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Abstract: The painting process is an essential part of the shipbuilding process. Its quality is directly
related to the service life and maintenance cost of the ship. Currently, the design of the painting
process relies on the experience of technologists. It is not conducive to scientific management
of the painting process and effective control of painting cost. Therefore, an intelligent design
algorithm for the ship painting process is proposed in this paper. Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) is used to form categories of painting objects by cluster
analysis. The grey wolf optimization (GWO) is introduced to realize the adaptive determination
of clustering parameters and avoid the deviation of clustering results. Then, a painting object
classification model is constructed based on the random forest (RF). Finally, the recommendation
of the painting process is realized based on the multi-objective evaluation function. Effectiveness
is verified by taking the outer plate above the waterline of a shipyard H1127/7 as the object. The
results show that the performance of DBSCAN is significantly improved. Furthermore, the accurate
classification of painting objects by RF is achieved. The experiment proves that the dry film thickness
qualification rate obtained by the painting process designed by IDBSCAN-RF is 92.3%, which meets
the requirements of the performance standard of protective coatings (PSPC).

Keywords: ship painting; process design; DBSCAN; random forest; multi-objective evaluation

1. Introduction

Ship painting is one of the three pillars of modern shipbuilding and is used throughout
ship construction [1]. The design of the ship painting process mainly includes the selection
of coating matching, the development of surface treatment level, the development of
secondary descaling grade and the design of the process routine [2]. A scientific and
reasonable painting process is the key to ensure the quality of the ship’s construction. It is
also an essential factor affecting the ship’s construction cycle and cost [3,4]. The design of
the painting process requires an integrated consideration of many other factors, such as the
corrosive environment in which the painting object is located, the available paintings and
the available painting equipment. With the continuous development of technology, new
coating matching have emerged and intelligent robots have been widely used in the field
of ship construction [5,6]. At present, the design of the ship painting process mainly relies
on the experience of technologists and no scientific process design flow and specification
have been formed. Moreover, the amount of data in the painting process is huge, while
the shipyard lacks effective management tools. Therefore, it is important to adopt the
advanced concept and intelligent algorithm to realize accurate recommendations of the
painting process for scientific management. This is also the way to promote the intelligent
development of ship painting.

Painting, as an effective means of corrosion protection, is a key part of the product
design and manufacturing process. Kern et al. developed a digital paint formulation design
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platform to improve the efficiency of paint formulation design [7]. Oliveira et al. combined
hierarchical analysis and preference ranking organization enrichment assessment methods
to evaluate vehicle painting schedules [8]. Bianco et al. provide a comprehensive life
cycle inventory and life cycle assessment of the automotive painting process [9]. With
the spread of data intelligence and data-driven thinking, process design technologies based
on intelligent algorithms are widely used in various industries [10–12]. Li et al. reorganized
the assembly plan based on the hierarchic subdivision and constructed a sequence of initial
assembly using the ant colony algorithm [13]. Nurwahaa et al. performed a multi-objective
optimization of electrospinning process parameters, including polyvinyl alcohol solution
concentration, applied voltage, spinning distance and volume flow rate by using the gene
algorithm [14]. Gao et al. constructed a mathematical model for manufacturing process
planning. The process planning scheme with the lowest production cost is obtained by
searching a limited space of feasible solutions with the intelligent water drop algorithm [15].
Thao et al. developed a predictive model of welding process parameters by using the ge-
netic algorithm to improve the robot welding performance [16]. Jing et al. used the genetic
algorithm to obtain the global optimal machining process route for parts [17]. To sum up,
scholars have achieved certain research results in the development of paint formulations
and evaluation of painting technology routes. Meanwhile, the process design based on
intelligent algorithms has been widely applied in many fields. However, in the field of ship
construction, there are few reports about the intelligent design of the painting process.

As a huge crop of steel structures sailing in the ocean, various parts of the ship are in
different corrosive environments. Therefore, the paintings used in different parts need to
have different anti-corrosion performance requirements. The diversity of paintings deter-
mines the construction conditions, the construction process and the painting equipment [2].
Therefore, a series of process routes, process methods need to be formulated. Furthermore,
painting operations are carried out at different process stages. To improve the process de-
sign efficiency, the classification of large and redundant process data is a common method.
Classification is an important form of data analysis. Common classification algorithms
include decision tree, Bayes algorithm, association rule algorithm, neural network, support
vector machine, random forest, etc. [18,19]. Among them, RF is a classification algorithm
that uses a decision tree as a base learner. It has the advantages of high accuracy and is not
easy to over-fit, so it is widely used to solve practical engineering problems [20]. Chen et al.
conducted a classified evaluation of the security risk of large-scale group activities based
on RF [21]. Han et al. used RF for intelligent diagnosis of rotating machinery [22]. Miraki
et al. mapped the groundwater potential based on the classification prediction results of
RF [23]. The above research results provide a good theoretical basis for the construction of
the painting object classification model.

At present, the research of intelligent shipbuilding and intelligent shipyard is in the ini-
tial stage. In this paper, a painting process intelligent design algorithm is proposed to solve
the problem of over-reliance on technologist’s experience for painting process design and
the degree of intelligence is low in shipyards at the present stage. In order to obtain the best
painting process, the painting objects are classified based on RF. However, supervised
learning is not possible because painting objects do not have category labels. In this paper,
the existing painting objects are firstly clustered and analyzed by IDBSCAN to realize
the category classification of painting objects. In this paper, IDBSCAN based on GWO is
proposed to solve the problem that the traditional DBSCAN is very sensitive to the initial
clustering parameters. The adaptive determination of clustering parameters is realized to
avoid the clustering bias caused by artificially set parameters. At the same time, a multi-
objective evaluation function of the painting process is established with the single objective
of painting quality, painting dosage and painting man-hour. In addition, the weight factors
of each objective function are determined by using the analytical hierarchy process (AHP)
and entropy method. The recommendation of the optimal painting process is achieved by
the multi-objective evaluation of painting processes of similar objects.
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2. Classification of Painting Objects Based on IDBSCAN-RF
2.1. Construction of RF-Based Classification Model for Painting Objects

