

Article

Supplementary Materials: Fabrication of Zinc Substrate Encapsulated by Fluoropolyurethane and Its Drag-Reduction Enhancement by Chemical Etching

Yuanzhe Li¹, Zhe Cui², Qiucheng Zhu³, Srikanth Narasimalu⁴ and ZhiLi Dong^{1,*}

- ¹ School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore; yuanzhe001@e.ntu.edu.sg
- ² Department of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; cuizhe@zzu.edu.cn
- ³ School of Chemical Engineering, Sichuan University, Chengdu 610065, China; bob-lee@163.com
- Energy Research Institute @ NTU (ERI@N), CleanTech One, Singapore 637141, Singapore; NSRIKANTH@ntu.edu.sg
- * Correspondence: zldong@ntu.edu.sg (Z.D.); +65-6790-6727

Received: 23 March 2020; Accepted: 9 April 2020; Published: date

Figure S1. Synthesis of prepolymer and fluoropolyurethane (a) synthesis of Methyl Fluoro-Aminopropyl Polydimethyl Siloxane (MF-APS), (b) prepolymer produced by polypropylene glycol (PPG) and 2,4-toluene diisocyanate (TDI), (c) prepolymer produced by MF-APS and TDI, and (d) synthesis of prepolymer end capped by an -NCO group.

Figure S2. Waterdrops rolled on Cu^{2+}/HNO_3 -etched zinc + fluoropolyurethane (rolling angle $8 \pm 1.6^\circ$).

Table S1. Uncertainty/error and parameters of non-standard design microchannel.

Parameters of Non-standard Design Microchannel	Set Value (SV)
Microchannel parameter	100 mm × 20 mm × variable h;
and dimensions	jet inlet/outlet: $r = 5 \text{ mm}$, $h = 10 \text{ mm}$
Volume flow rate	1×10^{-5} to 7×10^{-5} m ³ /s
Static pressure	0–2.5MPa
Fluids property	DI water: $\varrho = 998.2 \text{ kg/m}^3$, viscosity 1.00 mPa·s;
Analogy method	Finite volume method
Solution method	Pressure-cased solver
Algorithm	PISO
Inlet condition	Velocity-inlet
Outlet condition	Free discharge
Test suface	(a) Unetched zinc substrate,
	(b) Unetched zinc + fluoropolyurethane,
	(c) Cu ²⁺ / HNO ₃ etched zinc, and
	(d) Cu ²⁺ / HNO ₃ etched zinc + fluoropolyurethane

2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).