from 13.6 to 30 nm. The obtained spectral
shapes show that the thicker the middle MDC layer, the higher is the IR reflection and also the higher
the values of L. Higher L values confirm the increased brightness (visual apparent color of the coatings
being closer to white). We have experimentally tested the color stability of the MDC-based coatings
compared to the coatings based on pure Ag. We have selected two structures (30 nm Al2O3/16 nm
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Ag/30 nm Al2O3, and 30 nm Al2O3/18.6 nm MDC/30 nm Al2O3) to investigate the stability of the color
values by way of measuring the color values on different days, during a lab storage test. The color
stability test results obtained are presented in Figure 8b. It can be seen that the L value of the pure Ag
layer-based structure has changed drastically within the first seven days after the deposition, while
the MDC-based coating structure showed a minimal change in the measured L values. We have also
noted that the Hunter a and b values in both trilayer types did not show significant changes on the
same time-scale.
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The changes in L values (negative trend) observed in the pure metal-based trilayer structure
suggests that the Ag layer degradation (due to possible silver oxidation) occurred within the DMD
structure, and this likely changed the overall film color properties, which manifested in the observed L
value changes. On the other hand, the MDC-based coating structure showed an almost unchanged L
value (a slightly positive change in L has been noted) during up to 15 days of testing.

3. Conclusions

The design variations, material inter-compatibility issues, and the optical and chromaticity
properties of the MDC-based coatings have been investigated and compared to those of pure metallic
layer-based trilayer building blocks of low-emissivity coatings. The study has focused on the optical
performance and environmental stability characteristics of silver-containing thin and ultrathin coating
structures. Magnesium fluoride-containing MDC layers can be used to enable arbitrarily complex
high-stability low-E, heat-mirror, or spectral filter-type optical coating designs of high spectral selectivity,
on a range of optical substrates. In terms of color stability, it has been confirmed that the MDC layers can
provide more design flexibility in structural optical coatings with the potentially improved tuneability
of the apparent color essential for various modern industrial and commercial applications.

The co-deposited metal-dielectric nanocomposites (MDC), in which the volumetric content of
the dielectric phase was within 5–10 vol.% are semi-metallic substances (often termed cermets in the
literature) of solid solution type that can represent an alternative coating design option, compared to
using pure metallic layers. The development of MDCs of composition type Ag:MgF2 was expected to
accomplish the following: (i) promote adhesion of the metallic layers to their substrates, (ii) promote
mechanical hardness of soft plasmonic metal layers, (iii) improve metal layer morphology by way of
“filling the pores” between ultrathin metal nano-islands, and (iv) potentially smoothen the interface
roughness in ultrathin metallic layers. The preliminary experimental results obtained in this work
confirmed that these types of nanocomposite type metal-rich materials will enable the design and
fabrication of advanced new types of multilayer optical coatings, even though a number of further
studies of these nanocomposite materials are still required. Additionally, it is possible to engineer a
broader range of reflected or transmitted color properties compared to pure metal-based designs.
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We have established the RF sputtering deposition process of metal-dielectric composite layers
and developed MDC layer-based trilayer structures of interest for use as building blocks in future
low-emissivity coatings. The possibility of engineering multilayer optical coatings with improved
stability of the transmission spectrum and apparent color properties has been experimentally
demonstrated. Dielectric/MDC/Dielectric-type trilayer structures provide new options in the design
and engineering of next-generation optical coatings, enabling new applications in building energy
efficiency, architectural glass coatings, heat-shields, and decorative coating products.
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of slightly different thickness compared to the absorption of pure thin-film Ag layer.
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