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Abstract: In this paper we describe characterization of semi-metallic bismuth thin films. We prepared
bismuth thin films by a deposition of bismuth through thermal evaporation onto flexible Kapton
substrates and annealing at temperatures close to the melting point of Bi. We studied the morphology
and transport properties of these films. Immediately after the deposition we observed competition
between vanishing of the grain boundaries and elastic strain energy, which stabilized at larger
thicknesses leading to the grain size of 140 nm. This effect was accompanied by a continuous
decrease of resistivity which, however, was larger than for the bulk bismuth. The film annealing
at temperatures close to the melting point of Bi led to a 300% increase of magnetoresistance at
room temperature and in the magnetic field of 7 T. The in situ resistance measurements allowed
us to determine the permissible temperature at which the annealing does not cause the loss of
film continuity.

Keywords: bismuth; flexible sensors; magnetic field sensor; magnetoresistance; Hall effect

1. Introduction

The elements in the conventional thin film electronics are composed of active layers
deposited on the inflexible substrates and supported by rigid printed circuit boards. In the
last decade, however, we have seen a tremendous progress in the area of soft electronics.
For soft electronics all components are fabricated on the flexible substrates that can be
wrapped, folded, twisted, or bent [1–4]. This allows to adjust the shape of the resultant
devices and to use them in a demanding environment, i.e., where space is limited in size
or curved. Examples of soft electronics applications include organic photovoltaics [5],
light emitting diodes [6], thin film transistors [7], batteries [8], sensors and actuators [9],
and wearable devices [10]. The fields of large area electronics such as panel displays [11],
medical imaging equipment [12], or bendable smartphones [13], are also growing fast.

Flexible sensors, such as magnetic fields or strain sensors, play an extremely important
role in these applications because most of modern electronic devices need a set of sensors
to function properly. However, despite the rapid development of flexible electronics, some
problems still remain unresolved in the area of sensors. One of them is the choice of a
material for the active thin film element that would be able to show high performance and
required functionalities (e.g., magnetoresistance) when bending, stretching and folding. At
the same time, it needs to be cheap, robust, and easy to manufacture. One of the materials
that has attracted a lot of attention in this context is bismuth. It shows distinctive electronic
properties such as low carrier density, small carrier effective mass, high carrier mobility,
and a long carrier mean free path [14–16]. Thin layers and nanostructures of bismuth
offer also a very high magnetoresistance, reaching even 380,000% at low temperatures [17].
These properties make bismuth a good candidate for the use in sensors, and the literature
devoted to the fabrication of low dimensional Bi structures and their magnetotransport
properties is expanding fast [18–22]. Bi films can be fabricated by various techniques
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such as liquid-based exfoliation [23,24], molecular beam epitaxy [25], and acid intercalated
exfoliation [26].

However, many properties of these films such as morphology, details of crystal struc-
ture, and electrical properties are so far not well known. Practical application of Bi film
films requires controlled synthesis of the large scale and high-quality layers. Additionally,
most of the published reports deal with Bi layers deposited on rigid substrates, such as
silicon or Al2O3. To use this material in flexible devices it is necessary to understand
how its structure and electrical properties behave after deposition on a flexible polymer
substrate. For this purpose, we investigated the properties of a thin Bi layer with various
thicknesses from 50 nm up to 2 µm deposited on a flexible Kapton foil. We determined
the structure and morphology of the layers and correlated them with magnetotransport
properties such as magnetoresistance and the Hall effect. Finally, we showed how the
properties of the layers can be improved by controlled post-annealing performed under
vacuum conditions.

2. Materials and Methods

Bismuth (purity 99.999%) was deposited by thermal evaporation in a vacuum of
10−6 mbar on the polyimide foil (Kapton) 12.7 µm thick. The Bi film thickness, controlled
during evaporation by quartz monitors with an accuracy of 2%–5%, ranged from 10 nm
to 3 µm. For deposition we used double-cross stencil mask to fabricate the film shape
suitable for the four-point magnetoresistance measurements done simultaneously with the
Hall effect measurements. The configuration of the measurements is schematically shown
in Figure 1. In this experiment the sample was placed either in the magnetic field of an
electromagnet (magnetic field range from 0 to 2 T, 300 K) or in a magnetic field of Quantum
Design MPMS XL system (magnetic field range from 0 to 7 T, temperature range from 4 K
to 300 K, Quantum Design, San Diego, CA, USA). In both cases the magnetic field was
perpendicular to the sample plane.
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Figure 1. Scheme showing geometry of the magnetotransport measurements and lateral film
dimensions.