In this paper, the classification model of painting objects is constructed by the trained
RF. The object to be painted is classified into the most similar painting objects based on
their characteristics. RF essentially belongs to ensemble learning, which is an important
branch of machine learning. Ensemble learning efficiently fuses multiple base learners
through strategies to obtain significantly better generalization performance than a single
learner. The principle of RF is shown in Figure 1 and the key steps are as follows.
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Step 1: For each decision tree, N training samples with P attributes are sampled
N times with put-back repetitions using the bootstrap sampling method to construct
the sample M, where some of the data are never drawn after N times of sampling and do
not become training samples, which are called out-of-bag data.

Step 2: The decision tree T is generated for the training set samples. Randomly select
p attributes from the P attributes (p < P) as the set of splitting attributes for the current
tree node. In addition, find the optimal way to split this node among these p attributes.

Step 3: Repeat Step 1 and Step 2 a total of n times to obtain the training set (M1, M2, . . . , Mn).
The RF model is composed of the corresponding generated decision tree (T1, T2, . . . , Tn).

Step 4: The prediction results of the samples to be predicted are obtained based on
the generated RF model. The final category of the target sample is obtained using majority
voting based on the classification results of each tree.

Step 5: The generated RF model is applied to the validation set to obtain the decision
result (R1, R2, . . . , Rn) and the prediction result is obtained according to Step 4. The pre-
diction results are compared with the validation set labels to evaluate the generalization
ability of the model. Then, parameter tuning is performed to obtain the best RF model.

2.2. Clustering of Painting Objects Based on IDBSCAN

Since painting objects do not possess category labels, RF cannot be directly used for
classification. Therefore, cluster analysis is first performed on the painting objects to form
categories. Clustering algorithm, as a type of unsupervised learning, is the process of
dividing the sample set into k clusters based on the similarity between samples, so that
the objects within the clusters have high similarity but are very dissimilar to the objects in
other clusters [24]. In this paper, an improved DBSCAN is used to construct the clustering
model for painting objects.
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2.2.1. DBSCAN

DBSCAN, a typical density-based clustering algorithm, is based on a “neighborhood”
parameter (ε, MinPts) to characterize the closeness of the sample distribution [25,26]. For
a given data set R = {x1, x2, . . . , xm}, the following concepts are available.

Definition 1 (ε-neighborhood). For xj ∈ R, its ε-neighborhood contains samples in the sample
set R whose distance from xj is not greater than ε, that is Nε (xj) = {xi ∈ R|dist(xi,xj) ≤ ε}.

Definition 2 (Core object). xj is a core object, if the ε-neighborhood of xj contains at least MinPts
samples, that is |Nε(xj)| ≥ MinPts.

Definition 3 (Directly density-reachable). xj is directly density-reachable from xi, if xj belongs
to the ε-neighborhood of xi and xj is a core object.

Definition 4 (Density-reachable). xj is density-reachable from xi, if there is a sample sequence
p1, p2, . . . , pn, where p1 = xi,pn = xj, and pi+1 is directly density-reachable from pi.

Definition 5 (Density-connected). xj is density-connected to xi , if these exists xk that both xi
and xj are density-reachable from xk.

DBSCAN defines a “cluster” as the largest set of density-connected samples derived
from a density-reachable relation. If x is the core object, the set consisting of all samples is
density-reachable from x is shown in Equation (1).

X =
{

x′ ∈ R|x′is density-reachable from x
}

(1)

The clustering result obtained by DBSCAN is C = {C1, C2, . . . , Ck}. The average
distance avg(C) between samples within its cluster is calculated by Equation (2) and
the distance between its clusters dcen(Ci, Cj) is calculated by Equation (3).

avg(C) =
2

|C|(|C| − 1) ∑
1≤i<j≤|C|

dist(xi, xj) (2)

where dist(·, ·) is used to calculate the distance between two samples.

dcen(Ci, Cj) = dist(µi, µj) (3)

where µ represents the center point of cluster C, µ = 1
|C|∑ 1≤i≤|C|xi.

The advantage of DBSCAN is that arbitrarily shaped clusters can be discovered
without specifying the number of clusters. However, DBSCAN is sensitive to clustering
parameters and traditional DBSCAN relies entirely on empirical settings of ε and MinPts.
In order to avoid the bias caused by artificially set parameters, GWO is introduced to
improve DBSCAN to realize adaptive determination of parameters and improve the quality
of clustering.

2.2.2. Grey Wolf Optimization

GWO is a swarm intelligence optimization algorithm inspired by the predatory behav-
ior of grey wolf groups [27]. GWO has the features of simple structure, few parameters to
be adjusted, fast solving speed and convergence and is suitable for dealing with parametric
optimization problems. The optimal solution in GWO is defined as α, the second and third
optimal solutions are β and δ, respectively and the remaining candidate solutions are ω.
The optimization process of GWO is the process of updating the position of α, β, δ and
ω [28]. The specific process is as follows.

(1) Encircling prey
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When encircling the prey, the distance between the individual and the prey is calcu-
lated by Equation (4) and the position of the grey wolf is updated by Equation (5).

→
D = |

→
∂ ·
→
Xp(t) −

→
X(t)| (4)

→
X(t + 1) =

→
Xp(t)−

→
A ·
→
D (5)

where t is the number of current iterations,
→
A and

→
∂ are the coefficient vectors,

→
Xp is

the position vector of the prey and
→
X is the position vector of the grey wolf.

→
A and

→
∂ are calculated as follows.

