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Abstract: In order to develop waterborne silicate anticorrosive coatings to replace solvent-based
anticorrosive coatings used widely in the shipping industry, epoxy modified silicate emulsions were
synthesized with different contents of epoxy resin, then aqueous silicate zinc-rich coatings were
prepared with the synthesized silicate emulsion, triethylamine, and zinc powder. The influence of
the content of epoxy on the properties and chemical structure of the modified emulsion, mechanical
properties of the silicate coatings, and corrosion behavior of the silicate zinc-rich coatings in 3.5% NaCl
solution were investigated. The coating samples on steel were measured by the immersion test, Tafel
polarization test, and electrochemical impedance spectroscopy (EIS) test with different immersion
times. The results showed that epoxy modified silicate emulsions were successfully synthesized.
With the increase in epoxy content, the viscosity and solid content of the modified emulsion increased,
the impact resistance of the silicate coating rose, the pencil hardness decreased, but the adhesion was
not affected. Epoxy modification can reduce, to a certain extent, the corrosion driving force of the zinc
rich coating and increase the impedance of the zinc-rich coating, which decreases with the increase of
immersion time in 3.5% NaCl solution. With the increase in the epoxy content, the impedance value
of the zinc-rich coating increases, indicating that the ability of the coating to resist corrosive media
is enhanced.
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1. Introduction

To prevent the seawater corrosion of a ship’s hull during its navigation, anticorrosive coatings
have always been used worldwide. The mechanism of the anti-corrosion coating is realized through
the insulating effect, passivation and corrosion inhibition, and the sacrificial anode protection cathode
effect [1,2]. However, most of the anticorrosive coatings are still solvent-based [3]. Epoxy zinc-rich
coatings are usually used as a primer coating and have good corrosion resistance [4,5], which is very
important for steel anticorrosion in atmosphere and water environments [6]. By using zinc powder as
sacrificial anode type filler in a zinc rich coating, which has more negative corrosion potential than
the protected substrate, it plays a cathodic protection role on the substrate. However, such coatings
will release a large amount of toxic volatile organic compounds (VOCs) during its application [7].
This organic substance will produce photochemical smog and acid rain under ultraviolet radiation,
causing serious pollution and damage to people’s lives and the environment. Therefore, with the
improvement in people’s quality of life and the enhancement of environmental awareness, countries
around the world have formulated laws and regulations to limit VOC emissions, so anticorrosive
coatings will inevitably develop in the direction of energy saving, low pollution, and high performance.
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Based on this, water-based coatings will become the focus of future development in anticorrosive
coatings. This is because water is used as the solvent in water-based anticorrosive coatings, and the
introduction and emission of VOCs are avoided directly from the pollution source. There are many
types of water-based anticorrosive coatings that mainly include epoxy, acrylic, and inorganic zinc silicate
coatings, among them, water-based epoxy and inorganic zinc-rich coatings have been successfully
industrialized [8]. Water-based inorganic zinc-rich coatings are mainly composed of film-forming
base materials (including inorganic polymers such as silicates, phosphates, and dichromate) and
zinc powder. It has excellent performance in terms of conductivity, weather resistance, and solvent
resistance [9,10]. The current research is mainly focused on the silicate series, but water-based silicates
have disadvantages such as having more pores on the surface, poor insulating effect, and worse
brittleness of the coating [11–13]. In the process of dehydration polycondensation, the adhesion
decreases with the increase in film thickness, so it is easy for the coating to crack or even fall off in a
large area. To overcome these issues, two technical approaches can be taken. One is to modify the
silicate emulsion, and the other is to decrease the content of zinc powder and enhance the electrical
conductivity of coatings with a lower amount of conductive fillers such as polyaniline [11], modified
zinc particle [12], graphene oxide [13], etc. Nevertheless, the dispersion of the conductive filler and
the contact between the conductive filler and the zinc particles still need to be improved. Epoxy resin
has good flexibility and excellent corrosion resistance [14], and its high permeability can make up for
the porosity defects of water silicate coatings [15,16]. Therefore, epoxy resin was used to modify the
silicate emulsion to decrease the brittleness, improve the impact resistance, and the corrosion resistance
of the water-based silicate coating in this paper.

