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Abstract: A major disadvantage of conventional food packaging materials is the difficulty in disposal
and recycling, due to their high stability to environmental and thermal stress. The trend now is to
develop new eco-friendly food packaging that can substitute fossil fuel derived materials. Cellulose,
the main constituent of paper-based food packages, is a favorable starting material for such purpose.
In this study we present a new method to obtain bioactive paper based materials suitable for food
packaging applications. By combining eco-friendly activation processes (cold plasma or gamma
irradiation) and bioactive plant oils (clove essential oil and rosehip seeds vegetal oil) for modification
of kraft paper, new materials with antioxidant and antibacterial activity were obtained. The oil-
loaded bioactive paper based materials presented increased hydrophobicity (from 97◦ contact angle
in the case of kraft paper to 115◦ for oil-loaded sample) and decreased water adsorption (a one-
quarter decrease). Due to various interactions with the functional groups of plant oils, the modified
kraft paper presents different antibacterial and antioxidant properties. Essential clove oil imprinted
higher antioxidant activity (owing to the high content in eugenol and eugenol acetate phenolic
compounds) and was more efficient in reducing the bacterial growth on fresh beef meat and on fresh
curd cheese. The cold pressed rosehip seeds oil acted as aslightly better antibacterial agent against
Listeria monocytogenes (+), Salmonella enteritidis (−) and Escherichia coli (−) bacterial strains. Thus,
the newly developed bioactive paper could be used as effective packaging material that can help
preserving food quality for longer time.

Keywords: active food packaging; vegetal oils; radiation-induced surface activation; food safety/testing;
kraft paper

1. Introduction

Nowadays, the consumers manifest an increasing interest towards food quality and
safety, with rejection attitude against synthetic additives. However, preservation methods
are necessary to reduce food spoilage. In this context, usage of natural additives and inclu-
sion of preservatives into packages instead of adding them directly to food are approaches
of great interest. These leaded to the concept of active food packaging [1]. The main
function of active food packaging is to keep the content clean and sterile from production
to transport and storage, maintaining at the same time the quality and sensorial properties.
Therefore, various kinds of packaging materials are available or are developed in order
to protect the food products, and their selection depends on the type of the foodstuff [2].
Various microorganisms can be naturally present on food or can appear by contamination.
Among them, spoilage microorganisms lead to depreciation, thus limiting the shelf life,
while pathogenic microorganisms have no alteration effect on food but they are harmful
to humans, their presence on food limiting the safe life [3]. In order to develop active
food packaging, various natural additives (antimicrobials, antioxidants, coloring agents or
sweeteners), derived from plants, animals or microorganisms are used [4,5]. Introducing
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antimicrobial agents in packaging materials can inhibit microbial growth, prolonging the
time in which food maintains its properties [6]. In food packaging field, besides the efforts
made in creating supplementary active functions, a strong emphasis is placed also on the
need to develop new eco-friendly materials in order to replace petroleum-based polymers
and aluminum layers. In this sense, the usage of polysaccharide-based materials represents
a promising approach. In general, paper and cellulose-based materials are extensively
used in wrapping and food packaging, offering the advantage of natural origin and facile
biodegradation or recyclability [7,8].

Among the natural additives vegetal oils have various suitable properties to be applied
in food related applications. Essential oils are lipophilic liquids extracted from various
parts of plants; they have complex composition that gives antioxidant and antimicrobial
properties. In the scientific literature is largely presented their antimicrobial activity against
various microorganisms. Because of the hydrophobicity of their components, essential
oils pass easily through bacterial cell membrane, and affect the mechanisms of molecular
transport leading to the inactivation of cells [9,10]. Clove essential oil proved efficient
antimicrobial activity against numerous microorganisms such as gram positive and gram
negative bacteria (e.g., Staphylococcus, Streptococcus, Listeria, Escherichia coli, Salmonella,
Pseudomonas aeruginosa) and fungi (e.g., Aspergillus, Penicillium) [11,12]. Tests on the oxygen
radical absorption capacity (ORAC) showed a very strong antioxidant action for the
essential oil from clove, of 3–10 times higher than from other essential oils [13].

