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Abstract: Cr-Fe2B composite coatings were prepared on carbon steels by pack-boronizing followed
by electro brush-plating. The microstructure and properties of the coatings annealed at different
temperatures were studied. The coatings show a gradient structure composed of a Cr-layer and
a Fe2B-layer and have excellent thermal stability, and no new layers and/or transition layers are
formed in the coating during annealing up to 1000 ◦C. The Cr-layer has an amorphous structure and
is transformed into nanosized grains when the annealing temperature increases to 700 ◦C. As the
annealing temperature is further increased, the nanograins grow rapidly. The microcracks in the
Cr-layer increase sharply after annealing at 550 ◦C and then decrease significantly with any further
increase of the annealing temperature. The pre-deposited Fe2B-layer prevents the formation of
carbon-poor zones in the steel substrate during annealing. It is considered that high-temperature
(>700 ◦C) annealing helps to eliminate coating defects, increase the coating density and obtain better
wear resistance and corrosion resistance. Surprisingly, the as-plated and low temperature annealed
samples also show good wear resistance and corrosion resistance, which may be related to their
amorphous structure and nanocrystalline structure.
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1. Introduction

As an important part of power transmission and speed regulation, the performance of the
entire equipment is affected by gears [1–3]. When a gear is used in a complex environment such as
high speed, high temperature, and/or high corrosion, the gear surface is required to have multiple
functional characteristics such as high hardness, good wear resistance and good corrosion resistance.
Conventional methods such as carburizing, nitriding or surface hardening cannot produce this kind of
multifunctional gear. In order to strengthen service ability, many new surface modification techniques,
such as large current pulsed electron beam [4,5], physical or chemical vapor deposition (PVD and
CVD) [6,7], plasma-transferred arc welding [8], laser surface modification [9–12], shot peening [13,14],
magnetron sputtering [15], plasma sprayed [16], and rapid solidification technique [17], have been
adopted to improve material surface properties.
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Brush-plating technology is a rapid and effective surface modification technology to enhance or
repair the surface of mechanical parts [18]. This technology plays an important role in the field of
remanufacturing and has many unique advantages, such as flexible operation, low energy consumption,
strong applicability and no need for a plating bath [19,20]. The coating deposited by brush-plating has
unique corrosion resistance, abrasion resistance and hardness advantages [21–23]. The brush-plating
has been applied in many fields such as the study of superhydrophobic surfaces [24,25]. It has been
pointed out that like electroless or electroplated palladium films, it is possible to deposit stainless
steel palladium films with good corrosion resistance and adhesion strength by brush-plating [26].
Zhong et al. [27] claimed that the brush-plated nickel-tungsten alloy coating has a good friction
coefficient and corrosion resistance after annealing treatment. Hu et al. [8] found that the Cr-coating
deposited by brush-plating has high hardness and good wear resistance after annealing.

In our previous research, it was found that when annealing the brush-plated Cr-coating on the
carbon steel, carbon-poor zone will appear in the sub-surface of the steel substrate, which will degrade
the comprehensive performance of the Cr-coating [8]. In this study, a Fe2B-layer was pre-deposited on
the carbon steel as the middle layer, and the brush-plated Cr-layer was deposited as the outermost layer.
The changes in microstructure and properties were studied as the annealing temperature increased.

2. Experimental

2.1. Materials and Methods

Commercial AISI 5140 steel with a composition of Fe-0.40C-0.23Si-0.7Mn-0.8Cr-0.03Ni (wt. %)
was selected as the raw material for the experiment. The raw material was cut into cuboid specimens
with dimensions of 25 mm × 20 mm × 6 mm. Firstly, a Fe2B-coating was prepared on the specimens by
pack-boronizing. For the pack-boronizing, the samples were ground and polished and then packaged
in a ceramic can filled with packed powders mingled by FeB (50 wt. %) as the feedstock, KBF4