2. Materials and Methods

2.1. Materials

3-aminopropyltriethoxysilane (LT-550) was obtained from Hubei BlueSky New Material Inc.
(Xiantao, China). Its purity specification was analytically pure. E777-2 (nano-modified waterborne
inorganic zinc-rich resin) was purchased from Wuhan Modern Industrial Technology Research Institute
(Wuhan, China) and its purity specification was chemically pure. Epoxy resin 618 (E51) was obtained
from Nantong Xingchen Synthetic Material Co., Ltd. (Nantong, China), and its purity was chemically
pure. Zinc powder was purchased from Jiangsu Kechuang Metal New Material Co., Ltd. (Taizhou,
China) and its specification was 500 meshes.

2.2. Preparation Process and Reaction Principle

2.2.1. Synthesis of Epoxy Modified Silicate Emulsion

The content of epoxy resin was controlled to be 10%, 20%, 30%, 40%, and 50% to prepare five
epoxy modified silicate emulsions (Component A), respectively. The content of epoxy resin refers to
the ratio of the mass of epoxy resin to the sum of the mass of epoxy resin and water-based silicate resin.
Their formulations are listed in Table 1.

Table 1. Formulation of the epoxy modified silicate emulsion.

Raw Materials/wt.% G10 G20 G30 G40 G50

E51 9.5 18.1 26 33.3 40
LT550 5.0 9.5 13 16.7 20
E777-2 85.5 72.4 61 50 40

The first stage is to use LT550 to modify the epoxy resin; the second stage is the reaction between
the hydroxyl group produced by the hydrolysis of LT550 and the aqueous silicate. The reaction
principles of the epoxy modified silicate emulsion can be found in [17]. The specific process was as
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follows: first, pour LT550 and E51 into a 500 mL metal mixing tank at a certain ratio and stir with a
BGD750 sand mill dispersing and mixing multi-purpose machine (Guangzhou Biuged Laboratory
Instrument Supplies Co., Ltd., Guangzhou, China) for 5 min. After it is evenly dispersed, add E777-2,
and finally disperse at a speed of 1000 rpm for 15 min. After the dispersion is completed, the mixture
is then poured into a clean white plastic box.

2.2.2. Formulation and Preparation of the Zinc-Rich Coating

To ensure good electrical contact between the zinc particles and cathodic protection for the steel
substrate, a high pigment concentration of 92 wt.% zinc powders is required in the dry film [18].
The anticorrosive zinc-rich paint was prepared with the following composition and consisted of three
components: Component A is the silicate emulsion E777-2 or epoxy modified silicate emulsion prepared
as above-mentioned; Component B is triethylamine; and Component C is the zinc powders. The mass
ratio of the three components was Component A: Component B:Component C = 100:1.25:233. They were
mixed and then coated and cured on a steel plate for 60 µm dry film thick (DFT). The preparation
process of the coating was performed with a BGD 750 multifunction high speed dispersing machine
(Guangzhou Biuged Laboratory Instrument Supplies Co., Ltd., Guangzhou, China). Components
A and B were added to a 500 mL metal stirring tank at a speed of 500 pm before zinc powder was
added to the stirring tank, according to the amount in the formula. The speed was then increased to
1500 rpm and stirred for 15 min. Finally, the prepared coating was brushed on the surface of a steel
plate with a size of 150 mm × 70 mm × 1 mm, which was polished with 100-grit sandpaper and washed
with absolute ethanol. N0 represents the water-based silicate zinc-rich coatings, and the coatings
prepared with the epoxy modified silicate emulsions listed in Table 1 are denoted by G10, G20, G30,
G40, and G50.

2.3. Measurement and Characterization

2.3.1. Fourier Transform Infrared Spectroscopy

The emulsion samples were tested by the attenuation total reflection (ATR) method with Fourier
transform infrared spectroscopy (FTIR) from PERKINELMER (Waltham, MA, USA). The scanning
range was 4000–650 cm−1, the resolution was 2 cm−1, and the number of scans was 32 times.

2.3.2. Determination of Solid Content

The aluminum foil box was dried in a 140 ◦C vacuum drying box for 20 min and cooled to room
temperature, then the box was weighed and its mass was recorded as m1. Then, the modified emulsion
was added to the box, weighed, and the mass recorded as m2, and then placed in a 140 ◦C vacuum
drying box, dried for 1 h, and then cooled again to room temperature, Finally, weigh the box with the
dried modified emulsion, record it as m3, then the solid content = 100% × (m3 − m1)/(m2 − m1).

