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Abstract: In this study, the oxidation behavior of Al coated NiCrAlY bondcoat is investigated. It is
known that many methods are applied to improve the lifetime of bondcoat in thermal barrier coatings.
Herein, the Al sputtering method is selected to increase the Al content, which does not change the
structure of bondcoat. Thin Al film of ~2 µm was sputtered on the surface of bondcoat, which
improved the oxidation resistance of NiCrAlY bondcoat. Experimental results showed that, after
oxidation for 200 h at 1200 ◦C, the formation of a dense and continuous α-Al2O3/Cr2O3 multilayer
was observed on the Al coated bondcoat surface. In contrast, a mixed oxides (NiO, Cr2O3 and
spinel oxides) layer formed on the surface of the as-sprayed bondcoat samples. Results of the cyclic
oxidation at 1050 ◦C within 204 h indicated that the Al sputtering method can improve the oxidation
resistance of bondcoat. This study offers a potential way to prolong the lifetime of thermal barrier
coatings and provides analysis of the oxidation mechanism.
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1. Introduction

Thermal barrier coatings (TBCs) are widely employed to thermally protect gas turbine engines.
The detailed functions of TBCs include the improvement of the efficiency, durability, and properties
in high temperature operation environments [1–4]. TBCs generally comprise three layers, including
a ceramic topcoat, an interlayer bondcoat, and a superalloy substrate. It has been proven that TBCs
are used in the hot sections as an important component in protecting the gas turbines from oxidation,
thermal fatigue, corrosion, wear, and erosion [5–8].

The load-carrying substrate is typically the Ni-based superalloy. The state of art topcoat material
is 6–8 wt.% yttria-stabilized zirconia (YSZ) ceramic coating, which provides the advantages of low
thermal conductivity, high thermal-expansion coefficient, and high fracture toughness [9–11]. YSZ
topcoat can be deposited by mainly two methods: electron beam physical vapor deposition (EB-PVD)
and air plasma spray method (APS) [12–14]. Interlayer bondcoat is between bond topcoat and substrate,
which protects the superalloy substrate from being oxidized in severe environments and serves the
critical role of providing adhesion between the substrate and the topcoat [15,16]. Two kinds of bondcoat
are widely used in the TBCs system [1,2,6]: one is overlay bondcoat such as MCrAlY (M = Ni and/or
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Co) bondcoat, and the other is diffusion bondcoat such as Pt/Al diffusion coating [17,18]. In Pt/Al
coatings, the aluminum is required in the pack process or in the chemical vapor deposition (CVD)
reactor from an AlCl3 source [2,19]. Thicker bondcoats can be achieved during the thermal spray
process compared with Pt/Al bondcoats with the aluminizing process, as thermal spray process does
not involve the diffusion [1,2,20].

At elevated temperatures, oxygen penetrates “oxidation transparent” YSZ topcoats to contact the
bondcoats [2,9]. Oxygen goes through the microstructural defects in topcoats such as pores, voids,
splat boundaries, lamellar interfaces, and cracks; while diffuses through the crystal defects due to
the oxygen vacancies in YSZ. Therefore, thermally grown oxides (TGO) form between the original
topcoat/bondcoat interface [21–24]. Ideal TGO is a continuous and dense α-Al2O3 layer, which plays
the role of diffusion barrier to suppress the formation of detrimental oxides during further oxidation,
thus improving the durability of the TBCs system under thermal exposure in service. However, some
minor oxides, such as Cr2O3, NiO, and spinel oxides are also formed and mixed along the α-Al2O3

layer. These scales with mixed oxides thicken during oxidation, which is the main cause for the
separation of the coatings from superalloy substrate, leading to the failure of TBCs [21–24]. Some
transient oxide products, such as θ-Al2O3, γ-Al2O3, and δ-Al2O3, can initially form on the surface of
MCrAlY bondcoats [25–27]. Through heat treatment, volume expansion occurs in these metastable
phases during the α-Al2O3 phase transformation [2,25–27]. For example, the volume change form
θ-Al2O3 to α-Al2O3 can be as much as 12% [2], which may lead to cracks in TGOs and degrade the
TBCs [28–30]. Therefore, the oxidation resistance and lifetime of TBCs can be improved with the
formation of pure α-Al2O3 layer on the surface of bondcoat during oxidation.