We used the current of 1 mA applied in the longitudinal direction while the transversal
contacts were used for the voltage and Hall voltage measurements. The width of contacts
was 1 mm, and the distance between them was 2 mm. The surface morphology of the
films was examined using a scanning electron microscope (SEM, Tescan Vega 3, TESCAN,
Brno-Kohoutovice, Czechia), and the X-ray diffraction (XRD) measurements were done
with the Panalytical X’Pert Pro instrument (Malvern Panalytical, Almelo, The Netherlands).

3. Results and Discussion
3.1. Structure and Transport Properties of As-Grown Bi Films

The surface morphology of these Bi films was studied by SEM. Selected scans for film
thickness between 40 nm and 2 µm are shown in Figure 2, which shows that the grain
size increases with the increase of the thickness. The grain size was determined using
an intercept method. A random straight line through a micrograph was drawn and the
number of grain boundaries intersecting the line was counted. The average grain size was
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calculated by dividing the number of intersections by the line length. This was repeated
a few tens of times for each image, and next the distribution of grain size was fitted with
a Gauss function. The full width at half maximum (FWHM) of the Gauss distribution
determined the average grain size which is shown in Figure 3. For film thickness below
0.5 µm the grains are small and their size increases with the thickness increase; above this
thickness the grain size stabilizes at the level of approximately 140 nm.
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Figure 3. The dependence of grain size and resistivity on Bi film thickness measured at room
temperature for the magnetic field of 1 T. The dotted horizontal line indicates the bulk value of
resistivity. The dashed lines are guides for the eye. Error bars of thickness are smaller than the
symbol size.

The samples showed a polycrystalline structure indicated in Figure 4 which demon-
strates a diffractogram of 100 nm Bi film deposited on Kapton together with Kapton
reference. The indexed diffraction peaks match very well the rhombohedral crystal struc-
ture of bismuth according to database ICDD PDF file 85-1329.

It is well known [27] that the growth of polycrystalline films generally begins with
the thermally activated nucleation of islands or clusters on the surface, followed by a
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successive island coalescence and the final creation of a continuous film. During the
growth of polycrystalline films the Ostwald ripening usually occurs. It is an effect of the
growth of the larger islands at the expense of smaller islands, which leads to the increase
of the grain size for sufficiently thick films. During the growth the compressive stress
that appears early in the deposition process is usually attributed to the presence of the
surface and/or interface stress. Upon further growth, the internal elastic strain in the
crystallites starts to relax when the growing islands begin to form a continuous layer. At
this point the compressive stress converts to tensile stress related to the creation of the grain
boundaries elastically accommodated in the lattice. Then, the density of grain boundaries
decreases, leading to the reappearance of the compressive stress. The competition between
vanishing of grain boundaries and elastic strain energy leads to the stabilization of the
compressive stress and in effect also the value of grain size, as observed in Figure 3. This
mechanism partially explains resistivity dependence on thickness; a smaller density of
grain boundaries is equivalent to a smaller number of electrons scattering centers.
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For the thickness below 50 nm we observed a sharp drop of resistivity with the
maximum at 20 nm corresponding to the percolation threshold. Above the thickness
of 50 nm resistivity drops down and becomes thickness-independent at approximately
0.5 µm with the value three-fold exceeding the bulk value of Bi [26]. The carrier transport is
related to two factors: scattering of carriers on both external interfaces (film-substrate, and
film-vacuum) and scattering inside the film on the defect and grain boundaries. For thicker
films the contribution of the latter factor is dominant, limiting the carrier mobility which
results in a resistivity value larger than for bulk. In this case the initial drop of resistivity
(for film thickness between the maximum resistivity and 0.5 µm) is related to a small free
path of carriers due to scattering on interfaces and defects, while above this Bi thickness
the main mechanism limiting the mean free path of carriers and not allowing to reach
resistivity bulk values is the presence of the defect and grain boundaries. The value of
resistivity for thicker films is approximately 4 µΩ·m, and is close to that obtained by other
researchers [28,29] for polycrystalline Bi films deposited on rigid substrates.