2.3.3. Basic Mechanical Properties

According to GB/T 1720-89 [19], the adhesion of the anticorrosion coatings was evaluated by the
spiral scoring method and the film adhesion tester (QFZ-II, manufacturer, city, China). According to
GB/T6379-2006 [20] and GB/T1732-93 [21], the pencil hardness and impact strength of anticorrosion
coatings were evaluated by the pencil-scratch hardness tester (QHQ-A) (Tianjin Yonglida Material
Testing Machine Co., Ltd., Tianjin, China) and paint film impactor (QCJ) (Tianjin Yonglida Material
Testing Machine Co., Ltd., Tianjin, China), respectively.

2.3.4. Film Thickness Measurement

The thickness of each sample was measured using a QuaNix 7500 coating meter (AUTOMATION
DR.NIX GmbH KÖLN, Köln, Germany), and each sample was tested at five points; the mean was
reported in this paper.
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2.3.5. Immersion Test in 3.5% NaCl Solution

The surface of the steel plate with a size of 150 mm × 70 mm × 1 mm was polished with 100-grit
sandpaper and washed with absolute ethanol, then painted with the prepared aqueous silicate zinc-rich
coating and edge-sealed with epoxy resin. Then, the sample was immersed in 3.5% NaCl solution and
the test temperature was 23 ± 2 ◦C. On the third day, the seventh day, the tenth day, and the fourteenth
day, the samples were taken for observation and electrochemical measurement.

2.3.6. Electrochemical Test

The polarization curve and electrochemical impedance spectroscopy (EIS) were performed using a
ZAHNER IM6ex electrochemical workstation (ZAHNER-elektrik GmbH & Co. KG, Kronach, Germany)
with a Coating & Laminate Tester (COLT) (ZAHNER-elektrik GmbH & Co. KG, Kronach, Germany)
module under a two-electrode system. The sample plate is the working electrode and the shielded
cylinder copper electrode is the counter. The detailed test operation can be found in [22]. The contact
area between the coating and the corrosive medium (3.5% NaCl solution) was 19.625 cm2, and the
measurement range of the polarization curve was −200 to 200 mV, scanning speed was 1 mV/s, EIS with
a perturbation potential of 10 mV, and a frequency range of 100 mHz to 100 kHz. The test results were
treated using Z2.03 USB software and then analyzed using ZSimp Win3.2.1 software. The impedance
at 100 mHz was compared in this investigation.

3. Results

3.1. Emulsion Properties

Their viscosity was measured by a NDJ-1 rotational viscometer (Shanghai Hengping Scientific
Instruments Co., Ltd., Shanghai, China). The viscosity of the silicate emulsion purchased was 10 mPa·s,
and the viscosity of the epoxy modified silicate emulsion with 10%, 20%, 30%, 40%, and 50% epoxy
content was 19.5, 40.5, 54, 60, and 70 mPa·s, respectively. It clearly shows that the viscosity of the
modified emulsion increased due to the introduction of the epoxy resin. The pH value before and after
modification was measured with a pH-10 m (Shanghai LICHEN-BX Instruments Technology Co., Ltd.,
Shanghai, China). The results showed that the pH value was 12.5, which did not change before and
after the modification, and both were shown to be strongly alkaline. In addition, the solid content of
the modified emulsion increased linearly with epoxy content and was higher than that of the silicate
emulsion. The solid content of the silicate emulsion was above 27%. While the solid content of the
modified emulsion with epoxy content of 10%, 20%, 30%, 40%, and 50% was more than 28%, 33%, 37%,
40%, and 43%, respectively.

3.2. Chemical Structure

The measured FTIR spectrum is shown in Figure 1a for the silicate emulsion, Figure 1b shows
the reaction product of LT550 and E51, and Figure 1c is the epoxy modified silicate emulsion. It can
be seen that there were Si–OH peaks in the intermediate product of the reaction between the silicate
emulsion and LT550 and epoxy resin, and the Si–OH peak disappeared in the modified silicate
emulsion, indicating that Si–OH participated in the reaction and was consumed. The peak position of
the modified silicate at 1108 cm−1, which was because the Si–O–Et (near 963 cm−1) in the LT500 added
during the modification became a Si–O–Si bond. Therefore, it was proved that the epoxy modified
silicate emulsion was successfully synthesized.
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Figure 1. Fourier transform infrared (FTIR) spectrum. (a) Silicate emulsion E777-2; (b) Product of 
LT550 modified E51; (c) Modified silicate emulsion with 20% epoxy 