Al content increase in the bondcoats is an effective way to prevent the formation of mixed oxides
and metastable aluminas. It is known that some methods, such as pack cementation, CVD, PVD,
sputtering, and laser treatment, are widely used to increase the content of Al in bondcoats [31–34].
For example, an improvement of oxidation resistance was achieved by coating a ~3 µm Al film on
the surface of NiCr alloy, followed by a diffusion process which heated the samples at 600 ◦C and
then 900 ◦C in argon gas atmosphere. The results of cyclic oxidation at 1100 ◦C indicated that the
weight gain data of coated samples are smaller than those of uncoated Al NiCr alloy. This is due to the
formation of α-Al2O3 layer on the coated sample and the formation of Cr2O3 layer on the uncoated
sample [32]. Under 1100 ◦C, α-Al2O3 layer has better oxidation resistance compared with Cr2O3

layer [32]. This study is based on the NiCr alloy rather than the bondcoat in TBCs system. Thus, it is
necessary to investigate that the effect of Al film on the bondcoat.

In this study, with the aim to increase the Al content, a thin Al film was sputtered on the surface
of NiCrAlY bondcoat. This helps to the formation of a dense and continuous α-Al2O3 layer, while
prevents the formation of mixed oxides (NiO, Cr2O3 and spinel oxides). The oxidation behavior of
uncoated and coated NiCrAlY bondcoats are investigated and discussed.

2. Materials and Methods

2.1. Sample Preparation

Inconel 738 coupons (25 × 25 × 5 mm3) were used as substrates. First, both sides of coupons
were polished down to 5 µm. Then, grit blast was conducted by alumina (800 µm) on both surfaces
of samples. Finally, samples were ultrasonically cleaned with alcohol. Second, NiCrAlY bondcoats
are deposited on both sides of coupons using air plasma spraying method (Praxair 3710, Praxair Inc.,
Cleveland, OH, USA). Commercial NiCrAlY (KF-343) feedstock was purchased from BGRIMM Tech.
Group, Beijing, China. Table 1 shows the properties of NiCrAlY powders. Table 2 presents details of
the APS processing conditions. The thickness of sprayed NiCrAlY bondcoat is 150 ± 20 µm.
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Table 1. Size distributions and compositions of NiCrAlY powders.

Powder Nominal Particle Size Distributions
D (0.1)–D (0.9)

Average Particle Sizes
D (0.5)

Compositions
(wt.%)

NiCrAlY powder 10.0–40.0 µm 25.0 µm 69Ni–20Cr–10Al–1Y

Table 2. Air plasma spray processing parameters.

Parameter Unit NiCrAlY Feedstocks

Gun nozzle inner diameter mm 6
Arc current A 600
Arc voltage V 70

Primary gas flow rate (Ar) L/min 80
Secondary gas flow rate (H2) L/min 6

Carrier gas flow rate (Ar) L/min 10
Gun traverse speed mm/s 800

Powder feed rate g/min 40
Spray distance mm 100

2.2. Al Sputtering Process

Direct current magnetron sputtering technique is used to produce the Al film, which was coated
on the surface of NiCrAlY bondcoat. The details of the sputtering conditions are shown in Table 3.
The thickness of Al film coated on the surface of NiCrAlY bondcoat was ~2 µm, which was estimated
from processing parameters.

Table 3. Sputtering conditions on the surface of NiCrAlY bondcoat.