Plant oils extracted mainly from seeds but also from other parts of plants, have many
benefits in different applications such as nutrition [14,15], medicine [16,17], cosmetics [18],
and bio-fuels [19,20]. Seeds oils consists mainly of saturated and unsaturated fatty acids
that induce their lipophilic character, while minor compounds such as phenolic derivatives
and flavonoids impart the antioxidant and antimicrobial activity [21,22]. The antimicrobial
mechanism of plant oils on gram negative bacteria is based mainly on disintegration of
the cells external membrane, followed by the release of lipopolysaccharides and decreased
permeability of cytoplasmic membrane to adenosine triphosphate, which represent the vital
energy-carrying molecule in cells of all living organisms [23,24]. The oil obtained from seeds
of wild roses (Rosa canina L.), commonly known as rosehip oil, is rich in many beneficial
compounds, mainly unsaturated fatty acids (content > 90%), and phenolic derivatives,
tocopherols, carotenoids, etc. The composition of the oil determines its bioactive properties,
namely strong antioxidant potential and fine antimicrobial activity [22,25]. Many materials
shows fine bulk properties but have limitations in terms of lack of functionality. In this
context, the methods that allow only surface modification represent an attractive way to
impart functionality to a material, otherwise inert. These methods are divided into two
categories, namely physical and chemical. First category includes gas plasma and gamma
radiation technologies, and is usually preferred in various applications [26]. The main
advantages of these methods are represented by their eco-friendly toxic and corrosive
solvents, and safety [27], and supplementary for plasma the fact that it acts only on the
surface’s outermost layers [28–30]. The mechanism of action of ionizing radiation on
polymeric materials involves generation of radicals that may react with each other, with
the atmospheric oxygen or with other compounds, and which may lead to polymerization,
cross-linking, grafting or degradation processes [31]. Several factors, such as the chemical
structure of the polymer, the radiation dose and surrounding medium of irradiation
influence the type of the modification that occurs in material [32]. In general, low doses of
gamma radiation (2.5–25 kGy) is applied for sterilization and preservation purposes on
food [33,34].

In our previous researches physical modification approaches, namely plasma or γ-
irradiation, were addressed to efficiently functionalize various polymeric substrates such
as cellulose/chitin mixed fibers [30], poly(lactic acid) [35,36] to allow immobilization of
different bioactive agents (e.g., eugenol, clove essential oil, grape seeds oil, rosehip seeds
oil, argan oil, etc.).
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Taking into considerations the above mentioned aspects, the goal of this research
was to obtain new paper based eco-friendly materials, with antibacterial and antioxidant
properties induced by clove essential oil or rosehip vegetal oil, suitable for food packaging.
The novelty of this work consists in comparative discussions on two surface activation
techniques (cold plasma treatment and gamma irradiation) and two bioactive plant oils
of different nature, one essential oil and one cold-pressed oil, (clove essential oil and
rosehip seeds vegetal oil) and on the antimicrobial effects that they induce to kraft paper,
both in vitro, on Listeria monocytogenes (+), Salmonella enteritidis (−) and Escherichia coli (−)
bacterial strains, and in vivo, on fresh curd cheese and beef meat. Moreover, in this work
we evaluated the obtained biocomposites for changes in the structural and morphological
properties, hydrophobicity, water adsorption, antioxidant and microbiological activity. The
investigations proved that the new obtained bio-functionalized materials can help control
foodborne pathogens in foodstuffs, leading to extended shelf-life, thus being suitable for
food packaging applications.

2. Materials and Methods
2.1. Materials

Commercially available unbleached kraft paper (P), with 0.64 g/cm3 density and
100 microns thickness, appropriate for food packaging, was acquired from Adi Center SRL,
Iasi, Romania. Two activation and coupling agents namely 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were purchased
from Sigma-Aldrich (Steinheim, Germany). Methanol and chloroform used as solvents
were of analytical grade and were purchased from Chemical Company, Iasi, Romania.

Clove essential oil (CEO), acquired from Fares, Orastie, Romania, and rosehip seeds
cold pressed vegetal oil (RVO), acquired from S.C. Herbavit S.R.L, Iasi, Romania, were
chosen for functionalization of kraft paper. Selection was based on their high content of
antioxidant compounds, as presented in our previous works [37,38].

2.2. Kraft Paper Functionalization

Surface activation of commercial kraft paper was achieved by two methods, namely
plasma treatment and γ-irradiation.

A mild high-frequency cold plasma (CPA) was obtained at 1.3 MHz under 0.5 mbar
vacuum and 30 W discharge power, using air as discharge gas. Samples were placed
between two 18 cm × 21 cm rectangular electrodes placed at 6.5 cm apart, and exposed for
15 min. A more detailed description of the cold-plasma experimental set-up can be found
in our previous work [29].

