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Abstract: Microcapsules of a waterborne core material were prepared using a waterborne primer.
The microcapsules of the waterborne core material were added to the waterborne primer to explore
the effects of different core–shell ratios and mass fractions of the microcapsules on the property of
the waterborne primer coating on the wooden surface. The results show that as the mass fraction
of the microcapsules increased, the chromatic aberration increased by degrees, the glossiness de-
creased gradually, and the hardness increased by degrees, whilst—except for the coating with 0.50:1
microcapsules—the adhesion decreased gradually. When the mass fraction of the microcapsules
increased, the impact resistance increased first and decreased later, or remained unchanged after
reaching a certain value. When the mass fraction of the microcapsules increased, the elongation at the
break increased first and decreased later. When the core–shell ratio was small and the mass fraction
was between 5.0% and 15.0%, the coating had better liquid resistance. When the core–shell ratio was
0.67:1 and the mass fraction was 10.0%, the overall property of the coating on the Basswood was the
best. The technology of microencapsulation provides a technical reference for the waterborne primer
with self-repair qualities on the surface of wooden products.

Keywords: microcapsule; waterborne primer; coating

1. Introduction

Self-repairing microcapsules can inhibit the micro-cracks on the coating. When the
coating cracks, the core material of the microcapsule repairs the cracks. Microencapsulation
technology has been used in many technical fields [1–3]. Cotting et al. [4] synthesized
polyurea-formaldehyde melamine microcapsules by in-situ polymerization. The results
show that the coating of microcapsules has a remarkable self-healing effect when it is sub-
jected to mechanical defect stress. The microcapsules with high concentrations (15 wt. %)
have a better self-healing ability and better corrosion resistance properties. Tzavidi et al. [5]
prepared polyurea-formaldehyde (UF)-coated epoxy resin microcapsules, and studied the
effects of different technological parameters on the properties of the microcapsules. The
coverage rate of the core material was between 65 and 77%. Sun et al. [6] reported the prepa-
ration of metal-shell microcapsules, providing a good technical reference to improve the
microcapsules’ robustness. Studies have shown that the coating added to the microcapsules
has good anticorrosive properties in salty water. Jiang et al. [7] reported the preparation
of self-healing and flame-retardant microcapsules by the phacoemulsification-solvent
volatilization method. The results show that SFRM has a large particle size distribution and
thermal stability, and sustained-release and flame-retardant properties. The repair rate was
about 61%. Ning et al. [8] investigated the effect of the initiator concentration, microcapsule
size and concentration on the self-healing properties. The results show that the fracture
toughness of the composites increases significantly as the microcapsule size and concentra-
tion increases. The self-healing efficiency of the microcapsules was the highest, reaching
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76%. In our previous study [9], the preparation of the epoxy resin microcapsules by in situ
polymerization was reported, and the yield, coverage rate, repair rate and morphology
of the microcapsules were studied. The results showed that the microcapsules have a
self-healing effect, and the self-healing efficiency can reach 114.77%.

Wood coating is a new type of coating, which has the advantages of environmental
protection, pollution resistance, low cost and being fast drying [10,11]. It can not only
stabilize the performance of wooden materials but also has the functions of anti-corrosion,
being flame retardant and fragrance retention [12,13]. Among them, waterborne coatings
are very popular in the field of wooden surface coating [14,15]. In this paper, Basswood was
used as the base material, and wood waterborne primer was used as the paint base. The
waterborne primer is in direct contact with the wood in order to protect the wood substrate
and combine well with the waterborne topcoat, and the performance of the primer is
required to be higher, so the performance of the waterborne primer with microcapsules
was studied. Seven kinds of microcapsules were added into the waterborne primer coatings
to test the optical performance [16–18], mechanical properties [19–21], liquid resistance [22],
the micro-morphology [23–25] and chemical composition [26–28] of the coatings. At the
same time, the influence of different microcapsules on the performance of the waterborne
primer coating was investigated.