(5 wt. %) as the activator, La2O3 (5 wt. %) as the modifier and Al2O3 (40 wt. %) as the inert filler. All
powders have a particle size of less than 75 microns. Then, the ceramic can was heated in a box-type
furnace at 950 ◦C for 3 h and then naturally cooled in a furnace. Secondly, electro brush-plating
(MBPK-50A Wuhan Research Institute of Materials Protection, Wuhan, China) was employed to deposit
a Cr-coating on the surface of the preboronized samples. Prior to brush-plating, the preboronized
samples were cleaned and slightly polished on 800-grit SiC paper. Brush-plating was performed at
room temperature. The treatment procedures and parameters are as follows: electrical cleaning (+12 V,
60 s), strong activation (−10 V, 60 s), weak activation (−12 V, 30 s), and final plating (+10 V, 10 min).
After brush-plating, the samples were washed with a large amount of water and alcohol. Then, the
as-plated samples were placed into a box-type furnace annealing treatment for 20 min at 550, 700, 850,
and 1000 ◦C (denoted as A550, A700, A850, and A1000 respectively). After annealing, all samples were
naturally cooled to room temperature in the furnace.

2.2. Characterization

Backscattered electron imaging (BSEI), secondary electron imaging (SEI) and energy dispersive
spectrometry (EDS, AZtech Max2, Oxford Instruments, London, UK) installed in a field emission gun
scanning electron microscope (FEG-SEM, Zeiss Sigma HD, Zeiss, Dresden, Germany) were applied to
characterized the microstructure. Prior to microstructure examinations, the samples were mechanically
polished down to a 3000-grit SiC paper and then electropolished with an electrolyte of perchloric
acid (10%) and ethanol (90%) at 30 V and −30 ◦C. The Vickers hardness test was performed on a
microhardness tester (HVS-1000, Shanghai CSOIF Co., Ltd., Shanghai, China) with a load of 200 g
and a loading time of 10 s. Each hardness value is an average of at least 5 indentations at the same
depth from the sample surface. Friction and wear tests were carried out on a reciprocating tribometer
(UMT TriboLab, Bruker, Billerica, MA, USA), with a 6 mm steel balls (AISI 52100) as friction pairs.
The parameters were as follows: load 8 N, duration time 20 min, frequency 5 Hz, and wear scar
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length 10 mm. For each state of the sample, at least three friction and wear experiments were done to
verify the repeatability of the experimental results. The potential dynamic polarization curves were
measured by a Reference 3000 instrument (Gamry, Warminster, PA, USA) in 3.5% NaCl solution, and
the corrosion behavior of annealed samples and matrix was evaluated. The dynamic potential range
was −1 to 2 V, and the scanning speed was 2 mV/s.

3. Results and Discussions

3.1. Microstructure before Annealing

Figure 1 shows the microstructure observed from the cross-sectional view of the sample after
pack-preboronizing treatment. As can be seen from Figure 1a, a saw-toothed coating is clearly visible,
which is reported as the typical morphology of the Fe2B-coating [28]. Each saw tooth is actually a
columnar grain of Fe2B, as shown in Figure 1b. The average thickness of the Fe2B-coating is measured
as about 110 µm according to the measurement method in [28]. However, there is a porous-zone layer
containing a lot of pores and cracks in the outermost layer of the Fe2B-coating. The porous-zone layer is
relatively loose and poor in density, which may reduce the interfacial adhesion to the subsequent plated
Cr layer. Therefore, prior to brush-plating treatment, the porous-zone layer was ground away with SiC
paper. After grounding, the thickness of the Fe2B-coating is reduced to about 75 µm. Additionally,
the substrate has a typical hypoeutectoid steel structure consisting of a mixture of ferrite grains and
pearlite colonies, as shown in Figure 1b.
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Figure 1. Microstructure observed from the cross-sectional views of the sample after pack-preboronizing
treatment: (a) low-magnification image; (b) high-magnification image.