Activation by γ-irradiation was performed using an M-38 GAMMATOR (Best Ther-
atronics, Ottawa, ON, Canada), equipped with a 137Cs source, in air, at room tempera-
ture, under a 0.4 kGy/h dose rate, achieving a 20 kGy dose of γ-irradiation of the ma-
terial. Samples were covered with aluminum foil and were continuously rotated for
homogenous irradiation.

The statistical distributed active centers, formed on the surface of the materials after
plasma treatment or γ-irradiation, have high reactivity for creation of new bonds [39].
Hence, they are converted by air exposure into reactive functional groups able to chemically
react with the bioactive compounds used for functionalization.

After activation, the kraft paper was immersed in 10 wt.% methanol solution of clove
essential oil or in 10 wt.% chloroform solution of rosehip seeds vegetal oil and left under
mechanic stirring for 60 min. The solutions of plant oils also contained a mix of the
two chemical coupling agents, namely EDC and NHS, in order to increase the activation
efficiency and to enhance immobilization onto paper substrate of the bioactive principles
through chemical bonds.

The obtained materials were dried at 60 ◦C, and then washed with methanol or
chloroform to remove the physically adsorbed, unreacted compounds from the plant oils.
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Final drying was performed at 40 ◦C in a vacuum oven before further analysis. In Table 1
are listed the samples codes and their descriptions.

Table 1. Codes and description of studied samples based on kraft paper (P).

Sample Code Activation Procedure Type of Oil

P - -
P/CPA/CEO cold air plasma clove essential oil
P/CPA/RVO cold air plasma rosehip seeds vegetal oil
P/20 kGy/CEO 20 kGy γ-irradiation clove essential oil
P/20 kGy/RVO 20 kGy γ-irradiation rosehip seeds vegetal oil

2.3. Investigation Methods
2.3.1. FT-IR Spectroscopy

The Fourier Transform Infrared spectra were recorded in Attenuated Total Reflection
mode (ATR-FTIR) at 4 cm−1 resolution with 64 scans, using a VERTEX 70 spectrometer
(Bruker Optics, Ettlingen, Germany), in absorbance mode. Each spectrum represents the
average of three recordings.

2.3.2. Scanning Electron Microscopy

Morphology evaluations were performed with a scanning electron microscope equipped
with energy dispersive X-ray modulus (SEM/– EDAX) model QUANTA 200 (FEI Company,
OR, USA), without any further treatments, at 1000 X magnification. EDAX results are
expressed as the average of three measurements, for different sample zones, with their
corresponding standard deviation.

2.3.3. Contact Angle Measurements

Water contact angle measurements were used to determine how plant oils affected
the hydrophobicity of paper surface. If the contact angle of water is larger than 90◦ the
surface is considered hydrophobic, while for contact angles smaller than 90◦ the surfaces
are categorized as hydrophilic. Complete wettability is observed when contact angle is 0◦.
Thus, a determination of the contact angle is very important and has practical application
in the food industry [40].The wettability of surfaces was determined by static contact
angle measurements performed on a CAM-200 goniometer from (KSV Instruments Ltd,
Helsinki, Finland). The water contact angle was determined by the sessile drop method, at
room temperature and controlled humidity, within 5 s after placing 2 µL drops of liquid
on sample’s surface. At least 10 measurements were performed on a sample and results
from three different samples were considered for statistical determination of the final
average value.

2.3.4. Dynamic Water Vapors Sorption Analysis

The water vapors sorption capacity was measured in dynamic regime at 25 ◦C, using
an IGAsorp equipment (Hiden Analytical, Warrington, UK). The vapor pressure was
increased and decreased in 10% humidity steps, between 0 and 90% relative humidity
range for sorption and desorption, respectively, after equilibrium time between 10 and
20 min established based on preliminary tests using as criterion the mass variation of less
than 1% in 90 s.

2.3.5. DPPH Radical Scavenging Assay

The radical scavenging activity (RSA) of modified kraft paper was evaluated using
2,2-diphenyl-1-picrylhydrazyl (DPPH). DPPH is a stable free radical with a violet color
that is reduced under the action of proton donating compounds, to a light yellow color
and this change can be monitored at 517 nm. Briefly, known weighted amounts of samples
were placed into 10 mL volumes of methanol and shaken overnight. Known volumes of
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the resulted solution were mixed with 6 mL 0.05 mM DPPH in methanol and left in dark
for 30 min in closed vials before recording the UV absorbance.

