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Abstract: We report the relative humidity (RH) sensing response of a resistive sensor, employing
sensing layers, based on a quaternary organic–inorganic hybrid nanocomposite comprising oxidized
carbon nanohorns (CNHox), graphene oxide (GO), tin dioxide, and polyvinylpyrrolidone (PVP),
at 1/1/1/1 and 0.75/0.75/1/1/1 mass ratios. The sensing structure comprises a silicon substrate,
a SiO2 layer, and interdigitated transducer (IDT) electrodes. The sensing film was deposited via
the drop-casting method on the sensing structure. The morphology and the composition of the
sensing layers were investigated through Scanning Electron Microscopy (SEM), X-ray diffraction
(XRD), and RAMAN spectroscopy. The organic–inorganic quaternary hybrid-based thin film’s
resistance increased when the sensors were exposed to relative humidity ranging from 0 to 100%.
The manufactured devices show a room temperature response comparable to that of a commercial
capacitive humidity sensor and characterized by excellent linearity, rapid response and recovery
times, and good sensitivity. While the sensor with CNHox/GO/SnO2/PVP at 0.75/0.75/1/1 as
the sensing layer has the best performance in terms of linearity and recovery time, the structures
employing the CNHox/GO/SnO2/PVP at 1/1/1/1 (mass ratio) have a better performance in terms
of relative sensitivity. We explained each constituent of the quaternary hybrid nanocomposites’
sensing role based on their chemical and physical properties, and mutual interactions. Different
alternative mechanisms were taken into consideration and discussed. Based on the sensing results,
we presume that the effect of the p-type semiconductor behavior of CNHox and GO, correlated with
swelling of PVP, dominates and leads to the overall increasing resistance of the sensing layer. The
hard–soft acid–base (HSAB) principle also supports this mechanism.

Keywords: oxidized carbon nanohorns (CNHox); graphene oxide (GO); polyvinylpyrrolidone (PVP);
organic–inorganic hybrid; resistive RH sensor; SnO2; HSAB
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1. Introduction

Since ancient times, materials have been of cardinal importance in humanity’s de-
velopment and have played an essential role in human progress. According to German
government estimations, around 70% of all technical innovations can be linked—to a
certain extent—to the properties of the materials used [1].

Nanocomposite materials, often classified as being materials of the 21st century, have
emerged as viable alternatives to overcome the limitations of traditional materials and
their micro composites [2]. Among these, organic−inorganic hybrid nanocomposites
have received increasing attention due to their unique physical and chemical properties.
The hybrid nanostructures, developed by combining two or more nanoscaled organic
and inorganic components, are a new type of composite materials with synergetic or
complementary behaviors [3–5].

Organic-inorganic hybrid functional materials are considered excellent candidates in a
vast number of applications in various domains such as microelectronics [6], nanomedicine [7],
energy storage [8,9], light-harvesting [10], drug delivery [11], housing [12], environmental
decontamination [13], gas sensors [14–16].

The research work on nanocarbonic based nanocomposites was greatly supported by
international initiatives related to the field, such as Graphene Flagship (https://graphene-
flagship (accessed on 26 April 2021)), with its dedicated “Graphene and Related Mate-
rials. (GRM)” section (https://graphene-flagship.eu/research/grm-projects/ (accessed
on 26 April 2021)) which is presenting the national and European funding and research
activities in this field. The medium and long-term impact of the knowledge accumulated
and its relevance for various applications are well highlighted in recent publications [17,18].

The quaternary nanocomposites [19–21] have received considerable attention lately
in line with this trend. For example, Ren et al. synthesized for the first time a qua-
ternary nanocomposite consisting of graphene, Fe3O4@Fe core/shell nanoparticles, and
ZnO nanoparticles [22]. The nanocomposite exhibits excellent electromagnetic absorp-
tion properties. Benedetti et al. explored the use of the quaternary nanocomposite
TiO2/CdS/rGO/Pt as a catalyst for the photocatalytic reduction of CO2 to methane using
water and visible light as the only energy sources [23]. The synthesized nanocompos-
ites provided superior photocatalytic activity compared with the ones demonstrated by
TiO2, TiO2/CdS binary nanocomposite, or TiO2/CdS/Pt ternary nanocomposite. Go-
likand et al. developed an organic-inorganic hybrid nanocomposite based on polyaniline
(PANI)/graphene nanosheets (GNS)/carbon nanotubes (CNT)/Pt [24]. The synthesized
nanohybrid exhibits an outstanding average electrode specific capacity (3450 C g−1) in 1M
H2SO4 solution.