Substrate Unit NiCrAlY Bondcoat

Target / Al (99.9%)
Target size mm3 320 × 200 × 6

Substrate to target distance mm 50
Pre-sputtering time min 20
Working pressure Pa 0.16

DC power W 25
Ar flow rate mL/min 23

Deposition time min 20
Al coating thickness µm ~2

2.3. Oxidation

Isothermal oxidation test was conducted at 1200 ◦C in static air at atmospheric pressure,
the as-sprayed and Al coated NiCrAlY samples were heated for 1 h, 5 h, and 200 h. Thermal
cycling oxidation test was performed at 1050 ◦C for 204 h. By measuring weight gains of samples,
the oxidation behavior of as-sprayed and Al coated NiCrAlY samples was evaluated. One thermal cycle
of 12 h consisted of 15 min ramp-up, 11 h isothermal soak at 1050 ◦C, and 45 min cool-down to ambient
temperature (~25 ◦C). The weight measurements were taken after each cooling cycle. The precision of
the measuring balance was ±0.1 mg.

The oxidation kinetics of bondcoats can be quantified by the value of weight change per unit
area at a certain high temperature [18,22,24,32,33,35]. The pattern of kinetics curve generally shows a
parabolic weight gain behavior in the main process of oxidation, followed by a weight loss ending
which corresponds to a failure period in TBCs system.

2.4. Sample Characterization

Scanning electron microscopy (SEM, JSM-7000F, Tokyo, Japan) in second electron mode and
back scattered electron mode was used to observe the surface and cross-sectional morphologies
of as-sprayed and Al coated NiCrAlY samples. X-ray spectroscopy (EDX) was used to examine
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the chemical composition of the samples. The mean area and length of TGO scale were measured
using ImageJ software. A series of SEM images were obtained for each sample with a magnification
of 1000×. The resolution of these images was 600 dpi. Moreover, twenty images were randomly
chosen from the cross-section of each sample. The X-ray diffraction (XRD, Philips X’pert, Amsterdam,
Netherlands, Cu Kα radiation, 45 kV, 40 mA) method was used to identify the phases of oxidized
samples. All XRD patterns were recorded by running X-ray diffractometer the condition of scan
step = 0.02◦ and 2θ = 20–80◦.

3. Results

3.1. Microstructure of as-Sprayed and Al Coated NiCrAlY Bondcoat Samples

In Figure 1, the cross-section of as-sprayed NiCrAlY bondcoat on the Inconel 738 superalloy
substrate is shown. It can be observed that the total thickness of NiCrAlY bondcoat is ~150 µm, which
contact the Ni-based substrate tightly. In addition, microcracks and voids are produced during the
spray process, showing the non-fully dense morphology. Moreover, the air plasma sprayed process
also introduces the formation of Al2O3 oxides. These segmented Al2O3 veins are unevenly dispersed
in the NiCrAlY bondcoat [18,36].
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Figure 1. Cross-sectional morphology of the as-sprayed APS bondcoat.

To observe clearly the interface morphology of bondcoat/Al coat, the cross-sectional SEM images
of as-sprayed sample (Figure 2a) and Al coated sample (Figure 2b) at higher magnification compared
with Figure 1 are presented. Bondcoat/Ni-plating interfaces are marked by dashed line. The Al layer in
Figure 2b is labeled. EDX line scan results along the marked black line in Figure 2b of Ni and Al element
are presented in Figure 2c,d, respectively. The Al peak shown in Figure 2d indicates corresponded Al
layer between bondcoat and Ni-plating in Figure 2b.

From Figure 3, it can be seen that Al film was successfully deposited on the surface of NiCrAlY
bondcoat samples. Figure 3a shows the correctional morphology at higher magnification of Al/NiCrAlY
interface as compared to Figure 2b. The elemental maps (O, Al and Ni) of the Al/NiCrAlY coating
correspond to Figure 3a are presented in Figure 3c–e. In Figure 3c, the sputtered Al film of ~2 µm on
the surface of NiCrAlY bondcoat can be confirmed by the scattered bright Al particles. However, it can
be seen that the bright O zone is not as clear as Al zone in Figure 3b. This indicates that the sputtered
Al is not heavily oxidized. Figure 3e is the schematic showing the layers and thickness of each layer.
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3.2. NiCrAlY Bondcoat Samples after Isothermal Oxidation for 1 h at 1200 ◦C