2. Materials and Methods
2.1. Experimental Materials

The triethanolamine (Mw: 149.19 g/mol, CAS No.: 102-71-6), urea (Mw: 60.06 g/mol,
CAS No.: 57-13-6) and formaldehyde solution (37%, Mw: 30.03 g/mol, CAS No.: 50-00-0)
were supplied by Guangzhou Jiangshun Chemical Technology Co., Ltd., Guangzhou,
China. The N-octanol (Mw: 130.23 g/mol, CAS No.: 111-87-5) was provided by Nantong
Wanrong International Trade Co., Ltd., Nantong, China. The citric acid monohydrate
(Mw: 210.14 g/mol, CAS No.: 5949-29-1) and sodium dodecyl benzene sulfonate (Mw:
348.48 g/mol, CAS No.: 25155-30-0) were provided by Jiading Chemical Technology Co.,
Ltd., Suzhou, China. The waterborne primer was supplied by Nippon Paint Co., Ltd.,
Guangzhou, China. The Basswood (120mm × 75 mm × 5 mm) was supplied by Suqian
Qingyun Wood Industry Co. Ltd., Suqian, China.

2.2. Experimental Method

In order to prepare microcapsules according to Table 1, the shell of the material was
first prepared. In total, 20.0 g urea and 27.0 g 37% formaldehyde solution were mixed and
stirred at 300 rpm. Then, triethanolamine was slowly added to adjust the pH value of the
solution to 9.0 and stirred continuously at 60 ◦C for 80 min.

Table 1. Proportion of the raw materials.

Sample Urea (g) Formaldehyde
Solution (g)

Waterborne
Acrylic

Coating (g)

Sodium Dodecyl
Benzene

Sulfonate (g)

Deionized
Water (g)

Core-Shell
Ratio

1 20.0 27.0 12.5 0.98 97.02 0.42:1
2 20.0 27.0 15.0 1.17 115.83 0.50:1
3 20.0 27.0 17.5 1.37 135.60 0.58:1
4 20.0 27.0 20.0 1.56 154.44 0.67:1
5 20.0 27.0 22.5 1.76 174.24 0.75:1
6 20.0 27.0 25.0 1.95 193.05 0.83:1
7 20.0 27.0 27.5 2.15 212.85 0.92:1

In order to prepare the core material emulsion, the waterborne primer was mixed
with a 1.0% aqueous solution of sodium dodecyl benzene sulfonate via magnetic stirring
(1200 rpm) for 30 min at 70 ◦C.

At room temperature, the shell of the material was slowly dropped into the core
material at 300 rpm and citric acid monohydrate crystal was added gradually to adjust the
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pH to 3–4. Then, the reaction temperature was raised to 60 ◦C for 2 h. The mixture was left
to rest for 5 days and then filtrated. After that, the product was put into a drying box for
4 h at 80 ◦C and, eventually, white powder microcapsules were obtained.

As can be seen in Table 2, different amounts of microcapsules were added into the
waterborne primer to give mixtures with mass fractions of microcapsules of 0, 5.0%, 10.0%,
15.0%, 20.0% and 25.0%. The prepared coating mixtures were spread onto substrate once,
in a single layer, and left to dry for 30 min. Then, the samples were heated in a 40 °C drying
oven until the mass no longer changed. The dried coatings were placed outside the oven,
naturally cooled, gently polished with fine sandpaper and then wiped with a dry and clean
cloth. The above steps were repeated twice. The whole experimental process is shown
in Figure 1.

Table 2. Ingredients for the preparation of the waterborne primer coatings.

Mass Fraction of
Microcapsules (%)

Mass of Microcapsules
(g)

Mass of Waterborne
Primer (g)

Mass of Self-Healing
Waterborne Primer (g)

0 0 4.0 4.0
5.0 0.2 3.8 4.0

10.0 0.4 3.6 4.0
15.0 0.6 3.4 4.0
20.0 0.8 3.2 4.0
25.0 1.0 3.0 4.0
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2.3. Testing and Characterization

The portable chromatic aberration meter (Hefei Nian Qing Power Equipment Co.,
Ltd., Hefei, China) was used to test the chromatic aberration. The 60◦ glossiness of the
coatings was tested using an LS191 intelligent gloss meter (Shenzhen Linshang Technology
Co., Ltd., Shenzhen, China). The hardness of the coatings was measured using a pencil
hardness tester (Beijing Wowei Technology Co., Ltd., Beijing, China).