Ponnamma et al. synthesized by simple mixing method an organic-inorganic hybrid
based on TiO2 nanotubes/GO (graphene oxide)/strontium titanate (SrTiO3)/poly (vinyli-
dene fluoride-co-hexafluoropropylene [25]. Dielectric properties emphasize the energy
storage capability of the synthesized nanohybrid. A quaternary hydrophilic nanohybrid
was recently tested for relative humidity (RH) monitoring at room temperature [26].

On the other hand, RH sensors have received increasing attention in the last years
due to their importance in a large variety of residential, industrial, and commercial appli-
cations. One can mention some of those: controlling and sensing humidity in offices and
homes, medical field (gas supply infrastructure, incubators, sterilizers), food/beverage
processing, chemical industry (dehumidifiers, smelting furnaces, dryers), pharmaceutical
processing, electronics (semiconductor fabrication plants, clean room controls) agriculture
(drip irrigation), weather station, textile, and paper industry, automotive industry (engine
tests beds), etc. [27–32].

Consequently, a plethora of materials have been explored as sensing layers within the
design of humidity sensors: porous silicon [33], porous polysilicon [34], silicon carbide [35],
metal oxide semiconductors [36–38], conducting polymers [39,40], MoS2 [41], polyelec-
trolytes [42–44], perovskites [45–47], metal-organic framework [48] and so forth. Nanocar-
bonic materials are widely used as sensing layers in the manufacturing of humidity sensors.

https://graphene-flagship
https://graphene-flagship
https://graphene-flagship.eu/research/grm-projects/
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The most common nanocarbon species include: carbon nanotubes and their nanocompos-
ites [49,50], carbon-quantum dots [51,52], fullerenes and their derivatives [53,54], graphene
and its nanocomposites [55–58], carbon nanofoam [59], oxidized carbon nano-onions and
their nanocomposites [60–63], graphene oxide (GO) and its nanocomposites [64,65], carbon
nanohorns, oxidized carbon nanohorns (CNHox) and their nanocomposites [66–72].

The aim of the paper was to introduce a new quaternary organic-inorganic hybrid
nanocomposite, i.e., CNHox/GO/SnO2/PVP (prepared at 0.75/0.75/1/1 and 1/1/1/1
w/w/w/w ratios). Following the synthesis and structural characterization, we demonstrated
how this new organic-inorganic hybrid nanocomposite could be used to develop a chemore-
sistive RH sensor and verify its room temperature functioning.

The nanocomposite structure contains four components, carefully selected, whose
characteristics recommend them as constituents for the sensitive material. CNHox is
characterized by high conductivity, high specific surface area/volume ratio, high affinity
for water molecules [63,65,67], and GO is an excellent hydrophilic, dispersant material
ideal for carbonic nanoparticles. SnO2 nanopowder exhibits a high affinity for water
molecules, good chemical stability, non-toxicity with a well-known mechanism for water
vapor chemisorption [73,74]. PVP can be the polymer matrix of the sensitive layer due to
its excellent binding properties with carbon nanomaterials [75].

The study presents the synthesis and structural properties of a quaternary organic-
inorganic hybrid nanocomposite. The room temperature, RH sensing capabilities of these
layers are further investigated, and typical characteristics (such as rise and fall times,
sensitivity) are extracted.

2. Materials and Methods
2.1. Materials

All the materials described below were obtained from Sigma Aldrich (Redox Lab
Supplies Com, Bucharest, Romania). The chemicals were of the highest available grade
and were used as received. Details are listed below:

- Powder of CNHox (with the following linear formula CxHyOz and a structure shown
in Figure 1a) is characterized by lengths between 40 nm and 50 nm, diameters between
2 nm to 5 nm, and specific surface area around 1300–1400 m2/g (BET). CNHox contains
10% graphite as the main impurity and has no metal contamination.