Figure 2 shows the microstructure of the sample after brush-plating treatment. A gradient coating
can be clearly identified from the cross-sectional view, as shown in Figure 2a. The high-magnification
BSEI image (Figure 2b) shows that the gradient coating consists of two parts from outside to inside:
Cr-layer and Fe2B-layer. The average thickness of the Cr-layer is determined as approximately 18 µm.
A highly-magnified image shows that the Cr-layer consists of equiaxed nodules rather than grains
(Figure 2c,f). The average diameter of the equiaxed nodules is measured as 16 µm. It has been reported
that the nodule size is depended on the continuous supply of solution, appropriate contact pressure,
and the movement speed of the anode of the brush-plating processing [29]. Additionally, as shown
by the black arrows in Figure 2a,b, micro-cracks are clearly observed within the Cr-layer. It has
been pointed out that the generation of micro-cracks in the brush-plated coatings is closely related to
hydrogen emission and internal residual stress during the electro brush-plating deposition [8,18,30].
Obviously, the presence of micro-cracks will weaken the adhesion between Cr-layer and Fe2B-layer,
deteriorating the properties of the coating [8]. After brush-plating, the morphology and thickness of
the Fe2B-layer do not change.
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white box in (b); (f) top view showing equiaxed nodules. GB represents grain boundary.

Generally, FeB phase may form during the boronization process, and it is easy to distinguish
the FeB phase from the Fe2B phase in the SEM images [31–35]. However, after carefully examining
the microstructure of the coating, no FeB was found in this study. According to the Fe-B equilibrium
diagram, both FeB and Fe2B can be formed during cooling. It has been pointed out that FeB (boron-rich
phase) is formed on the surface, while Fe2B (iron-rich phase) is located on the subsurface layer and
adjacent to the steel substrate material because of the boron concentration decreases from the surface
towards the interior [32]. In this study, prior to brush-plating, the out layer (about 75 µm) was ground
away with sandpaper due to the existence of the porous-zone layer. Therefore, the FeB layer may be
also ground away during this process. Additionally, there are many micron-scale rod-shaped Fe2B
(see red ellipses in Figure 2d) observed in the Fe2B-layer. The lamellar pearlite and grained ferrite is
clearly visible in the substrate, as shown in Figure 2e.

3.2. Microstructure Evolution during Annealing

Figure 3 shows the cross-sectional BSEI images of the coatings annealed at different temperatures.
The gradient structure coatings composed of Cr-layer and Fe2B-layer show excellent thermal stability
during annealing up to 1000 ◦C, and no new layers and/or transition layers are observed in the
coatings, as shown in Figure 3a,d,g,j. The difference is that the microstructure and morphology of
the Fe2B-layer and Cr-layer vary greatly with the increase of the annealing temperature. For the
Fe2B-layer, the rod-shaped Fe2B particles formed during pack-preboronizing are still visible at low
temperature annealing (see the dark arrows in Figure 3b,e), but transformed into spherical shapes at
high temperature annealing (see the bright arrows in Figure 3h,k). This is because the growth and
coarsening of the second-phase particles under high-temperature annealing are spontaneous processes,
thereby reducing the total free energy of the system [36]. The transition between Fe2B particles occurs
between 550 and 700 ◦C.

Figure 3c shows that the Cr-coating shows a mixed structure of granular amorphous and nano-sized
grains (see white oval) after annealing at 550 ◦C, which indicates that the equiaxed nodule structure is
partially crystallized under low temperature annealing. When the annealing temperature is increased
to 700 ◦C, it has been completely crystallized, and nano-sized grains with an average diameter of
approximately 210 nm can be clearly observed in the Cr-layer, as shown in Figure 3f. Compared to
the A700 sample, the grain size of the A850 sample grows slightly into 300 nm, as shown in Figure 3i.
As the temperature rises to 1000 ◦C, the grain size rapidly coarsens to 4 µm (see Figure 3l).
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Figure 3. BSEI images showing microstructure of the composite coating with annealing temperature:
(a–c) A550; (d–f) A700; (g–i) A850; (j–l) A1000. Figures (b, e, h and k) are the bonding regions of Fe2B
layer and matrix corresponding to (a, d, g and j), respectively. Figures (c, f, i and l) are the corresponding
enlarged images of (a, d, g and j), respectively. The blue arrows indicate microcracks.