Figure 4 presents the XRD spectra of as-sprayed and Al coated NiCrAlY bondcoat samples after
the isothermal oxidation for 1 h at 1200 ◦C. The XRD results show that the Cr2O3 phase is found on
both the surface of as-sprayed and Al coated samples (Figure 4a,b). In addition, both θ-Al2O3 and
α-Al2O3 phase is observed in as-sprayed bondcoat samples, while only α-Al2O3 phase is investigated
in Al coated bondcoat samples. It is noted that the intensity of the α-Al2O3 peaks of as-sprayed sample
is smaller than that of Al coated sample. From Figure 4, it can be concluded that θ-Al2O3 phase
is only detected in the as-sprayed sample and the intensity of α-Al2O3 phase is stronger in the Al
coated sample.Coatings 2020, 10, 376 7 of 15 
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Figure 4. XRD spectra of the bondcoat samples after oxidation for 1 h at 1200 ◦C (a) as-sprayed sample,
(b) Al coated sample.

The surface morphology of the as-sprayed and Al coated NiCrAlY bondcoat samples after
isothermal oxidation for 1 h at 1200 ◦C is shown in Figure 5a,b, respectively. Some protrudes, pores,
and pits are observed in the fine oxide particles on the surface of samples. EDX spectra were obtained
from the whole surface of samples. Results in Figure 5c,d show that strong Al and Cr peaks can be found,
indicating that the oxides are mainly Al and Cr oxides. Ni peaks correspond to the Ni oxides. From
Figure 4, it is confirmed that both θ-Al2O3 and α-Al2O3 phase are observed in as-sprayed sample, while
only α-Al2O3 phase is found in Al coated sample. From Figure 5, the oxides are identified/speculated
from their typical morphology reported in earlier works and EDX data. In Figure 5a, it can be seen
that whisker like/bladelike oxides θ-Al2O3 form dominantly on the surface of as-sprayed bondcoat
samples [25,26,33] with minor web like or dense equiaxed structure oxides α-Al2O3 [25,27], while in
Figure 5b, only web like or dense equiaxed structure oxides α-Al2O3 can be observed. EDX spectra in
Figure 5c,d indicate that the Al content may increase in the as-sprayed bondcoat compared with that of
Al coated bondcoat.



Coatings 2020, 10, 376 7 of 14

Coatings 2020, 10, 376 7 of 15 

 

 
Figure 4. XRD spectra of the bondcoat samples after oxidation for 1 h at 1200 °C (a) as-sprayed 
sample, (b) Al coated sample. 

The surface morphology of the as-sprayed and Al coated NiCrAlY bondcoat samples after 
isothermal oxidation for 1 h at 1200 °C is shown in Figure 5a,b, respectively. Some protrudes, pores, 
and pits are observed in the fine oxide particles on the surface of samples. EDX spectra were 
obtained from the whole surface of samples. Results in Figure 5c,d show that strong Al and Cr peaks 
can be found, indicating that the oxides are mainly Al and Cr oxides. Ni peaks correspond to the Ni 
oxides. From Figure 4, it is confirmed that both θ-Al2O3 and α-Al2O3 phase are observed in 
as-sprayed sample, while only α-Al2O3 phase is found in Al coated sample. From Figure 5, the 
oxides are identified/speculated from their typical morphology reported in earlier works and EDX 
data. In Figure 5a, it can be seen that whisker like/bladelike oxides θ-Al2O3 form dominantly on the 
surface of as-sprayed bondcoat samples [25,26,33] with minor web like or dense equiaxed structure 
oxides α-Al2O3 [25,27], while in Figure 5b, only web like or dense equiaxed structure oxides α-Al2O3 
can be observed. EDX spectra in Figure 5c,d indicate that the Al content may increase in the 
as-sprayed bondcoat compared with that of Al coated bondcoat. 

 
Figure 5. Surface morphology of the bondcoat samples after oxidation for 1 h at 1200 °C (a) 
as-sprayed sample, (b) Al coated sample; and EDX spectrum (c) as-sprayed sample, (d) Al coated 
sample. 