- PVP, with the linear formula (C6H9NO)n and the structure depicted in Figure 1b, has
an average molar weight of 10,000 Da.

- GO (15–20 sheets, 4–10% edge-oxidized, 1 mg/mL dispersion in water) has a linear
formula CxHyOz. Its structure is depicted in Figure 1c.

- Tin (IV) oxide (SnO2) is a nanometric powder (averaged particle size lower than
100 nm), with a specific surface area around 10–25 m2/g.

- Isopropyl alcohol, (CH3)2CHOH, is a solution 70% w/w in water.

2.2. Synthesis of the Quaternary Organic-Inorganic Hybrid Nanocarbonic Composites Sensing
Films and Experimental Setup

For the investigation of RH sensing capabilities of the quaternary organic-inorganic
hybrid nanocarbonic composites, the following chemical compositions of the sensing
films were designed, synthesized, and tested: CNHox/GO/SnO2/PVP = 1/1/1/1 and
CNHox/GO/SnO2/PVP = 0.75/0.75/1/1, both being expressed as mass ratios (w/w/w/w).

The dispersions’ homogenization was achieved by employing a mild sonication bath
(FS20D Fisher Scientific, Dreieich, Germany) at 42 kHz (output power 70 W). This process
ensured a relatively uniform dispersion of the CNHox, GO, and SnO2 in the PVP network.
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The synthesis of the organic-inorganic hybrid solid-state sensing films based on
CNHox/GO/SnO2/PVP = 1/1/1/1 and CNHox/GO/SnO2/PVP = 0.75/0.75/1/1 was
performed as described in the following paragraph. First, the PVP solution was prepared
by dissolving 10 mg polymer in 15 mL isopropyl alcohol under stirring in the ultrasonic
bath. Then, a GO dispersion in water was added to the previous PVP solution, stirred
in the ultrasonic bath for 1 h at room temperature (10 mL and 7.5 mL, respectively, in
1/1/1/1 and 0.75/0.75/1/1 mixtures). CNHOx powder (10 mg and 7.5 mg, in 1/1/1/1
and 0.75/0.75/1/1 mixtures, respectively) was added to the resulted dispersion. The
mixture was subjected to stirring in an ultrasonic bath for 2 h at room temperature. The
nanometric SnO2 powder, 10 mg for each sensing material, was added at the end and
stirred in an ultrasonic bath for 2 h at room temperature. Finally, an annealing process
was performed by heating the obtained dispersion for 24 h at 80 ◦C under low pressure
(1 mbar). In the end, after masking the contact areas on the IDT structure, the drop-casting
method was applied to obtain the sensing layers.

The sensing device consists of a metallic interdigitated (IDT) dual-comb structure
fabricated on a Si substrate (470 µm thickness), covered by a SiO2 layer (1 µm thickness)
(Figure 2). The metal stripes of IDT comprise chromium (10 nm thickness) and gold (100 nm
thickness) [65,67,69].

The relative humidity sensing measurements were performed in an appropriate exper-
imental setup (Figure 3). The dry nitrogen was purged through two recipients in series con-
taining demineralized water for varying the relative humidity in the testing chamber from
0% to 100% RH. The testing chamber included a tandem of devices: the resistive sensing
structure (abbreviated as SUI–sensor under investigation) using CNHox/GO/SnO2/PVP
as sensing layers at different w/w/w/w/ratios, and a capacitive RH commercial sensor
(COM–[76]). The latter was used to confirm the RH level indicated by the mass flow con-
troller (MFC) system. By installing the two sensors close to each other and the gas inlet, both
were exposed to the quasi-identical gas flow (wet nitrogen), thus ensuring quasi-similar
experimental conditions leading to valid conclusions. A Keithley 6620 current source
(Keithley Instruments GmbH, Germering, Germany), providing a recent variation between
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0.01–0.1 A, was employed; the data were collected and analyzed with a PicoLog data logger
(PICO Technology, Neots, Cambridgeshire, United Kingdom). All the measurements were
recorded at constant room temperature [65,67,69].
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Figure 3. Experimental setup employed for RH measurements.