Equation (1) was used to calculate the radical scavenging activity:

%RSA = 100 ×
(

1 −
Asample

Acontrol

)
(1)

where: Asample represents the absorbance of the sample solution and Acontrol represents the
absorbance of DPPH solution with unmodified sample.

The IC50 value is defined as the concentration at which %RSA reached the 50%.
Methanolic extracts with various concentrations were prepared as presented above and
linear regression analysis of the corresponding %RSA values was used to calculate the IC50.

2.3.6. In Vitro Antibacterial Activity

Antibacterial tests were performed on three different American Type Culture Collec-
tion (ATCC, Rockville, MD, USA) bacterial strains, namely Escherichia coli-ATCC 25922 and
Salmonella enteritidis-ATCC 14028 (gram negative) and Listeria monocytogenes-ATCC 7644
(gram positive), according to specific standard methods. The procedure mainly involves
sterilization (for 20 min in autoclave at 110 ◦C and 0.5 bars) of the samples, contamination
by seeding 0.1 mL bacterial cultures using sterile swabs on samples surface, inoculation and
incubation for 24 and 48 h at 37 ◦C, followed by colony counting. In the case of E. coli iden-
tification was performed by coloration with 5-bromo-4-chloro-3-indolyl-β-D-glucuronide.
Listeria monocytogenes was identified using the β-haemolysis test, while Salmonella was
counted by specific plate count Xylose Lysine Deoxycholate agar (XLD agar) method.

2.3.7. In Vivo Microbiological Assessment on Food

We aim to determine the effect of kraft paper modified with plant oils packaging
materials against the unmodified paper, the microorganism grow on fresh food, in usual
storage conditions. Specific microbiological examinations follow the changes occurred
at 24 and 48 h after food contact with tested papers. The modified papers with proved
antibacterial properties were tested in aseptic laboratory conditions on a traditional dairy
product (fresh curd cheese) and on fresh beef meat (originating from one local slaughter
house delivered no later than 4 h after slaughter), both having short shelf life.

The coli group bacteria are indicators of the hygienic quality of white cheeses. Most
often, the microbiological spoilage of white cheese during its storage is caused by yeast and
molds. Therefore, in this study we monitored the growth of those groups of microorganisms
in stored white cheese packed in contact with the plant oil modified papers. The examined
white cheese was characterized by low contamination with coli group bacilli, the number
of those bacteria in fresh control sample being less than 10 CFU/g.

Meat consists mainly in protein and fats. Healthy animal’s muscles don’t contain
fungi or bacteria, but meat might be contaminated when animals are slaughtered, or
along the processing chain. The number of harmful organisms on the meat immediately
after slaughter represents a major factor in determining the shelf-life. The surface of
beef carcasses can contain from 10to 107 cfu/cm2 bacteria colonies, most of them being
psychrotrophic bacteria. Cutting and grinding meat can increase the microbial load, since
the exposed surface area is considerably increased. Yeasts and molds grow relatively
slowly on fresh meat and do not compete well with bacteria. Therefore, they are a minor
component of spoilage flora [41].

The kraft papers functionalized with plant oils were cut in square pieces of 4 cm2 size
and placed in sterile Petri dishes. Food cubic samples aseptically cut to 1 cm3 were placed
in the center of the paper pieces, and the Petri dishes were sealed and refrigerated at 7 ◦C.
Samples were brought to room temperature after 24 and 48 h, respectively, for analysis.
The pH on the bottom surface of the food samples was checked using indicator paper. The
surface of the kraft papers on which food samples were stored was wiped off with a sterile
swab that was then immersed in a test tube with 10 mL of physiological serum. Volumes
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of 1 mL from the formed suspensions were seeded in two autoclaved and cooled Petri
dishes containing plate count agar (PCA). After solidification, the plates were thermostated
at 30 ◦C for 72 h according to SR ISO 4833/2014 [42]. Microbiological examinations and
interpretation of results were performed according to SR EN ISO 7218/2014 [43].

Evolution of microorganisms’ development on food was also evaluated on cheese by
monitoring the oxygen consumption through respirometry assays performed on an ER12
ECHO Instruments Respirometer (ECHO, Slovenske Konjce, Slovenia).