3.3. Basic Properties of the Silicate Coatings 

Measured results showed that the average dry film thickness of each coating was between 58–
65 μm, all coatings showed the best adhesion (grade 1). With the increase in epoxy content from 10% 
to 50%, the hardness decreased from 6H to 4H. The impact resistance of the epoxy modified silicate 
coating was higher than that of the silicate coating (30 kg⋅cm) and it increased with epoxy content. 
Once the epoxy content reached 20%, as shown in Figure 2, the impact resistance of the epoxy 

Figure 1. Fourier transform infrared (FTIR) spectrum. (a) Silicate emulsion E777-2; (b) Product of
LT550 modified E51; (c) Modified silicate emulsion with 20% epoxy.

3.3. Basic Properties of the Silicate Coatings

Measured results showed that the average dry film thickness of each coating was between
58–65 µm, all coatings showed the best adhesion (grade 1). With the increase in epoxy content from
10% to 50%, the hardness decreased from 6H to 4H. The impact resistance of the epoxy modified
silicate coating was higher than that of the silicate coating (30 kg·cm) and it increased with epoxy
content. Once the epoxy content reached 20%, as shown in Figure 2, the impact resistance of the epoxy
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modified silicate coating could reach the maximum measurement value (50 kg·cm). This shows that
the introduction of epoxy resin can improve the impact resistance of a silicate coating.
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3.4. Corrosion Performance of the Coatings

3.4.1. Effect of Epoxy Content on Corrosive Performance

Figure 3 shows the photos of the six coatings before immersion in the 3.5% NaCl solution.
The results of the Tafel polarization curves are shown in Figure 4a. The open circuit potential (OCP)
for the silicate zinc-rich coating was −0.427 V. The open circuit potential for the modified coating G50
was about −0.4 V. As the epoxy content increased, the open circuit potential for the modified coating
showed an increasing trend overall (Figure 4b), which is because the surface of the silicate coating
is porous and adding epoxy resin results in increasing the solid content of the modified emulsion
and a denser coating. This makes it less hollow in the modified coating. With the increase in the
epoxy content, more and more micropores are covered by epoxy resin, which increases the open
circuit potential of the coating. It also leads to an increase in the impedance of the modified coating,
as shown in Figure 5. With the increase in the epoxy content, the impedance value of the modified
coating showed an overall upward trend, ZG50 > ZG40 > ZG30 > ZG20 > ZG10 > ZN0, indicating that the
ability of the coating to resist corrosive media is enhanced. The reason is that the solid content of the
modified emulsion increased with the epoxy content and was higher than that of the silicate emulsion,
so the compactness and barrier effect of the coating was improved. The measured solid content of
the silicate emulsion was above 27%, while the solid content of the modified emulsion with epoxy
contents of 10%, 20%, 30%, 40%, and 50% was more than 28%, 33%, 37%, 40%, and 43%, respectively.
However, the impedance of the coating was only about 2.1 × 105 Ω·cm2, which indicates that the zinc
rich coating did not have good insulating performance, and had good conductivity characteristics, that
is to say, the zinc powder had good contact conductivity and acted as a sacrificial anode. As shown in
Figure 6, two time constants appeared immediately in the Bode and Nyquist diagrams of the zinc-rich
coatings after the immersion test for 0.5 h. It indicates that once the coating is immersed in the 3.5%
NaCl solution, the anodic dissolution reaction immediately occurs in zinc powder on the surface of
the zinc-rich coating, which plays the role of sacrificial anode to protect the steel. The radius of the
capacitive arc of the N0 coating in the Nyquist diagram was the smallest, which indicates that the
impedance of the coating was the lowest and that the barrier effect on the medium as the worst. The
radius of the capacitive arc and the impedance of the epoxy modified coating became larger with the
increase in epoxy content, which indicates that the barrier effect of the G50 coating was best on the
3.5% NaCl solution.
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Figure 4. Polarization test results of the zinc-rich coatings. (a) Tafel curves, (b) Open circuit potential.
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3.4.2. Corrosive Performance of Coatings with Immersion Time