X-ray diffraction measurements were performed using a 9 kW Rigaku Smart Lab
diffractometer (Osaka, Japan) operated at 40 kV and 75 mA. To assure a good divergence
of the X-ray beam at the detector, a PSA 0.5◦ soller slit was used. Grazing incidence X-ray
diffraction (GI-XRD) patterns were recorded keeping the incidence angle ω at 0.5◦, while
the detector scanned from 2θ = 5 to 60◦. The peak indexing was made using the ICDD
database—International Center for Diffraction Data.

The interaction between the two nanocarbon materials and PVP and SnO2 has been
proven using Raman spectroscopy. Raman spectra have been acquired by Lab Ram HR
800 Raman spectrometer (Horiba Europe, Antwerp, Belgium), using a He-Ne laser excita-
tion (633 nm).

The surface topography of the sensing films was investigated by scanning elec-
tron microscopy (SEM). For surface visualization, a field emission gun scanning electron
microscope/FEG-SEM-Nova NanoSEM 630 (Thermo Scientific, Waltham, MA, USA) (FEI),
with superior low voltage resolution and high surface sensitivity imaging, was used. The
investigation of the samples was made through a direct approach (no sample preparation
needed); the current during the measurements was 1 nA.
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3. Results and Discussion
3.1. Surface Topography

The discontinuous character of particles’ distribution on the sensitive layer’s surface
can be observed in all recorded SEM (Figures 4 and 5). The nanoscale images show the
existence of a broad particle size distribution, starting from about 10–20 nm to 100 nm,
which could be correlated at least partially with the size of the crystallites identified by
GIXRD (see below) and with the particle size of SnO2 specified by the supplier Sigma-
Aldrich. Also, particles of much larger dimensions (100–200 nm) can be observed due to
the aggregation of particles of various sizes and crystallographic orientations.
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3.2. X-ray Diffraction Results

GIXRD patterns are shown in Figure 6 for each component of quaternary organic-
inorganic hybrid nanocomposite (a–d) and the organic-inorganic nanohybrid at two differ-
ent w/w/w/w/ratios (e,f).
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Coatings 2021, 11, 530 8 of 18

In the case of CNH (Figure 6a), the GIXRD diffraction pattern shows three broad
diffraction peaks, characteristic for CNH located at 23.86◦, 43.11◦ and 53.26◦, correspondent
with the (002), (100), and (004) facet of CNHs [77]. A notable exception is GO (Figure 6b),
whose diffraction pattern was characteristic for graphite rather than for graphene oxide [78].
A possible explanation could be the high degree of structural defects in the commercial
graphene oxide used in the design of organic-inorganic nanocomposites. In addition, a
diffraction peak that comes from the Si substrate can be observed. This peak has different in-
tensities for different samples due to different azimuthal positions (rotation angle of Si sub-
strate) with the X-ray beam. Further, in Figure 6c, one can be observed that the GIXRD pat-
tern exhibits multiple diffraction peaks, which can be ascribed unambiguously to wurtzite
SnO2, which belongs to 136: P42/mnm spatial group according to card no. 210-1853. Fi-
nally, for the latter component, the GIXRD pattern of pure PVP (Figure 6d) showed two
broad characteristic peaks at 2θ = 11.25◦ and 21.21◦ corresponding to d-values of 7.96 and
4.18 Å, respectively. This is in good agreement with results reported by Li et al. [79]. If
the diffractogram recorded for CNHox/GO/SnO2/PVP at 1:1:1:1 mass ratio (Figure 6e)
reveals the presence of SnO2 with the mean crystallite size of 17.8 ± 0.89 nm, poor crystal-
lization for SnO2 with the mean crystallite size of 1.43 ± 0.07 nm can be estimated based
on Scherrer equation [80], from the diffractogram recorded for CNHox/GO/SnO2/PVP
at 0.75:0.75:1:1 w/w/w/w ratio (Figure 6f). The uncertainty of the mean crystallite size was
established after subtracting the instrumental broadening from the total broadening of the
diffraction peak [81]. In this context, X-ray diffraction results suggest the close relationship
between mass ratio and microstructural parameters.