→
A = 2

→
a ·→r 1 −

→
a (6)

→
∂ = 2 ·→r 2 (7)

where
→
a decreases linearly from 2 to 0 during the iteration,

→
r 1 and

→
r 2 are random numbers

between [0, 1].

(2) Hunting

When the grey wolves identify the prey, the hunting process is guided by α to β and δ.
In GWO, it is assumed that α, β and δ have a better understanding of the potential location
of the prey. Based on the three optimal solutions that have been obtained, the location of
the prey is determined and the remaining grey wolf individuals are forced to update their
locations. The mathematical model of the hunting process is expressed as follows.

→
Dα = |

→
∂ 1 ·

→
Xα −

→
X|

→
Dβ = |

→
∂ 2 ·

→
Xβ −

→
X|

→
Dδ = |

→
∂ 3 ·

→
Xδ −

→
X|

(8)


→
X1 =

→
Xα −

→
A1 · (

→
Dα)

→
X2 =

→
Xβ −

→
A2 · (

→
Dβ)

→
X3 =

→
Xδ −

→
A3 · (

→
Dδ)

(9)

where
→
Dα,

→
Dβ and

→
Dδ denote the distances between α, β, δ and other individuals, respec-

tively;
→
∂ 1,
→
∂ 2 and

→
∂ 3 are coefficient vectors;

→
Xα,

→
Xβ and

→
Xδ denote the current positions of

α, β and δ, respectively; and
→
X is the current position of other grey wolves.

The formula for updating the position of the remaining wolves is as follows.

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(10)

(3) Attacking prey (exploitation)

After the prey stops moving, the grey wolves complete the hunt by attacking the prey.
When approaching the prey, the value of

→
a is gradually smaller and the fluctuation range

of
→
A decreases. When |

→
A| < 1, the wolves attack the prey, at which time the algorithm falls

into local optimum.

(4) Search for prey (exploration)

The grey wolves search for prey based on the positions of α, β and δ. Grey wolves
separate from each other to look for prey and then gather together to attack the prey. When
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|
→
A| > 1, the grey wolves are forced to separate from their prey in order to find a more

suitable prey, which means to find the global optimal solution.

2.2.3. Improved DBSCAN Based on GWO

In this paper, DBSCAN is improved based on GWO to obtain more accurate ε and
MinPts and make the clustering results of painting objects more precise. The computational
flow is shown in Figure 2.
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The steps are as follows.
Step 1: Set the number of wolf groups n and the maximum number of iterations Itermax.

The neighborhood parameters ε and MinPts of DBSCAN are used as two-dimensional
coordinates of individual wolf positions. ε and MinPts are randomly initialized to generate
clustering results.

Step 2: The clustering indicator DB index is used as the fitness indicator of GWO
and wolf classes (α, β, δ and ω) are classified according to the fitness values. Fitness is

calculated as Fit = 1
k

k
∑

i=1
max
j 6=i

( avg(Ci)+avg(Cj)

dcen(µi ,µj)

)
.

Step 3: The wolves position are updated according to Equations (8)–(10). The fitness
values of the updated individuals are calculated and the optimal fitness value Fitbest for
the current generation is recorded. If Fitbest > Fitα, the adaptation value of wolf α is
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updated to Fitbest and the corresponding position is recorded. If Fitβ < Fitbest < Fitα,
Fitbest is assigned to wolf β and the corresponding position is updated to wolf β. If
Fitδ < Fitbest < Fitβ, then Fitbest and the corresponding position are updated to wolf δ.

Step 4: The final position parameters of wolf α are optimal clustering parameters.
The optimal ε and MinPts are obtained when the maximum number of iterations or
the global optimum is reached. Then, they are used as the parameters of DBSCAN to obtain
the clustering results of the painting objects.

2.2.4. Feature Selection

Feature selection is the process of selecting a subset of relevant features from a given
set of features. Due to a large number of feature dimensions of the painting objects, feature
selection needs to be performed to avoid dimensional disasters in the clustering process.
Before feature selection, the features need to be pretreatment. For numerical features,
the min-max normalization method is used to normalize all features to the [0, 1] interval,
calculated as follows.

x∗ =
x−min(x)

max(x)−min(x)
(11)

where x is the original value, max(x) is the maximum value of the data set, min(x) is
the minimum value of the data set and x∗ is the transformed value.

In this paper, the Laplacian Score method is used to extract the features of painting
objects. The method reflects the local information retention ability of features by calculating
the Laplace score of each feature [29]. The concrete steps are as follows.

(1) Construct the nearest neighbor graph G The nearest neighbor graph G contains a
total of n nodes and the ith node corresponds to the feature sample Xi. If sample
Xi is contained in the p-nearest neighbor of sample Xj, or sample Xj is contained
in the p-nearest neighbor of sample Xi, nodes i and j will be connected together in
the nearest neighbor graph G. where p is a pre-given value.

(2) Construct the weight matrix S

Sij =

{
e−
‖Xi−Xj‖

2

t , i is connected to j
0, i is not connected to j

(12)

where t is a constant.
(3) Generate Laplacian matrix L

L = D− S (13)

where D is the diagonal stiffness matrix, Dij =

{
sij, i = j
0, i 6= j

.

(4) Calculate Laplace score The Laplace score for each feature fi is calculated as follows.

L fi
=

f T
i L fi

f T
i D fi

(14)

where fi = fi −
f T
i D1

1T D1
1, fi = [ fi1, fi2, . . . , fim]

T , 1 = [1, 1, . . . , 1]T .

Feature score is inversely proportional to feature importance. The lower the feature
score, the more influential the feature is. Therefore, after calculating the Laplace score of
each feature, the d features with the lowest scores are the results of feature selection.