The pictures of the six samples immersed in 3.5% NaCl solution for 336 h are shown in Figure 7.
Some red-brown rust spots began to appear on the surface of the silicate coating N0 and G10, while
there was no visible change on the surface of other coatings. A confocal laser scanning microscope
(CLSM) OLS4000 (OLYMPUS (China) Co. Ltd., Beijing, China) was used to observe the surface of
the coatings. The CLSM morphology of these coatings before immersion is as shown in Figure 8a, in
which the silver balls are zinc particles. The morphology of rust zone in coating N0 was showed in
Figure 8b, in which there are some white and red-brown corrosion products together. The rust zone in
coating G10 presented a similar morphology, as shown in Figure 8c, but with much less white and
brown corrosion products. As the introduction of epoxy resin increased the insulating effect of the
coating, the corrosion of the steel substrate was delayed with increasing epoxy content.
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there was no visible change on the surface of other coatings. A confocal laser scanning microscope 
(CLSM) OLS4000 (OLYMPUS (China) Co. Ltd., Beijing, China) was used to observe the surface of the 
coatings. The CLSM morphology of these coatings before immersion is as shown in Figure 8a, in 
which the silver balls are zinc particles. The morphology of rust zone in coating N0 was showed in 
Figure 8b, in which there are some white and red-brown corrosion products together. The rust zone 
in coating G10 presented a similar morphology, as shown in Figure 8c, but with much less white and 
brown corrosion products. As the introduction of epoxy resin increased the insulating effect of the 
coating, the corrosion of the steel substrate was delayed with increasing epoxy content. 
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The evolution of the self-corrosion potential of each coating sample with immersion time is shown
in Figure 9. For the unmodified silicate coating N0, its open circuit potential increased with immersion
time. However, the open circuit potential of the epoxy modified silicate coating decreased during 72
h, then increased continuously. The increase of the potential decreased with the increase in epoxy
content. This shows that epoxy modification can reduce, to a certain extent, the corrosion driving
force of the zinc rich coating. Similarly, as shown in Figure 10, the impedance of the unmodified
silicate coating N0 hardly decreased, however, the impedance of the epoxy modified coating obviously
decreased with the increase in immersion time. For example, the impedance of unmodified silicate
coating N0 decreased from 2.6 × 104 Ω·cm2 at the beginning of 0.5 h to 1.8 × 104 Ω·cm2 after 72 h
of immersion; the impedance of the G30 coating decreased from 9.8 × 104 Ω·cm2 at the beginning
of 0.5 h to 6.3 × 104 Ω·cm2 after 72 h of immersion. The impedance of the G50 coating decreased
from 2.1 × 105 Ω·cm2 at the beginning of 0.5 h to 105 Ω·cm2 after 72 h of immersion. The coating’s
impedance decreased rapidly at the beginning of immersion test and then slowed down. The extent of
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the decline increased with the increase in epoxy content. With the further prolongation of immersion
time, the impedance of the coating gradually decreased. After 168 h, the impedance of the G30 coating
was maintained at 4.8 × 104 Ω·cm2. The impedance of the G50 coating decreased continuously from
5.4 × 104 Ω·cm2 after 168 h of immersion to 3.7 × 104 Ω·cm2 after 240 h of immersion, and then
remained unchanged. This shows that the epoxy modification can increase the insulation effect of a
zinc rich coating on a corrosion medium to a certain extent.
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Bode and Nyquist diagrams of all coatings with different immersion time are shown in
Figures 11 and 12, respectively. From the beginning of the immersion test to 168 h, the Nyquist
diagram of each coating showed two time constants, the zinc powder in the coating started to react
with the NaCl solution and provided cathodic protection for the steel. The semicircle in the high
frequency domain represents the impedance and capacitance of the coating, and the semicircle in
the low frequency domain represents the impedance and capacitance of the zinc dissolution reaction.
The radius of the impedance arc for each coating decreased rapidly with the increase in immersion time.