3.3. Raman Spectroscopy

Raman spectra of quaternary nanocomposites based on CNHox/GO/SnO2/PVP type
highlighted the complexity of the chemical interactions between the four components and
the nature of the multiple structural and atomic arrangement defects of the functional
groups at CNHox and GO.

Thus, Figure 7a shows three Raman spectra recorded in three different positions of
the film deposited from the quaternary nanocomposite CNHox/GO/SnO2/PVP = 0.75/
0.75/1/1 (w/w/w/w) ratio, plotted in red, green, and blue color, respectively. It can be
observed that three active Raman bands (D,G,2D) were recorded at the wavenumbers of
1312, 1575.6, and 2627 cm−1, which shows a redshift of these spectra by at least 10–15 cm−1

from the known values of the graphene oxide. One can also identify one specific SnO2 band
(635.9 cm−1) having a low intensity, explainable by the small size of the related crystallites,
according to the GIXRD results Figure 6. The displacement of the Raman peak positions
of the carbonaceous material is the most spectacular result in Figure 7. Besides, it is well
known from the literature that there are significant differences between the scattering
maxima of graphene oxide reported by different authors [82,83]. This spectrum’s specific
features can be explained by the presence of chemical interaction (stacking interactions
and hydrogen bond between GO and CNHox) and the high density of defects in GO, as
revealed in the previous XRD analysis performed on the different GO material. In the
same vein, Figure 7b shows the Micro-Raman spectra of the film with the quaternary
composition CNHox/GO/SnO2/PVP = 1/1/1/1. According to the Raman spectrum of
pure PVP, the weak band at 1606, 9 cm−1 can be attributed to the PVP [83]. The very
weak band around 2450 cm−1 can originate from the double resonance process involving
the phonon dispersion of two-dimensional graphite (a major impurity of oxidized carbon
nanohorn) [84].
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3.4. RH Monitoring Capability of the Quaternary Nanocomposite

The RH monitoring capability of each organic-inorganic hybrid nanocomposite–based
sensing layer was explored by applying a current between the two electrodes and measur-
ing the voltage difference when varying the RH from 0% to 100%. To simplify the analysis,
the following abbreviations will be used:

• sensor 0.75—a resistive sensor that employed a sensing layer based on CNHox/GO/
SnO2/ PVP at 0.75/0.75/1/1 mass ratio.

• sensor 1.0—a resistive sensor that used a sensing layer based on CNHox/GO/SnO2/PVP
at 1/1/1/1 mass ratio.

A notable characteristic of these sensors is low power consumption, below 2 mW. The
behavior of the manufactured sensors is presented below (Figure 8a,b):
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time for three measurement cycles when relative humidity was increased in ten steps from 0% RH to
100% RH; “RH curve-red” shows similar characteristic measured for a commercial, capacitive sensor.

The resistance of the organic-inorganic quaternary hybrid-based thin film increases
when RH increases. It is observed that the resistance of the sensing layer for the RH
value “0” is growing with the decrease of the CNHox (nanocarbonic materials with high
conductivity) content in the nanohybrid. The quaternary nanohybrid-based resistive
sensors’ overall linearity—in humid nitrogen when varying RH from 0% to 100%—is
excellent, as shown in Figure 9. In terms of linearity, the sensor 0.75 seems to have better
performance (R2 = 0.99).

Two important parameters, such as response time and recovery time (in seconds),
were calculated for both manufactured RH resistive sensors. If R(t) is the response of the
device in time, the tr can be evaluated as:

tr = t90 − t10 (1)

where t90 and t10 represent the moments when the response R(t) reaches 90% and 10%,
respectively, from the total variation of the sensor’s resistance due to a change in the RH
value (as in the example presented in Figure 10).
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Figure 10. Example for the calculation of response time.