Figure 5. Surface morphology of the bondcoat samples after oxidation for 1 h at 1200 ◦C (a) as-sprayed
sample, (b) Al coated sample; and EDX spectrum (c) as-sprayed sample, (d) Al coated sample.

3.3. NiCrAlY Bondcoat Samples after Isothermal Oxidation at 1200 ◦C

Figure 6a,b shows the cross-sectional SEM image of as-sprayed and al coated samples after
oxidation at 1200 ◦C for 5 h, respectively. The TGO layer is formed on the surface of NiCrAlY bondcoats
for both samples. The thickness of the TGO of the as-sprayed bondcoat sample is in the range of
~1.7~4.2 µm, while the thickness of the TGO of Al coated bondcoat sample is in the range of ~1.2~1.7 µm.
Moreover, the average thickness of the TGO of as-sprayed sample is ~3.6 µm, while that of Al coated
bondcoat sample is ~1.4 µm.
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The cross-sectional morphology of as-sprayed and Al sputtered NiCrAlY bondcoat samples are
shown in Figure 7a,b, respectively. After isothermal oxidized at 1200 ◦C for 200 h, TGO forms on the
surface of bondcoat in both samples. In Figure 7a,b, four sites A, B, C, and D are marked on the TGOs
in the SEM images. These sites are the areas used to measure the compositions of Al, Cr, and Ni by
EDX showing in Table 4. In addition, Figure 7c–f presents the EDX spectra of corresponding areas.
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Table 4. Compositions data measured by EDX on the cross-section of as-sprayed and Al coated NiCrAlY
samples after oxidation for 200 h at 1200 ◦C.

Composition
(wt.%)

As-Sprayed Sample Al Coated Sample

Site A Site B Site C Site D

Al 80 28 85 18
Cr 14 60 10 72
Ni 6 12 5 10

In both samples, the TGO scales consist of a dark inner layer and a bright outer layer. Besides,
some pores and voids are observed in the outer layer in both bondcoat samples. EDX data show that
Al content is 80 and 85 wt.% at sites A and C, respectively. This indicates that the inner layers of
oxides in both samples are α-Al2O3 layers. On the other hand, Cr content at site B and D is 60 and
72 wt.%, respectively, which means that the outer layers of oxides consist of Cr2O3 + Ni(Al,Cr)2O4

mixed oxides [18,22,24,27].
Since the TGOs are non-uniformly distributed on the surface of both bondcoat samples,

the thickness of the TGO of as-sprayed bondcoat sample is in the range of ~6.3 to ~20.2 µm, while
the thickness of the TGO of Al coated bondcoat sample is in the range of ~3.6 to ~15.3 µm. Moreover,
the average thickness of the TGO of as-sprayed sample is ~17.2 µm, in which the average thickness of
α-Al2O3 layer is <2.0 µm. For Al coated bondcoat sample, the average thickness is ~7.4 µm, while the
average thickness of α-Al2O3 layer is ~3.3 µm.

Figure 8 shows the average thickness of oxides as a function of oxidation time for as sprayed
sample (Figure 8a) and Al coated sample (Figure 8b). For both samples, the thickness of oxides increases
with prolonged oxidation time. At both 5 h and 200 h, the thickness of oxides in the as-sprayed sample
is larger than that of oxides in Al coated sample.
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3.4. Thermal Cycling Oxidation Behavior of NiCrAlY Bondcoat Samples

Cyclic oxidation was conducted at 1050 ◦C. NiCrAlY bondcoat samples before and after Al
deposition treatment were studied as a function of oxidation time. In Figure 9, the curve 9a and 9b
show the weight gain per unit area as a function of oxidation time (∆M/S vs. time) for as-sprayed
and Al coated NiCrAlY bondcoat samples, respectively. It can be found that the ∆M/S of Al coated
bondcoat samples is lower than that of as-sprayed bondcoat samples. In addition, the oxidation
rate of the samples was calculated by ratioing the weight gain per unit area at 204 h to the longest
oxidation time during the experiment, i.e., 204 h. The oxidation rate of as-sprayed and Al coated
samples are 3.4 × 10−4 and 1.7 × 10−4 mg·cm−2