Examples of the magnetoresistance and Hall voltage, measured for Bi film of thick-
ness of 49 nm, are shown in Figure 5. Because the Hall voltage VH can be described as
VH = RH

h BI, where RH is the Hall constant, h—film thickness, B—magnetic induction and
I—current, it should exhibit a linear dependence on B, while for magnetoresistance one
can expect the parabolic dependence on B. Both curves show such dependences on the
magnetic field. The negative slope of the Hall voltage magnetic field dependence indicates
the n-type character of conductivity as observed also for this range of Bi thickness in other
studies [27–29].

The dependence of magnetoresistance changes and Hall sensitivity VH
BI = RH

h on Bi
thickness, measured for the magnetic field of 1 T, is demonstrated in Figure 6, while the inset
shows the Hall sensitivity for the range of small thicknesses. The observed dependence



Coatings 2021, 11, 175 5 of 10

could be related to the quantum size effects observed in Bi [30]. The value of the Hall
coefficient obtained from fitting of the Hall sensitivity with the formula VH = RH

h BI is
0.08 cm3/C and agrees well with known data from other studies [31]. The continuous
increase of magnetoresistance with thickness plateaus for the Bi thickness of approximately
2 µm at the level of 10%. This is related to the fact that for larger film thickness the scattering
of carriers at interfaces is negligible. The main contribution to the carriers scattering, whose
origins are grain boundaries, does not change for the Bi thickness larger than 1 µm, as
demonstrated in Figure 3, leading to a constant value of magnetoresistivity. This type
of thickness dependence was already observed both for polycrystalline and for single
crystal Bi films [17]. On the other hand, the Hall sensitivity reaches the highest value at
Bi thickness of approximately 20 nm and then drops down with the Bi thickness. For the
Hall measurement the interface substrate-film and its quality are more significant. This
can be understood when looking at SEM images for thin (10 nm) and thick (600 nm) films
shown in Figure 7. For the thin film one can see numerous defects related to the roughness
of the Kapton substrate which was approximately 10 nm, as estimated from atomic force
microscopy (AFM) images. For larger thicknesses the film uniformly covers the substrate
and the influence of substrate imperfections is not substantial anymore; Hall sensitivity
remains constant.
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3.2. Magnetotransport Enhancement by Annealing

Two main factors governing the conductivity of Bi films are carrier density and their
mobility. It is known that the Fermi surface of Bi is highly anisotropic and has small
hole pockets and electron pockets occupying only a tiny fraction of the volume of the
Brillouin zone. This results in a very low carrier density (~1023 m−3), which means that
the probability of carrier scattering and of extremely long mean free path of the range
of mm at cryogenic temperatures is low. This feature cannot be intentionally changed
in an experiment, contrary to carrier mobility that is limited by the presence of defects
in as-grown films. The reduction of defect population by post-deposition film annealing
and deposition of films on heated substrates were shown in [10] to be an effective way to
increase resistivity. The maximum magnetoresistivity values were obtained for annealing
at temperatures close to the melting point of Bi (271.4 ◦C) which is favorable for recrystal-
lization processes and for the lattice defects reduction. In Figure 8 we present examples of
the room temperature measurement of magnetoresistance of 1 µm thick Bi film annealed
80 h at temperature of 240 ◦C; we also show a SEM image of the film surface.
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In comparison to the as-grown sample (Figure 3), the resistivity at a zero magnetic
field decreased after annealing more than two times, and the magnetoresistance value at
the magnetic field of 1 T is 2.5 times larger than for as-grown samples. This indicates a
decrease of defect concentration and grain size increase which is equivalent to a decrease of
grain boundary densities being the main reason for carriers scattering. The comparison of
these results with others obtained for polycrystalline Bi films deposited with different tech-
niques [17,32] shows that despite a non-typical substrate (Kapton) with large roughness we
managed to obtain a reasonable improvement of the magnetoresistance. The improvement
can be even more pronounced for the experiments performed at lower temperatures or
higher magnetic fields, which is demonstrated in Figure 9.
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magnetic field (b).