3. Results and Discussion
3.1. ATR-FTIR Spectra Results

Surface modification of kraft paper with bioactive compounds after plasma discharge
or gamma irradiation revealed changes in the 3800–2700 cm−1 region, assigned to the OH
and CH stretching vibrations and in the “fingerprint” 1500–600 cm−1 region of the FTIR
spectra, which corresponds to stretching or deformation vibrations of different groups -
Figure 1.
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Figure 1. The infrared spectra of kraft paper activated by plasma or gamma irradiation and modified with clove essential
oil (CEO) (a) and rosehip seeds vegetal oil (RVO) (b).

In case of CEO modified paper, new peaks or shoulders were observed (Figure 1a),
namely at: 2940, 2945 cm−1 (CH2 group, stretching vibrations from aromatic moiety); 1510,
1513 cm−1 (aromatic C-C stretching); 1274, 1276 cm−1 (–C–O–C group, C–O deformation
vibrations); 811, 813 cm−1 (CH stretching vibrations). In addition, an increase in peak
intensity, due to the overlapped vibration bands of kraft paper substrate and CEO was
observed at 1600–1595 cm−1 (COOH group, C=O stretching vibrations); 1427, 1428 cm−1

(–CH2– deformation vibrations); 1240 cm−1 (OH, deformation vibrations, from COOH
group); 1051 cm−1 (–C–O–C group, C–O stretching vibrations).

In case of RVO modified paper, new peaks or shoulders were observed (Figure 1b),
namely at: 3011–3009 cm−1 (CH group stretching vibrations); 2851 cm−1 (CH2 stretching
vibrations); 1746–1744 cm−1 (COOH group, C=O stretching vibrations); 1460 cm−1 (–CH2–
deformation vibrations); shoulder at 1315 cm−1 (C–O deformation vibrations from C–OH
group); shoulder at 1001–987 cm−1 (C–O valence vibrations). Also, an increase in peak
intensity, due to the overlapped vibration bands of kraft paper substrate and RVO was
observed at 2924 cm−1 (CH3 group, stretching vibrations); 1237 cm−1 (C–O stretching from
ester group) 1160–1105 cm−1 (C–O–C, CO stretching vibration), and 715 cm−1 (CH2 group,
in plane deformation vibration). In addition, a new band is observed at ~1705 cm−1 (C=O
stretching, amide I group). This could be explained by the conversion of amine groups
created on the kraft paper surface (by air plasma and γ-irradiation in air) into amide groups
by reaction with RVO, facilitated by the coupling agents.



Coatings 2021, 11, 1211 7 of 14

In general, polar and reactive groups such as hydroxyl, carboxyl, (hydro)peroxides,
esters and amine are formed at the surface of polymeric materials by air plasma treat-
ment [44,45]. We suppose that similar behavior occurs in case of γ-irradiation, which
was also performed in air, and it is characterized by higher energy radiation and deeper
penetration than plasma treatment.

Based on the results obtained, we can establish that the modification took place after
activation both in plasma discharge and in gamma irradiation. It seems that the efficiency
was higher for sample modified with rosehip vegetal oil compared with clove essential oil.

The variation in the surface modification corresponds with the composition of plant
oils. In case of clove essential oil the main compounds are eugenol (~86%), eugenol acetate
(~8%), and β-caryophyllene (~4.5%) [46], while rosehip seeds vegetal oil consists mainly
in unsaturated fatty acids: linoleic acid (~54%), α-linolenic acid (~22%) and oleic acid
(~19%) [47].

3.2. SEM Results

The surface morphology of kraft paper modified with clove essential oil and rosehip
seeds vegetal oil after activation by plasma exposure or by γ-irradiation was analyzed by
SEM–Figure 2.
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Figure 2. SEM images of the obtained samples.

The SEM image of untreated kraft paper showed that cellulose fibers are tied together
and closely packed, forming a dense fiber matrix, with low porosity. Plant oils loading
of kraft paper leads to increased homogeneity by entering into the pores. Therefore, the
penetration of liquids, such as water into oil-loaded kraft papers is expected to be lower.

Information regarding the paper substrate modification is also given by the surface’s
elemental composition analysis. Table 2 summarizes the EDAX results for the modified
samples compared with the unmodified one.
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Table 2. EDAX data expressed in weight (wt) and atomic (At) content for kraft paper treated with plant oils compared with
the unmodified one.