Additionally, the number of microcracks within the Cr-layer also changes remarkably with increase
annealing temperature. As shown in Figure 3a, the cracks penetrate almost the entire cross section of
the Cr-coating. Compared to the as-plated state, microcracks within the Cr-layer increases sharply after
annealing at 550 ◦C. The increase of microcracks is due to the collapse of the voids and the grain growth
of the spherical Cr particles during the annealing at low-temperature [8]. When the temperature
exceeds 550 ◦C, the cracks become shorter and shorter, and no distinct cracks are observed in the A850
and A1000 samples. This is because, due to the high surface energy, the microcracks aggregate into
larger pores or migrate to the surface of the material and disappear after high-temperature annealing [8].
After annealing at different temperatures, the substrate does not change significantly, and still exhibits a
typical hypoeutectoid steel structure. Moreover, it has been reported that during thermal chromizing or
annealing at high temperature, the C atoms in the substrate can be dragged into the Cr-coating to form
chrome carbide, resulting in the formation of carbon-poor zone at the subsurface of the substrate [37].
In this study, no carbon-poor zones are observed in the substrate. This is because that the pre-deposited
Fe2B-layer with high thermal stability prevents the reaction between C and Cr during annealing.

BSEI images and EDS line scans of various samples are shown in Figure 4. It shows that both the
Fe2B-layer and Cr-coating exhibit good thermal stability during annealing. After brush-plating, there
is no sign of diffusion between the Cr-coating and the Fe2B-layer (see line L1 in Figure 4a). And when
the annealing temperature is increased to 700 ◦C, the diffusion between the Cr-coating and the Fe2B
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layer is still not obvious (see L2 in Figure 4b). When the annealing temperature rises to 1000 ◦C, the
distribution of the Fe and Cr elements vary slightly at the interface (see L3 in Figure 4c), indicating that
the interdiffusion occurs between the Cr-coating and Fe2B layer, but no significant new compounds
is formed at the interface. As the annealing temperature increases, the diffusion between Fe and
Cr elements becomes more and more obvious, and the metallurgical bonding between the coatings
becomes stronger and stronger.
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Figure 4. EDS results: Figure (a), (b)and (c)showing the cross sections of the combination of Cr-coating
and Fe2B layer of the as-plated, A700 and A1000, respectively.

Figure 5 illustrates the microstructure evolution of the Cr-Fe2B dual-phase coating during
annealing. After brush-plating, a Cr-layer consisting of spherical particles and some microcracks is
formed on the surface of the pre-deposited Fe2B-layer, as shown in Figure 5a. When the annealing
temperature is increased to 700 ◦C, the spherical particles become nanosized grains, and the number of
microcracks is greatly reduced, as shown in Figure 5b.
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As the annealing temperature continues to increase, the nanosized structure becomes unstable and
coarsens rapidly. Meanwhile, the microcracks are reduced completely. In short, for the brush-plated
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Cr-layer, during the annealing process, in order to reduce the free energy of the system, the content of
boundaries/cracks with high surface energy will be reduced, resulting in the formation and coarsening
of grains and the reduction of microcracks [8]. Compared to the Cr-layer, the saw-toothed Fe2B-layer
is almost unchanged during annealing due to its excellent thermal stability [38,39]. However, under
the driving force of reducing the surface energy, the fine rod-like Fe2B phase located at the interface
of the saw-toothed Fe2B grain and the substrate is transformed into granular Fe2B particles after
high-temperature annealing.

3.3. Microhardness Evolution after Annealing

Figure 6 shows the microhardness distribution along the depth direction after annealing at various
temperatures. For the as-plated sample, the subsurface-layer has the highest hardness and gradually
decreases in the depth direction. According to the microstructural observations (Figures 1–3), the
thickness of Cr-coating and Fe2B-layer is about 18 and 75 µm, respectively. Therefore, the subsurface
layer with the highest hardness is the location of Fe2B phase. The Cr layer (0–18 µm) has the highest
hardness before annealing due to the spherical Cr particles with nano size. This is because that although
the Cr-coating has low density and many micro-cracks before annealing, the nano-sized spherical Cr
particles constituting the coating are considered to be amorphous, which makes the Cr-layer present
the highest hardness. When the annealing temperature is 550 ◦C, the hardness of the Cr-coating is very
low. It is mainly attributable to the crystallization of amorphous spherical Cr particles and the increase
of micro-cracks during low-temperature (≤ 700 ◦C) annealing [8]. When the temperature exceeds
700 ◦C, the hardness will increase as the annealing temperature increases. The hardness after 1000 ◦C
annealing is very close to that of the as-plated sample, owing to the solid-solution strengthening of
the Fe and the reduction of micro-cracks within the Cr-layer. For the Fe2B-layer (18–93 µm), as the
annealing temperature increases, the hardness decreases gradually. This is because under the action of
heat, the Fe2B-layer, the Cr-layer and the steel substrate diffuse with each other, and the Fe2B-layer is
partially decomposed, resulting in the decrease in hardness. In addition, for the steel substrate, due to
the short annealing time, the microstructure does not change much, so the hardness of the substrate
away from the coating does not change significantly with increasing annealing temperature. Compared
with the brush annealing process in which there is no intermediate layer in the references [8], the
validity of the Fe2B-layer in blocking the formation of carbon-poor zones is verified by the hardness
data in this paper.
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3.4. Friction and Wear Behavior