2.3. Overall Flow Based on IDBSCAN-RF

The classification method of painting objects based on IDBSCAN-RF is shown in
Figure 3. Firstly, in order to avoid the phenomenon of dimensional disaster in the clustering
and classification process, feature selection is performed on the painting object to extract
important features. Then, to solve the problem that painting objects cannot be directly
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classified without the category label, the painting objects are clustered based on IDBSCAN
to get the categories of painting objects. After that, RF is trained based on the clustering
results. Finally, classification of the objects to be painted is performed based on the trained
classification model to find the most similar painting object categories, so as to obtain the
similar painting object set.
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3. Multi-Objective Evaluation of Painting Processes

In the management of painting projects, the traditional evaluation method based on
painting quality is no longer able to meet the increasing requirements of quality, specifica-
tion and environmental protection [30]. While ensuring the quality of painting, controlling
the economic cost of painting and improving the efficiency of painting operation are the pre-
requisites for achieving scientific management of ship painting. This is also the way to
improve the competitiveness of the shipbuilding enterprise industry. For this purpose,
a multi-objective evaluation function of the painting process is constructed to evaluate
the painting process in a similar object set in order to recommend a high-quality, high-
efficiency and low-cost painting process.

3.1. Establishment of Multi-Objective Evaluation Function for Painting Process

During the construction of the painting, the thickness of the painting film needs to
meet the design requirements to ensure the painting performance. At the same time,
painting defects caused by uneven film thickness need to be avoided. Good painting
film thickness is an important guarantee of painting quality. Therefore, the painting film
thickness is used as the evaluation index of painting quality. The objective function of
painting quality is established as shown in Equation (15).

YH =
∑α

i=1 kT,i

∑α
i=1 kT,i ·

√
1

mi

mi
∑

j=1
(

Ti,j−T0
T0

)
2

(15)
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where T0 is the rating dry film thickness; α is the number of measurement areas, α = 0.6
√

S,
S is the region of painting area; i is the number of the painting area; mi is the number of
measurement points in area i; Ti,j is the actual dry film thickness of each measurement
point in the painting area; kT,i is the weighting factor related to the measurement area.

Painting dosage is an important basis for shipyards to make paint procurement plans.
It is also the key to the cost control of ship construction [31]. In the actual construction pro-
cess, the actual painting dosage is influenced by the construction environment, the surface
roughness of the ship, construction process parameters and other factors. In addition, a
certain degree of increase in the dosage of additional paint is due to touch-up operations
caused by painting defects. Therefore, the established painting dosage objective function is
shown in Equation (16).

YV =

√√√√( Qn

Q f + Qr −Qn

)2

(16)

where Q f is the dosage of paint used for the initial application, Qr is the dosage of paint
used for the touch-up operation and Qn is the rating painting dosage.

In order to maximize the shipyard construction capacity and improve the efficiency of
ship construction, the painting man-hour objective function is established. The painting
man-hour objective function is aimed at the deviation of the actual painting man-hour from
the rating painting man-hour. The objective function of painting man-hours is established
as shown in Equation (17).

YT =

√(
Tn

Tc + Tp + Tr − Tn

)2
(17)

where Tc is the actual painting man-hour, Tp is the auxiliary preparation time, Tr is the make-
up painting man-hour and Tn is the rating painting man-hour.

Based on the above target conditions, a comprehensive multi-objective evaluation
function of the painting process based on painting quality, painting dosage and painting
man-hour is established, as shown in Equation (18).

Yeval =
τH ·YH + τV ·YV + τT ·YT

τH + τV + τT
(18)

where Yeval is the multi-objective evaluation function; YH , YV and YT are the painting
quality objective function, painting dosage objective function and painting man-hour
objective function, respectively; τH , τV and τT are the weight coefficients related to painting
quality, painting dosage and painting man-hour, respectively.

3.2. Determination of Weight Coefficients Based on the Combination Weighting Method

In multi-objective evaluation, the determination of weight coefficients is directly
related to the reliability and validity of the evaluation results. The methods of deter-
mining the weight coefficients are divided into subjective empowerment method, objec-
tive empowerment method and combination weighting method [32]. In order to reduce
the arbitrariness of subjective empowerment and the limitation of objective empower-
ment, the combination weighting method is used to determine the weight coefficients for
the multi-objective evaluation of the painting process.

3.2.1. Calculation of Subjective Weights Based on AHP

AHP can mathematize the thinking process of decision-making by using less amount
of information. The construction of the judgment matrix is a prerequisite for determining
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the index weights by using AHP. The elements of each layer are compared two by two to
construct the judgment matrix B = (Bij)n×n [33], as shown in Equation (19).

B =


B11 B12 · · · B1n
B21 B22 · · · B2n

...
...

...
...

Bn1 Bn2 · · · Bnn

 (19)

where Bij > 0, Bij = 1/Bji(i 6= j), Bij reflects the degree of importance of factor i and factor
j relative to the target; Bii = 1(i, j = 1, 2, . . . , n), n is the number of indicators.

To ensure the reasonableness of the evaluation results, the judgment matrix is subjected
to a consistency test. The negative average CI of the remaining eigenvalues other than
the largest eigenvalue of the judgment matrix is calculated by Equation (20).

CI =
λmax − n

n− 1
(20)

where λmax indicates the maximum characteristic root of the judgment matrix, n is the order
of the judgment matrix.

The consistency ratio CR of the judgment matrix is calculated by Equation (21).

CR =
CI
RI

(21)

where RI is the average random consistency index and the value of RI is shown in Table 1.
When CR < 0.10, the judgment matrix is considered to have satisfactory consistency.

Table 1. Average random consistency index.

Order of Matrix 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

The summation method is used to perform the solution of the eigenvectors of the judg-
ment matrix to obtain the index weights based on AHP, as shown in Equation (22).