Sample

Element

C O N O/C

wt % At% wt% At% wt% At% At%

P 59.87 ± 1.20 65.4 ± 1.31 38.29 ± 0.77 33.32 ± 0.67 0.79 ± 0.02 0.77 ± 0.02 0.509
P/CPA 54.24 ± 1.08 61.86 ± 1.24 41.58 ± 0.83 35.60 ± 0.71 0.87 ± 0.02 0.86 ± 0.02 0.575

P/CPA/CEO 53.28 ± 1.07 61.47 ± 1.23 44.51 ± 0.89 36.74 ± 0.73 1.81 ± 0.04 1.66 ± 0.03 0.597
P/CPA/RVO 55.87 ± 1.12 63.39 ± 1.27 42.59 ± 0.85 35.37 ± 0.71 1.33 ± 0.03 1.09 ± 0.02 0.558

P/20 kGy 53.39 ± 1.07 61.27 ± 1.23 41.25 ± 0.83 35.54 ± 0.71 0.91 ± 0.02 0.89 ± 0.02 0.580
P/20 kGy/CEO 54.60 ± 1.09 62.20 ± 1.24 42.08 ± 0.84 35.53 ± 0.71 1.99 ± 0.04 1.76 ± 0.04 0.571
P/20 kGy/RVO 56.39 ± 1.13 63.75 ± 1.28 39.33 ± 0.79 33.38 ± 0.67 2.42 ± 0.05 1.48 ± 0.03 0.523

It appears that plasma treatment and especially the γ-irradiation significantly de-
creased the carbon content on the paper surface. The oxygen content was increased instead,
leading to a higher O/C atomic ratio, especially for γ-irradiation, which is more aggressive
compared with plasma treatment. Nitrogen content also increased, being slightly higher for
γ-irradiation, indicating that nitrogen from air was also involved in formation of reactive
centers on paper surface. Both clove essential oil and rosehip vegetal oil contain carbon and
oxygen in their molecules, but the carbon content is higher in vegetal oil due to substantial
contribution of long aliphatic chains in fatty acids. The O/C ratio in activated papers
treated with plant oils decreased, especially after addition of the rosehip oil, indicating
the fixation of tested oils onto the activated papers. Overall, the O/C ratio increased after
activation and addition of plant oils compared with the untreated paper, indicating an
increased polarity due to the presence of oxygen containing groups in the composition of
plant oils.

3.3. Water Contact Angle

Figure 3 presents the water contact angle of kraft paper modified with bioactive
compounds. The untreated paper had a water contact angle of 96.6◦, the observed hy-
drophobicity being, most probably, due to a pretreatment of the commercial packaging
paper. Addition of plant oils strongly enhanced the hydrophobicity of the paper, the water
contact angle considerably increasing to about 113◦, with exception of the γ-irradiated
sample treated with rosehip vegetal oil, which showed a slightly lower contact angle of
108◦. This can be explained by the interactions that occur between the polar functional
groups of the main compounds of vegetal oil (e.g., carboxyl) and the plasma and gamma
irradiated paper, as revealed by FTIR spectroscopy, which lead to less available groups at
the top surface to interact with water.
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The water contact angle values for all CEO modified samples were slightly higher
compared with RVO modified samples. This can be attributed to the stronger interactions
that occurred between the main compound of clove oil (eugenol) and kraft paper. Eugenol,
being a molecule with a smaller chain than linoleic acid (main component in RVO), can
create more intermolecular bonds with plasma or gamma radiation activated kraft paper,
thus causing the decrease of the hydrophilic functional groups available on the surface of
modified paper.

3.4. Water Vapors Sorption

Generally, the paper-based packaging materials absorb moisture from the surrounding
media characterized by high level of humidity, mainly because they are composed of highly
porous cellulose fibers with hydrophilic nature.

The sorption-desorption curves give information about the water vapor sorption
mechanism and the interaction of packaging materials with water.

The uptake of water by kraft paper was analyzed as an adsorption process occurring
in a porous medium. Water vapor is assumed to diffuse into the pore space and adsorbed
onto the surfaces of the fibers constituting the paper sheet. The response of kraft paper to
relative humidity variations was investigated.

Figure 4 presents the equilibrium moisture content (EMC) as a response to the relative
humidity variations, at constant temperature (25 ◦C).
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Figure 4. Sorption-desorption curves for analyzed samples.

According to the IUPAC classification [48], the physisorption isotherms can be associ-
ated to type IV curves, describing a mesoporous material. Sorption-desorption hysteresis
phenomenon was observed, which is related with different behavior of the oil-loaded
materials in various humidity conditions.