The temperature dependent resistance measured at the magnetic field of 7 T drastically
raises with decreased temperature, reaching a maximum at 63.5 K. This corresponds to
the maximum of the carrier mobilities. The magnetoresistance change measured for this
temperature in the magnetic field range from 0 to 7 T was equal to 4000% in comparison to
the room temperature value of 300%. Numerous experiments at low temperatures demon-
strate huge values of magnetoresistance of the order of thousands of percent; however,
they are usually performed for single crystalline Bi films obtained by expensive and time
consuming techniques such as molecular beam epitaxy. The largest magnetoresistance
values for polycrystalline films deposited on rigid substrates, such as silicon or glass, are
smaller [17,30] and at room temperature do not exceed the value of several percent, smaller
than obtained in our experiment.

The summary of post annealing influence on magnetoresistance value is shown in
Figure 10 for Bi film annealed at 230 ◦C. The annealing temperature was chosen close to
the melting point of Bi but low enough not to destroy the continuity of thinner films. The
annealing leads to material recrystallization, defect recombination and grain boundary
reduction which elongate the mean free path of charge carriers and decrease resistance.
According to Matthiessen’s rule, if initial resistivity is substantially decreased, it is accom-
panied by a significant increase in magnetoresistivity. To observe processes taking part
during annealing of Bi films we performed in situ measurement of resistivity (Figure 11).
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Figure 11. Resistivity measured during annealing process of 1 µm Bi film with 5 ◦C/min heating
rate. The inset shows the surface topography (SEM) when Bi melting point was exceeded (216 ◦C).

At lower temperatures the resistivity significantly decreases because of the defect
removal. At 90 ◦C the resistivity starts to increase and from 150 ◦C this dependence follows
linear approximation, as known for metallic conductivity, up to temperatures close to the Bi
melting point. At this point the sharp change of resistivity is observed, assigned to loss of
film continuity (as shown in the inset of Figure 11). The system goes beyond the percolation
threshold and ceases to be conductive. The region marked with a red circle with a small
drop of resistivity corresponds to the transition between solid and liquid Bi metal observed
also for bulk materials [33]. These measurements allow us to determine maximum critical
temperature at which the film still preserves continuity and the dewetting process is not
initiated. The critical temperature used for annealing strongly depends on film thickness
because of thickness dependent contributions of surface energy and the mechanical strain
to thermodynamics of the recrystallization process. These factors, in turn, influence the
annealing time which can change from a few hours for higher temperatures to a few
tens of hours if a lower annealing temperature is necessary. In this process we observed
two competing mechanisms: annealing of defects and the standard dependence R(T) for
metals completed by the local melting of film and its dewetting. We performed similar
measurements for other Bi thicknesses, and observed that the critical temperature at which
the film was losing the continuity decreased with film thickness and grain size. This is
also observed for thin films of low melting elements [34]. Overall, we conclude that the
annealing conditions have to be tuned separately for each thickness of Bi film in order to
enhance the magnetoresistance value.

4. Conclusions

We studied the surface morphology and magnetotransport properties of the Bi films
deposited on polymer flexible substrate. These substrates are essential for future applica-
tions in shapeable electronics. For as-grown Bi films we observed a decrease of resistance
for increasing film thickness related to the presence of extrinsic and intrinsic effects. For
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lower Bi thicknesses both effects play an equally important role in carrier scattering, while
for larger thicknesses the impact of grain boundaries becomes dominant. However, even
for the thickest Bi films the resistivity value was more than two times larger than in the case
of the bulk material. This resulted in small values of magnetoresistance change. The anneal-
ing of samples significantly improved the magnetotransport properties. We demonstrated
that magnetoresistance increased approximately three times in the annealed samples. The
annealing conditions have to be optimized separately for each thickness due to the different
amount of grain boundaries and other defects present in films. The resistance of Bi film
measured during annealing showed first a decrease with temperature related to defect
annealing, then a linear temperature dependence that is usual for metals, and finally a
sharp drop due to film dewetting. For temperature dependence of resistance we also
observed the transition from solid to liquid metallic phase known for bulk metallic bismuth.
The temperature and magnetic field dependent resistance exhibited the magnetoresistance
change as large as 4000% demonstrating good capabilities of Bi deposited on Kapton for
future applications. The significantly enhanced magnetoresistance of Bi layers can be used
to design the magnetic field sensor operated at the range of cryogenic temperatures and at
high magnetic fields.
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