ωj =
1
n

n

∑
i=1

Bij

∑n
k=1 Bik

, j = 1, 2, . . . , n (22)

3.2.2. Calculation of Objective Weights Based on Entropy Method

Information entropy is a measure of the degree of system disorder. The utility value
of system information is objectively reflected by information entropy. The decision matrix
and the output entropy of each indicator are used by the entropy method to determine
the weighting coefficients of each indicator. For m ship painting process cases with n
evaluation indicators, the initial data matrix is defined as follows.

X = (xij)m×n, (0 ≤ i ≤ m, 0 ≤ j ≤ n) (23)

where xij represents the value of the jth evaluation index for the ith sample.
The specific steps to achieve the objective weight calculation by using the entropy

method are as follows [34].

(1) Normalize the raw data using Equation (24).

x′ ij =
xij − xj

Sj
(24)
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where xj is the average value of the jth indicator, xj =
1
n

n
∑

i=1
xij; Sj is the standard

deviation of the jth indicator, Sj =
1

n−1

n
∑

i=1
(xij − xj)

2.

(2) Calculate the weight yij of the indicator value of the ith item under the jth indicator.

yij =
x′ ij

m
∑

i=1
x′ ij

(0 ≤ yij ≤ 1) (25)

(3) The information entropy value e and information utility value d of the jth indicator
are calculated as follows.

ej = −K
m

∑
i=1

yij lnyij (26)

dj = 1− ej (27)

where K = 1
ln m .

(4) Calculate the entropy weight coefficient of each objective.

µj =
dj

m
∑

i=1
dj

(28)

3.2.3. Calculation of Combination Weights

In order to avoid the disadvantages of each of the AHP and entropy method, the com-
bination weighting method is used to calculate the combination weight τ [35], as shown in
Equation (29).

τj =
ωj · µj

n
∑

j=1
ωj · µj

(29)

where ωj is the subjective weight calculated by AHP, µj is the objective weight calculated
by the entropy method.

4. Experimental Validation and Results Analysis

In this paper, the outer plate above the waterline of a shipyard H1127/7 type ship
is used as the verification object for painting process design, as shown in Figure 4. In
the process of integrated hull-outfitting-painting shipbuilding, the segments are the initial
stage of painting. In the segment painting stage, the outer plate above the waterline is
split into segments for painting. The outer plate above the waterline is mainly corroded by
the marine atmosphere, sea spray, rain and snow, seawater used for washing the deck and
condensation water. To prevent corrosion, the corresponding coating matching for this part
is shown in Table 2 [2]. At present, the painting equipment that can be used for the outer
plate above the waterline in the shipyard mainly includes side suspension painting robots,
rail painting robots, high-pressure airless sprayers, internal rail painting robots.

Coatings 2021, 11, 1458 12 of 21 
 

 

μ

=

=


1

j
j m

j
i

d

d
 (28)

3.2.3. Calculation of Combination Weights 
In order to avoid the disadvantages of each of the AHP and entropy method, the 

combination weighting method is used to calculate the combination weight τ  [35], as 
shown in Equation (29). 

ω μ
τ

ω μ
=

⋅
=

⋅
1

j j
j n

j j
j

 
(29)

where ω j  is the subjective weight calculated by AHP, μ j  is the objective weight calcu-
lated by the entropy method. 

4. Experimental Validation and Results Analysis 
In this paper, the outer plate above the waterline of a shipyard H1127/7 type ship is 

used as the verification object for painting process design, as shown in Figure 4. In the 
process of integrated hull-outfitting-painting shipbuilding, the segments are the initial 
stage of painting. In the segment painting stage, the outer plate above the waterline is split 
into segments for painting. The outer plate above the waterline is mainly corroded by the 
marine atmosphere, sea spray, rain and snow, seawater used for washing the deck and 
condensation water. To prevent corrosion, the corresponding coating matching for this 
part is shown in Table 2 [2]. At present, the painting equipment that can be used for the 
outer plate above the waterline in the shipyard mainly includes side suspension painting 
robots, rail painting robots, high-pressure airless sprayers, internal rail painting robots. 

outer plate above the waterline

 
Figure 4. Location of the outer plate above the waterline. 

Table 2. Coating matching used for outer plate above the waterline. 

Coating Name Matching System Paint Color 
Thickness of Dry 

Film/µm 
Solid Content/% Minimum Painting Interval/h 

Maximum Painting 
Interval/d 

Priming paint Modified epoxy 
paint 

Aluminium red 200 75 4 30 

Intermediate paint 
Modified epoxy 

paint 
Grey 200 75 4 14 

Finishing paint 
Polyurethane 

resin paint 
White 100 63 7 14 

4.1. Feature Selection for the Painting Objects 
The selection of the painting process equipment and the determination of the process 

parameters are directly influenced by various factors. These include the basic attributes of 
the object to be painted, such as material, area, descaling grade, surface roughness, etc., as 

Figure 4. Location of the outer plate above the waterline.



Coatings 2021, 11, 1458 12 of 20

Table 2. Coating matching used for outer plate above the waterline.

Coating Name Matching System Paint Color Thickness of
Dry Film/µm

Solid
Content/%

Minimum
Painting

Interval/h

Maximum
Painting

Interval/d

Priming paint Modified epoxy paint Aluminium
red 200 75 4 30

Intermediate
paint Modified epoxy paint Grey 200 75 4 14

Finishing paint Polyurethane resin paint White 100 63 7 14

4.1. Feature Selection for the Painting Objects

The selection of the painting process equipment and the determination of the process
parameters are directly influenced by various factors. These include the basic attributes of
the object to be painted, such as material, area, descaling grade, surface roughness, etc.,
as well as the coating matching used for the part. Therefore, the basic attributes of the
painting object and the selected coating matching are selected as the features of the painting
object, as shown in Table 3.

Table 3. Feature attributes of the painting object.