·h−1 respectively. This result is in agreement with the
results obtained in isothermal oxidation.
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4. Discussion

Figure 10a,b shows the schematics of oxidation process of as-sprayed and Al coated NiCrAlY
bondcoat samples, respectively. Figure 10 illustrates the effect of Al sputtering treatment on the
oxidation behavior of NiCrAlY bondcoat.
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In 0 h state, the morphologies of as-sprayed and Al coated NiCrAlY bondcoat samples are similar.
EDX line scan of Figure 2 and EDX mapping of Figure 3 shows that the Al film is successfully deposited
on the surface of NiCrAlY bondcoat. It was reported that α-Al2O3 is more stable than θ-Al2O3 [25].
Therefore, with higher temperature, larger Al content, or longer oxidation time, either α-Al2O3 forms
without θ-Al2O3 or the θ-Al2O3 phrase transform to α-Al2O3 phase [25,26]. In addition, after the
formation of continuous α-Al2O3 layer during oxidation at high temperature, the oxidation process of
bondcoat is dramatically slowing down [24–27]. This is due to the fact that α-Al2O3 has slower growth
rate compared to other oxides such as Cr2O3 and NiO [32,33]. Thus, higher Al content in NiCrAlY
bondcoat are reported to prevent the formation of metastable aluminas and mixed oxides [24,27,32,33].
This leads to the longer lifetime of bondcoat samples in severe environments [37–39].

The Cr2O3 phase is observed and detected on both as-sprayed and Al coated NiCrAlY bondcoat
samples, after isothermal oxidation at 1200 ◦C for 1 h (Figure 10a,b). The formation of Cr2O3 phase is
due to the high inter-diffusion coefficient and the high concentration of Cr. In addition, the depletion
of Al resulted from the oxidation during the APS process also leads to the formation of Cr2O3

phase [40–42].
After isothermal oxidation for 1 h at 1200 ◦C, whisker-like θ-Al2O3 formed on the surface of

as-sprayed bondcoat samples, while dense equiaxed structure α-Al2O3 oxides can be found on the
surface of Al coated samples. Oxides of θ-Al2O3 are prone to grow on the bondcoat surface, which
possesses a relatively low Al content [40–43]. On the surface of Al coated samples, higher Al content is
achieved. Besides, the activity of Al is higher than that of Cr and Ni. Therefore, when the Al coated
bondcoat is exposed to the air, Al is in favor of diffusion into the surface area [41–43]. The results are
consistent with the earlier study from Nijdam et al. [42,43]. In the initial stages (<1 h) of oxidation,
the quantity of Al oxides rapidly increases on the NiCrAl alloys surface.

Moreover, the difference between as-sprayed bondcoat sample and Al coated sample is that
as-sprayed sample has a free surface, while Al coated sample is lack of the free surface. This may affect
the Al in bondcoat diffusing upward towards the surface. A possible mechanism is proposed. During
the initial oxidation process, excessive levels of oxygen are available on the surface area of bondcoat
samples. For the Al coated sample, the Al in Al layer reacts with the oxygen and forms a thin layer of
α-Al2O3 oxides, which can slow down the Al diffusion upward from bondcoat. While for as-sprayed
sample, the Al in bondcoat tends to diffuse to the surface reacting with oxygen from the onset due to
high activity compared with Ni and Cr in bondcoat. However, the formation time for α-Al2O3 layer in
as-sprayed sample is slower than that in Al coated sample.
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After isothermal oxidation for 200 h at 1200 ◦C, both as-sprayed and Al coated NiCrAlY bondcoat
samples form TGO, which consisted of two layers, i.e., the inner layer of dark α-Al2O3 and the outer
layer of bright mixed oxides (Cr2O3 + Ni(Al,Cr)2O4). The oxides layer distribution is in agreement
with earlier studies [18,22,33,38,40,41]. From the thermodynamics point of view, the formation of
α-Al2O3 layer is due to the fact that Al is a probable element in the bondcoat, which is prone to react
with oxygen at the initial stage of oxidation [37]. After the depletion of Al occurs, Cr2O3 phase form in
the bondcoat. This is because of the large content of Cr element (20 wt.%) and the high inter-diffusion
coefficient characteristic of Cr [38]. Owing to the low diffusivity and solubility of oxygen in the
NiCrAlY bondcoats, the diffusion of Cr is from the deep part to the surface, thus internal Cr2O3 oxides
are not formed in the samples [40]. Ni diffuses through the microcracks in Al2O3 and Cr2O3 phases,
which reacts with Cr and Al on the surface of bondcoats, forming the spinel oxides. Based on this
mechanism, after isothermal oxidation for 200 h, the two-layer structure of oxides was observed.

