

Supplementary Materials

High Efficiency Fluorinated Oligo (ethylenesuccinamide) Coating for Stones

Mara Camaiti ^{1,*}, Villiam Bortolotti ², Yijian Cao ^{1,3}, Alessandra Papacchini ⁴, Antonella Salvini ⁴ and Leonardo Brizi ^{5,6,*}

- ¹ CNR-Institute of Geosciences and Earth Resources, Florence 50121, Italy; yijian.cao@nwpu.edu.cn
- ² Department DICAM, University of Bologna, Bologna 40131, Italy; villiam.bortolotti@unibo.it
- ³ Institute of Culture and Heritage, Northwestern Polytechnical University, Xi'an 710072, China
- ⁴ Department of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy; a_papacchini@alice.it (A.P.); antonella.salvini@unifi.it (A.S.)
- ⁵ Department of Physics and Astronomy, University of Bologna, Bologna 40127, Italy
- ⁶ INFN, Sezione di Bologna, Bologna 40127, Italy
- * Correspondence: mara.camaiti@igg.cnr.it (M.C.); leonardo.brizi2@unibo.it (L.B.); Tel.: +39-055-2757558 (M.C.); +39-051-2095163 (L.B.)

Citation: Camaiti, M.; Bortolotti, V.; Cao, Y.; Papacchini, A.; Salvini, A.; Brizi, L. High Efficiency Fluorinated oligo(ethylenesuccinamide) Coating for Stone. *Coatings* **2021**, *11*, 452. https://doi.org/10.3390/coatings1104 0452

Received: 2 March 2021 Accepted: 9 April 2021 Published: 14 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Figure S1. Photos of coated and untreated Lecce stone specimens after 3 years from the treatment and aging with 3 cycles of water capillary absorption (Abs). The specimens APL4 and APL8 were coated with SC2-PFPEsol and SC2-PFPEsusp respectively, while APL 14 with N215. APL17 is the untreated specimen.): a) The specimens after 30 min of water capillary absorption. The absorption of the specimens APL4, APL 8 and APL 14 was carried out through the coated face. The water uptake is evident in APL17 (completely wet) and APL 14 (wet up to half height), while the APL 4 and APL 8 specimens show limited water absorption; b) the coated/untreated surface of the same specimens in dry conditions.

Coating	$S/V(m^{-1}) \times 10^5$	R ²
NT (APL 16)	1.2 ± 0.1	0.95
SC2-PFPEsol (APL 1)	1.6 ± 0.3	0.99
SC2-PFPEsusp (APL 2)	1.3 ± 0.2	0.99
N215 (APL 6)	1.8 ± 0.3	0.99

Table S1. Estimated average surface to volume ratio for coated and uncoated Lecce stone samples computed through Equation (6) with fit error corresponding as one standard deviation.

Table S2. Effective diffusion coefficients estimated from the highest intensity peak of D- T_2 correlation maps and expressed as average values with uncertainties ~ 5% corresponding to one standard deviation.

_		$D_{\rm eff}~({ m m^{2}/s}) imes 10^{-9}$		
Δ (μs)	SC2-PFPEsol	SC2-PFPEsusp	N215	NT
	APL 1	APL 2	APL 6	APL 16
4	1.79	2.21	2.11	2.21
12	1.56	1.96	1.75	1.92
50	1.29	1.56	1.23	1.83
100	0.93	1.23	0.66	1.35
150	0.61	0.91	0.38	1.00
200	-	0.60	_	0.59