Feature No. Feature Name Explanation

F1 Material
1 indicates carbon steel, 2 indicates low-alloy high strength steel, 3 indicates heat-resistant steel,

4 indicates corrosion-resistant steel, 5 indicates low-temperature steel, 6 indicates aluminum alloy,
7 indicates copper, 8 indicates titanate

F2 Plate shape 1 indicates straight board, 2 indicates bent plate, 3 indicates irregular slab

F3 Painting area
1 indicates the bottom area, 2 indicates the water-line area, 3 indicates the atmospheric exposure
area, 4 indicates the liquid tank area, 5 indicates the cabin area and pump room area, 6 indicates

the living cabin area

F4 Surface roughness Unit is µm

F5 Painting area Unit is m2

F6 Derusting grade 1 indicates Sa1, 2 indicates Sa2, 3 indicates Sa2.5, 4 indicates Sa3, 5 indicates St2, 6 indicates St3

F7 Paint type

1 indicates conventional paint, 2 indicates bituminous paint, 3 indicates pure epoxy paint,
4 indicates epoxy bituminous paint, 5 indicates vinyl asphalt paint, 6 indicates polyurethane paint,
7 indicates inorganic zinc silicate paint, 8 indicates self-polishing paint, 9 indicates bleached epoxy

asphalt paint, 10 indicates modified epoxy paint

F8 Paint color 1 indicates aluminum red, 2 indicates grey, 3 indicates yellow, 4 indicates dark red, 5 indicates
white, 6 indicates medium green, 7 indicates black, 8 indicates brown...

F9 Solid content Unit is %

F10 Thickness of dry film Unit is µm

F11 Minimum painting interval Unit is h

F12 Maximum painting interval Unit is d

A total of 1200 painting history data from a shipyard between 2010 and 2020 are se-
lected for feature selection of painting objects using the Laplace scoring method. The Lapla-
cian scores of the 12 features are arranged in descending order and the results are shown in
Equation (30).

LS(F10) < LS(F5) < LS(F9) < LS(F3) < LS(F4) < LS(F6) < LS(F7) < LS(F12) <
LS(F11) < LS(F2) < LS(F1) < LS(F8)

(30)

In this paper, the five features with the lowest Laplacian scores (F10, F5, F9, F3, F4) are
used as the result of feature selection for subsequent classification model construction.
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4.2. Analysis of Clustering Results for Painting Objects

In this paper, the Davies–Bouldin index (DBI) and the Silhouette index (SI) are used
to evaluate the clustering performance. DBI calculates the ratio of the sum of the internal
distance of the cluster to the external distance. The smaller the DBI value, the higher
the quality of clustering. DBI is calculated as follows.

DBI =
1
k

k

∑
i=1

max
j 6=i

(
avg(Ci) + avg(Cj)

dcen(µi, µj)

)
(31)

SI measures the difference between the similarity between a sample µi and samples
within a cluster and the similarity of samples within other clusters. The value of SI is
between −1 and 1. The compactness of the cluster to which µi belongs is reflected by
the value of SI. It is calculated as follows.

SIi =
ai − bi

max(ai, bi)
(32)

where ai =

∑
µj∈Ci ,i 6=j

dist(µi ,µj)

|Ci |−1 , ai represents the average distance between sample µi in the clus-

ter and other objects in the cluster; bi = min
Cj :1≤j≤k,j 6=i


∑

µj∈Cj
dist(µi ,µj)

|Cj |

, bi represents the mini-

mum average distance of the sample µi within a cluster from all other clusters.
For the evaluation of the performance of the proposed method (IDBSCAN), the re-

sults have been compared to those of the DBSCAN, OPTICS and PAPC-DBSCAN [36–38].
Among them, in DBSCAN, set ε = 0.5, MinPts = 4; in OPTICS, set ε = 0.5, MinPts = 4,
ξ = 0.02; in PAPC-DBSCAN, set kpick = 0.15, kdrop = 0.15, α = 4, γ = 0.3, MinPts = 5; in
IDBSCAN, set the number of wolves as 30 and the number of iterations as 300. The cluster-
ing results of different models are shown in Table 4.

Table 4. Comparison of clustering performance.

Model Name DBI SI

DBSCAN 1.9275 −0.431
OPTICS 1.9097 −0.439

PAPC-DBSCAN 1.8806 −0.443
IDBSCAN 1.8743 −0.445

As can be seen from the table, the lowest DBI and SI are obtained by IDBSCAN, which
verifies that IDBSCAN has better clustering performance.

4.3. Analysis of Classification Results for Painting Objects

The accurate classification of painting objects is achieved based on the results of
cluster analysis. In order to obtain better classification performance, the parameters of RF
are set and adjusted. To analyze the effect of the number of decision trees n_estimators
on the classification results, set the maximum depth of decision tree max_depth = 4,
the maximum number of features as 5, the minimum sample required for internal node
re-division as 2, the minimum sample of leaf nodes as 1, the number of decision trees
n_estimators ∈ [10, 200]. The results of the decision tree quantity optimization are shown in
Figure 4. As can be seen from the figure, there is a significant improvement in classification
accuracy when the number of decision trees is increased from 10 to 40. The accuracy reaches
the maximum when the number of decision trees is 70. In addition, when the number
of decision trees increases, the accuracy rate fluctuates. However, the maximum error in
accuracy is only 0.0024 when the number of decision trees is varied in the range [70, 200],
indicating that the random forest algorithm has good robustness.
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To analyze the effect of the maximum depth of decision tree max_depth on the clas-
sification results, set the minimum sample required for internal node re-division as 2,
the minimum sample of leaf nodes as 1, the number of decision trees n_estimators = 70,
the maximum depth of decision tree max_depth ∈ [1, 10]. The results of the maximum
depth of decision tree optimization are shown in Figure 5. As can be seen from the figure,
the classification accuracy varies significantly with the depth of the decision tree when
max_depth< 4. After that, the variation of the accuracy rate gradually smoothed out. When
max_depth = 6, the accuracy rate reaches the maximum. When the decision tree depth is
varied in the range of [4, 10], the accuracy fluctuates in the range of 0.001, indicating that
the algorithm has good robustness.
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The finalized parameter is n_estimators = 70, max_depth = 6. In this paper, the primer
spraying process of the outer plate above the waterline is used as an example for process
design Its corresponding characteristic values are shown in Table 5.