A part of the α-Al2O3 layer formed in the as-sprayed samples is from the θ-Al2O3 to α-Al2O3

phase transformation during the isothermal oxidation process [25,26,33]. The volume expansion (12%)
is accompanied with the phase transformation form θ-Al2O3 to α-Al2O3 [2,25–27]. This leads to the
formation of some pores and cracks in theα-Al2O3 layer in as-sprayed samples, while a dense α-Al2O3

layer is observed in the Al coated samples. For Al sputtered samples, the formation of an intact α-Al2O3

layer barrier is helpful to prevent the formation of spinel oxides during the isothermal oxidation; while
for as-sprayed samples, the formation of pores and cracks in the spinel oxides accelerates the oxygen
attack and leads to the non-uniform TGO. Therefore, a thinner and finer TGO is observed in the Al
coated samples as compared to the as-sprayed samples [44,45]. The results from isothermal oxidation
in Figure 8 and cyclic oxidation in Figure 9 also demonstrate that the as-sprayed samples possess
a larger weight gain per unit area than that of the Al coated samples, indicating a better oxidation
resistance of Al coated samples.

One major flaw of this study is that the obtained results are not in the context of TBCs, but in the
bondcoat samples without topcoat. This is related not only to the oxidation kinetics, but also to the
interaction among the bondcoat fractal roughness, biaxial TGO stresses, and the elastic properties of
ceramic topcoats. Over the years, studies found that investigating on the oxidation kinetics of thermal
sprayed bondcoats exclusively without its interaction with topcoats does not give a clear picture of
its effects on TBC lifetime [46–50]. Therefore, the design of experiments could be improved in the
future work.

5. Conclusions

In this study, dense and continuous Al film (thickness = ~2.0 µm) was successfully sputtered on the
surface of NiCrAlY bondcoat. This Al film improved the oxidation resistance of the NiCrAlY bondcoat.

• The isothermal oxidation of Al coated bondcoat samples under 1200 ◦C for 1 h led to the formation
of α-Al2O3 and Cr2O3. Under the same oxidation conditions, θ-Al2O3 and Cr2O3 formed on the
surface of as-sprayed bondcoat samples. This indicated that enhanced Al content suppressed the
formation of metastable aluminas.

• After isothermally oxidized at 1200 ◦C for 200 h, the TGO layers formed on the surface of Al
coated and as-sprayed bondcoat samples. TGOs consisted of a bright outer mixed oxides layer
and a dark inner α-Al2O3 layer. The average thickness of the TGO of as-sprayed samples was
~17.2 µm; while that of Al coated samples was ~7.4 µm. The average thickness of α-Al2O3 layer
in as-sprayed samples was <2.0 µm, while that of Al coated samples was ~3.3 µm. This indicated
that a finer TGO formed after increasing the Al content on the surface of bondcoat.

• Cyclic oxidation was performed at 1050 ◦C for 204 h. Results showed that the weight gain per
unit area of Al coated bondcoat samples was smaller than that of as-sprayed bondcoat samples.
Thus, better oxidation resistance was achieved by Al sputtering.
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In the coming study, more complicated structural thermal barrier coatings are planned to be
produced using the sputtering method, such as functional graded coatings. However, the balance between
composition improvement and mechanical properties of the coatings should be carefully investigated.
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