The friction coefficients plotted as a function of friction time for different samples are shown
in Figure 7. The friction coefficient of the as-plated and A1000 is the smallest, followed by A850,
and followed by A550, A700, and the uncoated samples, as shown in Figure 7a. There is a similar
phenomenon in the mass loss (see Figure 7b). Generally, materials with a small friction coefficient have
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a small mass low of wear, while materials with a large friction coefficient have a large mass loss. The
smaller the friction coefficient and the mass loss, the better the abrasion resistance, which indicates
that the as-plated and A1000 samples have better wear properties compared to other samples. This is
because the outermost Cr-layer of the as-plated and A1000 samples have higher hardness than other
samples, and the wear resistance of the material depends largely on the hardness [40]. Figure 8 shows
the wear morphology of different samples. Compared to the uncoated steel (Figure 8a), the as-plated
(Figure 8b) and the annealed samples (Figure 8c–f) show narrower scars of wear. The width of the
wear scar of the as-plated and A1000 samples is the narrowest, corresponding to better wear resistance.
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It should be noted that generally annealing treatment can enhance the metallurgical bonding
strength between the coating and substrate and improve the performance of the coating. However, in
this study, the as-plated sample shows better wear resistance than the annealed samples. This may be
because the load used in the friction and wear test is too small to reflect the influence of the bonding
strength of the interface between the coating and the substrate on the wear resistance. The as-plated
sample has good wear resistance owing to the high hardness of the amorphous structure of the Cr-layer
in the as-plated sample.
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3.5. Corrosion Behavior

Figure 9 shows the potentiodynamic polarisation curves of various samples. All the polarisation
data were measured by Tafel extrapolation method, and the corrosion rate (CR) was calculated by
Faraday’s equation [28]:

CR(mm/y) =
3.27× 10−3

× EW × Icorr

ρ
(1)

where EW is equivalent weight (28 g), Icorr is corrosion current density (µA/cm2), ρ is density (g/cm3).
The obtained data are shown in Table 1. Compared to the uncoated steel, the Cr-Fe2B composite
coating can greatly reduce the corrosion rate of the steel. The corrosion current density and corrosion
rate of the as-plated sample are the lowest. This may be due to the amorphous structure of the Cr-layer
after brush-plating. There are no crystalline defects in the amorphous coating, such as dislocations,
grain boundaries, or second-phase precipitations which act as galvanic couples and sites for the onset
of corrosion [41]. After annealing, the A550 sample has the lowest corrosion current density and
corrosion rate compared to the other annealed samples. The better of corrosion resistance of the A550
sample can be attributed to the rapid formation of stable and dense passive film on Cr-layer consisting
of nanocrystallized grains. It has been pointed out that the nanocrystallized grain surface behaves
higher impedance, more positive corrosion potential and lower corrosion current density as compared
with the coarse grain surface [42]. As the annealing temperature further increase, the corrosion rate
first increases and then decreases. This is because when the annealing temperature reaches 700 ◦C,
the grains of the Cr-coating are severely coarsened compared to the A550 sample and the number of
micro-cracks are greatly increased, thereby accelerating corrosion. Because, the micro-cracks can act as
a corrosion channel between the coating and the substrate, resulting in rapid corrosion of the coating
and substrate [28]. When the temperature is increased to 1000 ◦C, the micro-cracks in the Cr-coating
are reduced, resulting in improving the corrosion resistance again.
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Table 1. Corrosion potential (Ecorr), corrosion current density (Icorr) and average corrosion rate (CR)
of samples.