The adhesion of the coatings was measured using a F107 film scriber (Beijing Times
Jiaxiang Technology Co., Ltd., Beijing, China). The adhesion of the coating was tested
according to the national standard GB/T 4893.4-2013 “Test of surface coatings of furniture—
Part 4: Determination of adhesion—Cross cut” [29]. The cutting tool was perpendicular to
the surface of the sample and the cut on the paint coating was made at a uniform rate. All
of the cutting was to the surface of the substrate. Then, the surface was rotated 90◦ in the
original direction to cut to form a grid pattern. The grid pattern was brushed lightly with a
brush, and the tape was stuck on the grid pattern to make the tape fully contact with the
paint coating. Then, as close as possible to 60◦, the adhesive tape was torn off smoothly
within 0.5 s–1.0 s, and the peeling of the paint coating on the tape was observed.
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The impact resistance of the coatings was tested using a film impact tester (Dongguan
Daxian Automation Equipment Co., Ltd., Dongguan, China). According to the standard
GB/T4893.9-2013 “Determination of impact resistance of film” [30], the test board was
placed on the iron paste embedded in the seat of the impact testing machine, and a heavy
hammer was fixed to a certain height. When the control button was pressed, the heavy
hammer fell freely onto the test board. We took out the test board and observed whether
there are cracks and spalling on the surface of the test board.

The elongation at the break of the coatings was measured using a universal mechanical
testing machine (Shandong Kaifeng Testing Technology Co., Ltd., Jinan, China). During the
test, we clamped the two ends of the coating to ensure that the coating will not slide. The
coating deformed at a tensile speed of 0.12 mm/min and broke under a certain longitudinal
load. The elongation at the break = the coating elongation/ the original length of the
coating between clamps × 100 %.

The liquid resistance of the coatings was tested against 15% NaCl, 70% medical ethanol
(Nanjing Shenghinghe Chemical Co. Ltd., Nanjing, China), detergent (LIbY Group Co.,
Ltd., Guangzhou, China) and red ink (Shanghai Hero Co., Ltd., Shanghai, China). The
filter paper was put into the test solution to soak for 30 s. It was then placed on the test
board with tweezers. Then, the sample was covered with a glass cover. After 1 day, we
removed the glass cover and filter paper and dried the residual liquid on the surface of
the test plate with absorbent paper and let sample stand for 30 min. Then, we checked the
damage of the experimental area of the sample for marks and discoloration. The chromatic
aberration and glossiness of each test board were measured to judge the influence of the
different reagents on the coating performance.

The microstructure and chemical composition of the coatings were assessed using a
Quanta-200 scanning electron microscope (FEI Co., Ltd., Hillsboro, OR, USA), a Zeiss Axioscope
5 Optical Microscope (SPECTRO Co., Ltd., Germany) and a FTIR-850 infrared spectrum analyzer
(Tianjin Gangdong Science and Technology Development Co., Ltd., Tianjin, China). All of the
tests were repeated five times with a standard error of less than 5%.

3. Results and Discussion
3.1. Effect of the Microcapsules on the Optical Properties of the Coatings
3.1.1. Chromatic Aberration

L1, a1 and b1 are the chromaticity values at one point on the coating, while L2, a2 and
b2 are the chromatic values of the other point. According to the formula: ∆L (brightness
difference) = L1 − L2, ∆a (red–green color difference) = a1 − a2, ∆b (yellow–blue color
difference) = b1 − b2, and the chromatic aberration value is calculated by formula (1):

∆E = [(∆L)2 + (∆a)2 + (∆b)2]1/2 (1)

The influence of the microcapsules on the chromatic aberration of the primer coating is
shown in Figure 2. Under the same core–shell ratio, the chromatic aberration of the coating
increased by degrees. The uneven color observed on the coatings is due most likely to the
increase of the white particle content. When the mass fractions of the microcapsules was
0–10.0%, the color of the coating basically did not change, and the chromatic aberration
range was 1.0–2.1.
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3.1.2. Glossiness