Table 5. Feature value of the object to be painted.

Painting Area Surface Roughness/µm Painting Area/m2 Solid Content/% Thickness of Dry Film/µm

Water-line area 25 183 75 200

The objects to be painted are classified based on the trained RF classification model.
The set of similar painting objects for the outer plate above the waterline obtained is shown
in Table 6.

Table 6. Set of similar painting objects (partial).

No. Name of the Painting Object Painting Area Surface
Roughness/µm

Painting
Area/m2

Solid
Content/%

Thickness of
Dry Film/µm

1 Outer plate above the waterline 1 Water-line area 30 196 62 200

2 Outer plate above the waterline 2 Water-line area 25 312 75 233

3 Outer plate inside the bowsprit 1 Water-line area 30 286 75 200

4 Outer plate inside the bowsprit 2 Water-line area 20 156 58 204

5 Outer plate inside the bowsprit 3 Water-line area 25 168 75 230

6 Open-air exterior plate 1 Atmospheric exposure area 30 175 68 205

...
...

...
...

...
...

...

Cases of painting processes corresponding to similar painting objects are shown in
Table 7.



Coatings 2021, 11, 1458 15 of 20

Table 7. Painting process cases (partial).

No. Equipment
Name

Nozzle
Diame-
ter/mm

Nozzle
Num-
ber

Travelling
Speed/(mm/min)

Air Pres-
sure/Mpa

Paint
Spraying

Pres-
sure/Mpa

Construction
Tempera-

ture/

Rating Dry
Film

Thickness/µm

Rating
Dosage/L

Dosage
Used for

Initial
Applica-

tion/L

Dosage
Used for
Touch-up

Opera-
tion/L

Rating
Painting

Man-
Hour/h

Actual
Painting

Man-
Hour/h

Auxiliary
Prepara-

tion
Time/h

MAKE-
up

Man-
Hour/h

1

Side sus-
pension
painting

robot

0.45 1 180 0.5 16 23 200 13.8 14.6 1.6 2.35 2.25 0.2 0.3

2
Rail

painting
robot

0.65 2 160 0.5 16 23 233 12.5 13 0.5 3 0.8 0.3 0.2

3

High-
pressure
airless

sprayer

0.5 2 220 0.5 16 23 200 7.6 8.2 0.8 2 2.26 0.25 0.2

4

Internal
rail

painting
robot

0.5 2 200 0.5 16 23 204 10.8 11.1 0.6 2.25 2.5 0.15 0.15

5

Side sus-
pension
painting

robot

0.6 1 200 0.5 16 23 230 14.5 14.3 1.2 2.5 2.55 0.2 0.4

6

Side sus-
pension
painting

robot

0.55 1 180 0.5 16 23 205 12.8 13 0.7 2.4 2.45 0.2 0.35

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
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4.4. Multi-Objective Evaluation of Painting Processes

Field experts in ship painting are invited to compare the indicators of painting process
evaluation. 1~9 scale method is used to construct the judgment matrix [39]. The consistency
test is performed on the judgment matrix according to Equations (20) and (21). The weights
are calculated using Equation (22) and the results are shown in Table 8.

Table 8. Evaluation index weights based on AHP.

B1 B2 B3 Consistency Test

B1 1 3 2 λmax = 3.0092
B2 1/3 1 1/2 CI = 0.0046
B3 1/2 2 1 CR = 0.0079 < 0.1

The deviation degree dj and the weight coefficient µj of the entropy value for each
index are calculated by Equations (24)–(28) and the results are shown in Table 9.

Table 9. Evaluation index weights based on entropy method.

dj µj

B1 0.291 0.3862
B2 0.199 0.2641
B3 0.2635 0.3497

The combination weights τ calculated by Equation (29) are as follows.

τ = [0.5858, 0.1217, 0.2925] (33)

The values of the single-objective evaluation function for the painting process in
Table 7 are calculated by Equations (15)–(17). On this basis, the value of the multi-objective
evaluation function of the painting process is obtained by combining the combined weights
of Equation (33) and weighted by Equation (18). The calculation results are shown in
Table 10.

Table 10. Multi-objective evaluation value of the painting processes (partial).

No. YH YV YT Yeval

1 3.956 5.75 5.875 4.736
2 6.864 12.5 10 8.467
3 5.635 5.429 2.817 4.786
4 9.652 12 4.091 8.311
5 19.413 14.5 3.846 14.262
6 12.307 14.222 4 10.11
...

...
...

...
...

4.5. Painting Experiment

Based on the results of the multi-objective evaluation, the highest scoring set of process
parameters is selected and recommended to the painting process designer. The specific
painting parameters are shown in Table 11.
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Table 11. Optimal painting parameters.