3.4.3. Analysis of Electrochemical Parameters of Coating Equivalent Circuit

With the prolongation of immersion time, as shown in Figures 11 and 12, the impedance of
the coatings continued to decrease. There were two time constants in the Nyquist diagram at the
beginning of the 0.5 h immersion, one is related to the resistance (Rc) and capacitance (Qc) of the coating
appeared at the high frequency end; the other is related to the corrosion reaction resistance (Rp) and the
capacitance (Qdl) of the electric double layer on zinc, which appeared at the low frequency end, and n1

and n2 are constant phase angle indexes, which indicate the degree of dispersion effect [23]. In order
to better explain the corrosion process of the coating, this paper used the R (QR) (QR) (Figure 13)
equivalent circuit diagram to fit the electrochemical impedance data until the steel begins to corrode.
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Typical fitting results are shown in Figure 14. The results show that the equivalent circuit can reproduce
the measurement results and capacitive reactance characteristics of EIS. Figure 15 is the change curve
of coating resistance, coating capacitance, and product resistance and capacitance of the Zn powder
reaction with immersion time. Both Rc in Figure 15a and Rp in Figure 15b of the coating decreased
with the increase of immersion time, which showed that on one hand, the substrate steel was always at
the state of cathodic protection by zinc powder, and on the other hand, the corrosion products of the
zinc reaction failed to form a compact and continuous passivation layer and so would not block the
passage of the corrosive medium into the zinc rich coating during the immersion test.
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Figure 12. Nyquist diagram of the coatings immersed in 3.5% NaCl solution at different times. (a) N0, 
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Figure 13. Equivalent circuit for fitting the EIS data.
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According to [24], the double layer capacitance (Qdl) can reflect the degree of zinc reaction in the
coating and the coating’s capacitance (Qc) can reflect the water absorption of the coating. The larger the
degree of zinc reaction, the greater the double layer capacitance. Figure 15c shows that the degree of
zinc reaction increased during immersion. Compared with the N0 silicate coating, the epoxy modified
coatings had a lower Qdl (i.e., a lower zinc reaction) and Qdl of the epoxy modified coatings decreased
with epoxy content. The larger the water absorption of the coating, the greater the coating capacitance,
and the worse the protective performance of the coating. Figure 15d shows that the water absorption
of the coating increased during immersion. Compared with the N0 silicate coating, the epoxy modified
coatings had a lower Qc that decreased with epoxy content (i.e., epoxy modified coatings have a lower
water absorption and better insulating effect).

3.5. Anticorrosive Mechanism of Zinc Rich Coatings

The data from the static immersion and electrochemical tests showed that compared to the silicate
zinc-rich coating N0, epoxy-modified silicate coatings had good compactness, long cathodic protection
time to the steel, and good corrosion resistance.

Different coatings yielded a similar corrosion process, time of medium arriving at steel substrate,
and its corrosion was delayed with the increase in epoxy content. The corrosion failure process of the
N0 coating was as follows: during early immersion to 72 h, the corrosive medium quickly entered the
coating and reached the surface of the steel. The steel obtained mainly cathodic protection by the zinc
powders. With the increase of immersion time, the corrosion products of the zinc powder blocked
the medium into the channel. At this time, the cathodic protection and the insulating effect of the
coating corrosion products together protected the substrate effect [18]. The presence of an appropriate
amount of epoxy resin can delay the process of corrosive media penetrating the zinc rich coating and
to the interface between the coating and steel substrate, and prolong the cathodic protection time of
zinc-rich coatings. Compared with silicate zinc-rich coating, epoxy-modified silicate zinc-rich coatings
have better compactness, more significant insulating effects and cathodic protection effects, and better
protection against corrosive media.

4. Conclusions

In this paper, epoxy modified silicate anticorrosive coatings were prepared and their properties
were studied. The conclusions were summarized as follows:

• Epoxy modified silicate emulsions were successfully synthesized. The viscosity and solid content
of the modified emulsion increased with epoxy content.

• Compared with the silicate coating, epoxy modified silicate coatings had the best adhesion (grade 1),
lower hardness and higher impact resistance, were more compact and had better durability.

• The impedance of the silicate zinc-rich coating was 3 × 104 Ω·cm2 and increased with the
epoxy content in the modified silicate zinc-rich coating, so that the G50 coating was only about
2 × 105 Ω·cm2. Modification with epoxy did not harm the sacrificial anode effect of zinc powder
in the coating.

• Epoxy modified silicate zinc-rich coatings had a lower capacitance of the coating (i.e., lower water
absorption and better insulating effect than those of the silicate coatings). Thus, they can provide
longer lifetime protection than silicate ones.
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