For the RH variation from 40 to 50% (Figure 11a,b), the response times of sensor
0.75, sensor 1.0, and commercial sensors are 43, 42, and 37(31), respectively. However, it
was observed that for lower humidity values (up to 30% RH), the response time of the
commercial sensor is higher compared to sensor 1.0. A similar situation was recorded for
the RH variation from 60 to 70%.
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On the other hand, higher response times were obtained for the entire RH range for
sensor 0.75 compared to sensor 1.0. This result can be explained by decreasing the number
of active sites when the concentrations of CNHox and GO decrease in the sensing layer.

At the same time, higher response times were calculated at RH levels higher than
70% compared with values for response time for RH values below 50%. This result can
be explained by the saturation of actives sites at high relative humidity, a process that
is further detailed. Water molecules penetrate the hydrophilic organic-inorganic hybrid
sensing film. Due to hydrophilic constituents’ presence, the hybrid nanocomposite film
adsorbs/absorbs a substantial amount of water (related to the sensing film’s mass). Finally,
some water molecules can condensate in the proximity of hydrophilic groups, thus blocking
active sites.

Similarly, the recovery times are calculated (see the examples in Figure 12a,b).
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0% RH (clean, dry nitrogen): (a) sensor 0.75 and (b) sensor 1.0.

Sensor 0.75 has a better performance in terms of recovery time than the commercial
sensor and sensor 1.0. Sensor 0.75 has a recovery time of 72 s, while sensor 1.0 has a
recovery time of 164 s.

To compare the sensing performances of both manufactured RH resistive sensors, a
relative sensitivity (Sr) was defined. This Sr value consists of sensitivity (S = ∆R/∆RH) of
the transfer characteristic from Figure 10 divided by the sensor’s initial electrical resistance
in clean, dry nitrogen (R0). These results are presented in Table 1 for the second cycle of
functioning of the sensors. As can be observed, sensor 1.0 exhibits the best performance.

Table 1. Sensing parameters for 0.75 and 1.0 RH resistive sensors.

Sensor Parameters
Sensor Type

Sensor 0.75 Sensor 1.0

Resistance, Ro [Ω] 461.78 336.28
Sensitivity, S = ∆R/∆RH 0.5970 0.9021

Relative sensitivity, Sr = S/R0 0.00129 0.00268

3.5. Analysis of Sensing Mechanism

Each constituent of the quaternary organic-inorganic hybrid nanocomposite employed
for resistive monitoring of RH has a specific role. CNHox shows appropriate features such
as increased conductivity, high specific surface area/volume ratio, an affinity for water
molecules, as well, as a rapid variation of the electrical resistance in contact with a water
molecule in the humidity range from 0% RH to 100% RH, available in high purity, and last
but not least, facile synthesis. All these outstanding properties make CNHox a valuable
candidate for monitoring resistive room temperature RH [63,65,67].

GO exhibits many advantages such as superior hydrophilic properties, good charge
carrier, suitable dispersant for carbonic nanoparticles such as carbon nanotubes or carbon
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nanohorns, possibility to modulate chemical and physical properties through covalent
and noncovalent functionalization, excellent mechanical properties [73]. Furthermore,
due to oxygen functionalities, GO shows excellent dispersibility in water and different
organic solvents.

SnO2 powder exhibits good sensitivity towards relative humidity, high chemical
stability, non-toxicity, and low-cost synthesis [74].

PVP is a hydrophilic polymer with excellent binding properties [75].
Taking into consideration the possible interactions between water and the above-listed

materials, four distinct sensing mechanisms can be identified and analyzed:

• The high proton conductivity of GO and CNHox.

This approach is related to the dissociation of water and ionization of carboxylic
groups. The adsorbed water molecules on CNHox and GO hydrophilic surfaces may disso-
ciate to H+ and OH− ions. Besides, carboxylic groups found in the molecular architecture
of both nanocarbonic materials may dissociate. The generated proton may tunnel from
one water molecule to another through hydrogen bonding, increasing the overall electrical
conductivity of the organic-inorganic hybrid-based sensing film [85].