The EMC values decreased from 15.5% in unmodified kraft paper to 11.9% after
modification with plant oils, indicating lower water adsorption (Figure 4). The EMC values
for oil-loaded plasma treated samples are significantly lower than the ones corresponding
to γ-irradiation, indicating higher hydrophobicity for the first ones. This outcome was also
revealed by water contact angle measurements.

3.5. DPPH Radical Scavenging Properties

Reactions with DPPH radical were performed to asses if plant oils impart their antiox-
idant activity to the kraft paper on which they are immobilized (Table 3).
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Table 3. Values of DPPH half maximal Inhibitory Concentration (IC50) of oil-loaded paper samples.

Sample CPA/CEO CPA/RVO 20 kGy/CEO 20 kGy/RVO

IC50 (mg/mL) 0.052 14.190 0.104 35.475

It appears that the paper substrate treated with clove essential oil have strong an-
tioxidant activity, as indicated by the very low IC50 concentration. This is mainly due to
eugenol and eugenol acetate compounds, which are the main components of clove essential
oil and the main contributors to its total antioxidant activity [49]. The antioxidant activity
of rosehip oil comes mainly from the radical scavenger compounds in the composition
such as phenols, flavonoids, phenolic acids, anthocyanins and tannins, [16,50,51]. However,
these are minor components compared with the fatty acids, which represent over 95 wt
% of the rosehip vegetal oil [52]. This explains the relatively lower antioxidant activity
compared with clove essential oil. Similar results were obtained also in our previous study
where argan oil was embedded into chitosan-based coating [36].

3.6. In Vitro Antibacterial Activity

Is well known that both plasma and gamma irradiation techniques are independently
widely used in sterilization purposes in a diversity of applications, successfully inhibiting
the microbial activity; being in the same time non-polluting, quite safe and simple methods.

Antibacterial tests were performed on three different bacteria which are important
from the point of view of food safety, representing important food contaminants, namely
Listeria monocytogenes (+), Salmonella enteritidis (−) and Escherichia coli (−)—Figure 5.
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Figure 5. Variation of bacterial inhibition percentage determined for kraft paper modified by plant oils.

Taking into consideration the results presented in Figure 5, it can be said that addition
of vegetal oils to kraft paper after plasma treatment or γ-irradiation significantly enhanced
the bacterial inhibition at 24 h for tested gram positive and gram negative bacteria. Dif-
ferences could be observed between the activation methods, plasma treatment inducing
higher efficiency against Escherichia coli than γ-irradiation. The efficiency increased in the
Escherichia coli < Salmonella enteritidis < Listeria monocytogenes order. γ-irradiation shifts the
efficiency order, the bacterial inhibition for Salmonella enteritidis becoming higher than for
Listeria monocytogenes. Differences could be also observed between the two plants oils, the
rosehip vegetal oil showing higher bacterial inhibition compared with clove essential oil, for
all tested bacterial strains. The stronger antimicrobial activity of RVO could be attributed
to its more facile permeation into the bacterial cells membrane [53]. This outcome was also
revealed by a study conducted by Assiri and Hassanien [54] where stronger antimicrobial
activity was evidenced for the cold pressed clove oil than for clove essential oil.
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Overall, by adding bioactive plant oils onto kraft paper substrate, the strongest im-
parted effect on bacteria viability was noticed against Listeria monocytogenes and
Salmonella enteritidis.

3.7. In Vivo Microbiological Assesment on Food

kraft The population of microorganisms related with cheese and meat spoilage after
24 and 48 h, in terms of Total Viable Counts, is given in Figure 6.
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Figure 6. Total Viable Counts of untreated and of plasma activated or γ-irradiated followed by plant oils loading of kraft 
paper for fresh curd cheese (a) and fresh beef meat (b). 

Modification of kraft paper with plant oils strongly decreased the microbial growth, 
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count. Only small differences could be observed according to the activation method. The 
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rosehip seeds vegetal oil having slightly better effect compared with clove essential oil. 

It appeared that both plant oils showed good microbial inhibition on curd cheese, the 
cellular growth decreasing below 50% after 48 h. However, the cellular growth remained 
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should be paid on the fact that greater amounts of plant oils could negatively affect the 
organoleptic properties of foods. 