Equipment
Name

Gun
Type

Nozzle
Type

Nozzle
Diameter

/mm

Nozzle
Number

Paint
Spraying
Pressure

/mpa

Air
Pressure

/Mpa

Travelling
Speed

/(mm/min)

Gun
Height

/mm

Construction
Temperature

/◦C

Side sus-
pension
painting

robot

Chang
Jiang Y YCK 0.65 1 16 0.5 200 450 23

Based on the recommended results, the gun type, nozzle type, nozzle diameter and
the number of nozzles are set for the side suspension painting robot. Moreover, painting
process parameters such as paint spraying pressure and travelling speed are fed into
the side suspension painting robot. The outer plate above the waterline is tested with
primer paint, as shown in Figure 6.
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The dry film thickness gauge is used to measure the dry film thickness after the paint-
ing has completely dried. The painting area of the outer plate above the waterline is 183 m2

and is divided into ten measurement areas. Within each area, the dry film thickness is
measured at nine randomly selected points. The measurement results of dry film thickness
are shown in Figure 7 and the distribution of film thickness is shown in Table 12.
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the outer plate above the waterline is 200µm, as specified in the coating matching table 
for the H1127/7 type ship. According to the PSPC standard, the dry film thickness should 
satisfy the 90/10 principle [40]. That is, the dry film thickness of more than 90% of the test 
points is not less than the specified film thickness and the dry film thickness of the re-
maining test points is not less than 90% of the specified film thickness. As can be seen 
from the table, 92.3% of the measurement points achieved the rating dry film thickness. 
Moreover, the dry film thickness of seven measurement points failed to reach the rating 
film thickness. However, the dry film thickness of these seven points also reached 90% of 
the rating film thickness, which is in accordance with the PSPC standard. Therefore, the 
dry film thickness of these seven points also meet the construction requirements of the 
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Table 12. Distribution of dry film thickness.
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As can be seen from the Figure 8, the average film thickness is 219.19 µm and the max-
imum film thickness deviation is 77 µm. The rating film thickness of the primer for
the outer plate above the waterline is 200 µm, as specified in the coating matching table
for the H1127/7 type ship. According to the PSPC standard, the dry film thickness should
satisfy the 90/10 principle [40]. That is, the dry film thickness of more than 90% of the test
points is not less than the specified film thickness and the dry film thickness of the re-
maining test points is not less than 90% of the specified film thickness. As can be seen
from the table, 92.3% of the measurement points achieved the rating dry film thickness.
Moreover, the dry film thickness of seven measurement points failed to reach the rating
film thickness. However, the dry film thickness of these seven points also reached 90%
of the rating film thickness, which is in accordance with the PSPC standard. Therefore,
the dry film thickness of these seven points also meet the construction requirements of
the shipyard.
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Figure 8. Measurement results of dry film thickness. 

5. Conclusions 
In this paper, a painting process intelligent design method is introduced and verified 

by actual painting tests. To improve the efficiency of process design, RF is used to con-
struct a classification model for painting objects. A hybrid classification algorithm of 
DBSCAN and RF is proposed to solve the problem that RF cannot be directly used to 
construct a classification model because painting objects do not have category labels. 
DBSCAN is used to perform clustering to form painting object category labels. Mean-
while, GWO is introduced to optimize DBSCAN for the adaptive determination of clus-
tering parameters to improve the clustering quality. The evaluation function is established 
with the evaluation criteria of painting quality, painting dosage and painting man-hour 
by considering the dry film thickness, economic cost and painting efficiency. Furthermore, 
the weight coefficients of each objective function are determined based on the AHP and 
entropy method to realize the objective evaluation of the painting process in the painting 
object set. The primer painting process of the outer plate above the waterline is used as an 
example for process recommendation. In addition, the actual painting test is carried out 
according to the recommended process parameters. The results show that the average dry 
film obtained by painting based on the recommended process parameters is 219.19 µm. 
The dry film thickness qualification rate is 92.3%, which met the PSPC standard. 

In the actual painting process of ships, the quality of the painting is affected by vari-
ous factors. The final painting effect is affected by environmental factors such as temper-
ature, humidity and wind speed. The actual painting operation cannot fully achieve the 
desired process design. Therefore, the establishment of an accurate painting quality pre-
diction model and a dynamic adjustment strategy of process parameters based on real-
time measurement of film thickness are important directions to be explored in the next 
step. 

Author Contributions: H.B. revised the paper and completed it; X.Y. wrote the first draft of the 
paper; J.N. and W.Y. assisted in the experimental verification of the paper; X.J. and H.L. collected 
and sorted the data; H.Z. provided funding for the paper. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This study was financially supported by Ministry of Industry and Information Technol-
ogy High-Tech Ship Research Project: Research on Development and Application of Digital Process 
Design System for Ship Coating (No.: MC-202003-Z01-02), the National Natural Science Foundation 
of China (No.: 51804133) and the Natural Science Foundation of Jiangsu Province (No.: BK20180977). 

Institutional Review Board Statement: Not applicable. 

Figure 8. Measurement results of dry film thickness.

5. Conclusions

In this paper, a painting process intelligent design method is introduced and verified
by actual painting tests. To improve the efficiency of process design, RF is used to construct
a classification model for painting objects. A hybrid classification algorithm of DBSCAN
and RF is proposed to solve the problem that RF cannot be directly used to construct a
classification model because painting objects do not have category labels. DBSCAN is
used to perform clustering to form painting object category labels. Meanwhile, GWO is
introduced to optimize DBSCAN for the adaptive determination of clustering parameters
to improve the clustering quality. The evaluation function is established with the evaluation
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criteria of painting quality, painting dosage and painting man-hour by considering the dry
film thickness, economic cost and painting efficiency. Furthermore, the weight coefficients
of each objective function are determined based on the AHP and entropy method to
realize the objective evaluation of the painting process in the painting object set. The
primer painting process of the outer plate above the waterline is used as an example for
process recommendation. In addition, the actual painting test is carried out according to
the recommended process parameters. The results show that the average dry film obtained
by painting based on the recommended process parameters is 219.19 µm. The dry film
thickness qualification rate is 92.3%, which met the PSPC standard.

In the actual painting process of ships, the quality of the painting is affected by
various factors. The final painting effect is affected by environmental factors such as
temperature, humidity and wind speed. The actual painting operation cannot fully achieve
the desired process design. Therefore, the establishment of an accurate painting quality
prediction model and a dynamic adjustment strategy of process parameters based on real-
time measurement of film thickness are important directions to be explored in the next step.
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