• Water acting as an electrons donor for p-type semiconducting materials such as CNHox
and GO [86].

The second mechanism takes into consideration the p-type semiconducting material
properties of both CNHox and GO. At the interaction with nanocarbonic materials, H2O
molecules donate their electron pairs, decreasing the number of holes in GO and CNHox.
Consequently, the humidity sensing layer based on quaternary hybrid nanocomposite
should become more resistive.

One can also judge this mechanism from the perspective of the hard-soft acid-base
(HSAB) principle. Thus, according to HSAB, in the sensing process, water molecules
classified as hard Lewis bases will interact with the holes of the p-type semiconducting
materials CNHox and GO (which can be virtually categorized as strong Lewis acids).
Therefore, they will be nulling each other by multiple recombination processes [87–89].

• The swelling of the dielectric, hydrophilic polymer.

PVP is a dielectric polymer with hydrophilic properties, and therefore prone to
swelling due to interaction with water molecules. Thus, the distances between GO and CN-
Hox nanoparticles increase, electrically percolating pathways being diminished. According
to this approach, the sensitive layer should become more resistive [90].

• The release of electrons from the interaction of SnO2-H2O.

In general, water molecules can be adsorbed by physisorption or hydrogen bonding
and react with the Lewis acid site and Lewis base site on the SnO2 surface, thus releas-
ing electrons (e−) [91]. According to this approach, the sensitive layer should become
more conductive.

As shown in Figure 10, the resistive test structure’s transfer characteristics demon-
strate that the values of electrical resistance as a function of RH level increase. These results
suggest that the overall behavior of the quaternary organic-inorganic hybrid nanocompos-
ites CNHox/GO/SnO2/PVP = 1/1/1/1 and CNHox/GO/SnO2/PVP = 0.75/0.75/1/1 is
equivalent to a p-type semiconducting material behavior.

It is reasonable to accept that adding SnO2 to the CNHox and GO will result in the for-
mation, in the quaternary nanocomposite, of islands of p-n semiconductor heterojunctions
embedded in the PVP (as dielectric material). The behavior of the sensing layer indicates
that heterostructures built between n-type SnO2 and p-type CNHox and GO may not play
a cardinal role in the electrical conduction. Therefore, the RH monitoring process could
be explained by the presence of the percolating paths of CNHox (significant contribution)
and GO (minor contribution), that shunt the p-n heterojunctions, which ultimately could
influence only the geometry of the conducting pathways of the quaternary hybrid. In other
words, it may be assumed that effect of the p-type semiconductor behavior of CNHox
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and GO correlated with swelling of PVP dominates and leads to the overall increasing
resistance of the sensing layer.

4. Conclusions

In this study, an RH sensing response of resistive sensors, employing sensing layers,
based on an organic–inorganic quaternary hybrid nanocomposite comprising CNHox/GO/
SnO2/PVP = 1/1/1/1 and CNHox/GO/SnO2/PVP = 0.75/0.75/1/1 mass ratios, was
reported. The manufactured sensors show a room temperature response comparable to
that of a commercial capacitive humidity sensor. They are characterized by excellent
linearity, rapid response and recovery times, and good sensitivity. While the sensor
with CNHox/GO/SnO2/PVP at 1/1/1/1 (mass ratio) as the sensing layer has the best
performance in terms of relative sensitivity and response time, the structure employing the
CNHox/GO/SnO2/PVP at 0.75/0.75/1/1 (mass ratio) has better performance regarding
the linearity and recovery time. We highlighted that the role of each component of the
quaternary hybrid nanocomposites in the sensing was explained based on their chemical
and physical properties, and mutual interactions. Four sensing mechanisms were taken into
account and discussed. Based on the sensing results, the p-type semiconductor behavior
of CNHox and GO, in conjunction with swelling of PVP, prevails and leads to the overall
increasing resistance of the sensing films. The hard–soft acid–base (HSAB) theory also
supports this interpretation.

The low power consumption of the manufactured sensors, below 2 mW, and the
sensing performances at room temperature and manufacturing simplicity are the essential
benefits of the presented sensors.
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