Samples Ecorr(mV) Icorr (µA/cm2) CR (mm/y)

A1000 −593 19.3 0.225
A850 −753 22.4 0.261
A700 −1040 27.6 0.322
A550 −898 3.10 0.036

As-plated −820 2.31 0.027
Uncoated −809 53.2 0.621
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4. Conclusions

In this study, Cr-Fe2B composite coating was deposited on the surface of the AISI 5140 steel by
pack-boronizing followed by electro brush-plating. The microstructure and properties of the coating
annealed at different temperatures were investigated. The following conclusions can be drawn:

• The brush-plated Cr-layer has an amorphous structure which is very stable under low temperature
(≤550 ◦C) annealing. As the annealing temperature increases to 700 ◦C, the amorphous structure
crystallizes into nanosized grains, and the nanocrystallized grains quickly coarsen into coarse
grains with further increases in the annealing temperature.

• The microcracks in the Cr-layer increase sharply after annealing at 550 ◦C and then decrease
significantly with the further increase of the annealing temperature.

• During the annealing process, the rod-shaped Fe2B particles are gradually transformed into
granular Fe2B ones. The pre-deposited Fe2B-layer prevents the formation of carbon-poor zones
during annealing. The pre-deposited Fe2B-layer with high thermal stability prevents the reaction
between C and Cr during annealing, so that even after high-temperature annealing, no carbon-poor
zones are formed in the steel substrate.

• Annealing treatment can strengthen the metallurgical bonding strength and improve the bonding
strength of the coating. It is considered that high-temperature (> 700 ◦C) annealing helps to
eliminate coating defects and increase coating density and obtain better wear resistance and
corrosion resistance.
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31. Türkmen, İ.; Yalamaç, E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3

during the powder-pack boriding method. J. Alloys Compd. 2018, 744, 658–666. [CrossRef]

http://dx.doi.org/10.1016/j.surfcoat.2019.125194
http://dx.doi.org/10.1016/S1002-0721(10)60586-8
http://dx.doi.org/10.1016/j.apsusc.2019.143611
http://dx.doi.org/10.1016/j.apsusc.2018.06.060
http://dx.doi.org/10.1016/j.apsusc.2019.06.042
http://dx.doi.org/10.1016/j.apsusc.2019.144711
http://dx.doi.org/10.1016/j.electacta.2013.10.009
http://dx.doi.org/10.1016/j.rinp.2019.102708
http://dx.doi.org/10.1016/j.ceramint.2014.06.023
http://dx.doi.org/10.1016/S1002-0721(16)60033-9
http://dx.doi.org/10.1016/j.surfcoat.2018.05.034
http://dx.doi.org/10.1016/j.matlet.2005.11.098
http://dx.doi.org/10.1016/j.surfcoat.2018.06.075
http://dx.doi.org/10.1016/j.surfcoat.2012.01.027
http://dx.doi.org/10.1016/j.jallcom.2019.06.110
http://dx.doi.org/10.1016/j.apsusc.2013.10.030
http://dx.doi.org/10.1016/j.apsusc.2015.08.045
http://dx.doi.org/10.1016/S1003-6326(11)61146-1
http://dx.doi.org/10.1016/j.surfcoat.2013.12.059
http://dx.doi.org/10.3390/coatings9090529
http://dx.doi.org/10.4028/www.scientific.net/JNanoR.41.87
http://dx.doi.org/10.1016/j.apsusc.2011.07.045
http://dx.doi.org/10.1016/j.jallcom.2018.02.118


Coatings 2020, 10, 519 12 of 12

32. Kulka, M.; Makuch, N.; Piasecki, A. Nanomechanical characterization and fracture toughness of FeB and
Fe2B iron borides produced by gas boriding of Armco iron. Surf. Coat. Technol. 2017, 325, 515–532. [CrossRef]

33. Kartal, G.; Timur, S.; Sista, V.; Eryilmaz, O.L.; Erdemir, A. The growth of single Fe2B phase on low carbon
steel via phase homogenization in electrochemical boriding (PHEB). Surf. Coat. Technol. 2011, 206, 2005–2011.
[CrossRef]

34. Keddam, M.; Kulka, M.; Makuch, N.; Pertek, A.; Małdziński, L.A. Kinetic model for estimating the boron
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