Supplementary respirometry tests on fresh cheese were performed and showed that 
loading the kraft paper with the studied plant oils leads to lower oxygen consumption 
(Figure 7), which is related with inhibited biological processes of microbial growth. No 
clear differentiation could be observed between the two types of oils (essential and vege-
tal) or between the two types of physical activation (plasma or gamma irradiation) of pa-
per, especially in the first two days of testing. The obtained respirometry results provide 
additional support for the potential use of oil loaded kraft paper as bioactive food pack-
aging material. 

Figure 6. Total Viable Counts of untreated and of plasma activated or γ-irradiated followed by plant oils loading of kraft
paper for fresh curd cheese (a) and fresh beef meat (b).

Modification of kraft paper with plant oils strongly decreased the microbial growth,
both on fresh curd cheese and on fresh beef meat, as shown by the decrease of total viable
count. Only small differences could be observed according to the activation method. The
samples obtained by plasma treatment had slightly better inhibition effect on bacterial
growth on cheese compared with those modified by γ-irradiation, while opposite was
observed on beef meat, as evidenced from the values of percent cell growth relative with
the unmodified kraft paper. Differences were also noticed between the two plant oils, the
rosehip seeds vegetal oil having slightly better effect compared with clove essential oil.

It appeared that both plant oils showed good microbial inhibition on curd cheese, the
cellular growth decreasing below 50% after 48 h. However, the cellular growth remained
high, above 80%, for beef. These results may indicate that the tested kraft papers loaded
with plant oils are more suitable for prolonging the preservation of foods with rather
low initial bacterial content, such as fresh cheese. Higher amounts of plant oils would
be needed to increase the efficiency against bacterial growth for foods with larger initial
numbers of bacterial colonies, such as fresh raw beef meat products. However, attention
should be paid on the fact that greater amounts of plant oils could negatively affect the
organoleptic properties of foods.

Supplementary respirometry tests on fresh cheese were performed and showed that
loading the kraft paper with the studied plant oils leads to lower oxygen consumption
(Figure 7), which is related with inhibited biological processes of microbial growth. No clear
differentiation could be observed between the two types of oils (essential and vegetal) or
between the two types of physical activation (plasma or gamma irradiation) of paper, espe-
cially in the first two days of testing. The obtained respirometry results provide additional
support for the potential use of oil loaded kraft paper as bioactive food packaging material.
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Figure 7. Time evolution of oxygen consumption during curd cheese storage in contact with kraft 
paper loaded with plant oils. 

4. Conclusions 
This study presented a way to impart bioactive properties to kraft cellulose paper by 
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sults for in-vivo antibacterial tests on fresh curd cheese and beef meat while cold pressed 
rosehip seeds oil was more effective for in-vitro tests on Listeria monocytogenes (+), Salmo-
nella enteritidis (-) and Escherichia coli (-). The respirometry tests also supports the in vivo 
antimicrobial results, indicating that these materials could be promising for use in food 
industry to prolong food shelf-life. 
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4. Conclusions

This study presented a way to impart bioactive properties to kraft cellulose paper
by immobilization of antioxidant and antimicrobial plant oils, using cold plasma or γ-
irradiation as substrate activation techniques. Structural and morphological properties of
newly modified samples were strongly affected both by physical activation procedures and
by oils loading, the changes being evidenced by ATR-FTIR and SEM-EDX data. Depending
on the plant oil’s type used, modified kraft paper presented different antibacterial and
antioxidant properties. Essential clove oil induced higher antioxidant activity and better
results for in-vivo antibacterial tests on fresh curd cheese and beef meat while cold pressed
rosehip seeds oil was more effective for in-vitro tests on Listeria monocytogenes (+), Salmonella
enteritidis (−) and Escherichia coli (−). The respirometry tests also supports the in vivo
antimicrobial results, indicating that these materials could be promising for use in food
industry to prolong food shelf-life.
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modifications of polymers by ionizing radiation. Polymers 2020, 12, 2877. [CrossRef] [PubMed]

27. Muranyi, P.; Wunderlich, J.; Heise, M. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas
plasma. J. Appl. Microbiol. 2008, 104, 1659–1666. [CrossRef] [PubMed]

28. Jordá-Vilaplana, A.; Fombuena, V.; Garcia-Garcia, D.; Samper, M.D.; Sánchez-Nácher, L. Surface modification of polylactic acid
(PLA) by air atmospheric plasma treatment. Eur. Polym. J. 2014, 58, 23–33. [CrossRef]
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