It can be seen from Figure 3 that the glossiness of the coating decreased by degrees at
the same core–shell ratio. When the mass fraction of the microcapsules increased to 5.0%,
the glossiness of the coating decreased from 18.7% to 12.1–15.2%. When the mass fraction of
the microcapsules continued to increase to 10.0%, the glossiness of the coating decreased to
the range of 7.6–10.7%. This was due to the increase of the microcapsule content when the
roughness of the coating became larger and the surface particles became greater, which led
to an enhanced diffuse reflection and, consequently, the reduced glossiness of the coatings.
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3.2. Effect of the Microcapsules on the Mechanical Properties of the Coatings
3.2.1. Hardness

The hardness test results are shown in Table 3. Under the same core–shell ratio, the
hardness of the coating increased by degrees, except for the 0.50:1 microcapsules, for which
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the hardness increased when the mass fraction changed from 0 to 15.0% and then decreased
with the increase of the microcapsule content above 15.0%. The latter behavior could
be explained by the uneven distribution of the microcapsules as their content gradually
increased, giving a weak ability to resist external destructive force [31,32]. Comparatively,
there were no significant differences in the hardness of the coatings with the same mass
fraction of microcapsules. Combined with the optical performance test results, the hardness
of the coating was better when the core–shell ratios of the microcapsules were 0.58:1 and
0.67:1, and the mass fractions of microcapsules were 10.0–15.0%.

Table 3. The hardness of the coatings.

Mass Fraction of
Microcapsules (%)

Hardness

Core–Shell
Ratio 0.42:1

Core–Shell
Ratio 0.50:1

Core–Shell
Ratio 0.58:1

Core–Shell
Ratio 0.67:1

Core–Shell
Ratio 0.75:1

Core–Shell
Ratio 0.83:1

Core–Shell
Ratio 0.92:1

0 HB HB HB HB HB HB HB
5.0 2H 2H 2H 2H H 2H 2H

10.0 2H 2H 3H 3H 2H 2H 2H
15.0 3H 3H 3H 3H 2H 2H 2H
20.0 3H 2H 3H 3H 3H 3H 3H
25.0 3H 2H 4H 4H 3H 3H 3H

3.2.2. Adhesion

The test results of the coating adhesion are shown in Table 4. The results show that
the adhesion of the coating decreased gradually at the same core–shell ratio. The coatings
with core–shell ratios of 0.58:1 and 0.67:1 have the best overall adhesion. When the mass
fractions of the microcapsules were 0–5.0%, the adhesion was the best, which was level 0.
When the mass fractions were 10.0–20.0%, the coating had good adhesion, which was
level 1. When the mass fraction reached 25.0%, the adhesion of the coating was poor, which
was level 2. This is because the adhesion is caused by the interaction between the polymer
in the coating and the polar radical on the surface of the Basswood [33,34]. The increase
of the microcapsules results in the deterioration of the force between the coating and the
wood. Overall, the coatings with the core–shell ratios of 0.58:1 and 0.67:1 had the best
overall adhesion. At these two core–shell ratios, when the mass fraction of microcapsules
was 0–20.0%, the adhesion of the coating was better.

Table 4. The adhesion of the coatings.

Mass
Fraction of
Microcap-

sules
(%)

Adhesion (Level)

Core–Shell
Ratio 0.42:1

Core–Shell
Ratio 0.50:1

Core–Shell
Ratio 0.58:1

Core–Shell
Ratio 0.67:1

Core–Shell
Ratio 0.75:1

Core–Shell
Ratio 0.83:1

Core–Shell
Ratio 0.92:1

0 0 0 0 0 0 0 0
5.0 0 1 0 0 1 0 1

10.0 1 1 1 1 1 1 1
15.0 1 1 1 1 1 1 2
20.0 2 2 1 1 2 2 2
25.0 3 2 2 2 2 3 2

3.2.3. Impact Resistance

As shown in Table 5, at the same core–shell ratio, the impact resistance increased
first and decreased later, or remained unchanged after being enhanced to a certain value.
When the mass fraction of the microcapsule increased, it is more favorable to the stress
transfer between particle and matrix, and the loading capacity becomes stronger. However,
when the mass fraction of the microcapsules was enhanced to a certain value, the uneven
particles on the coating led to the change of the impact resistance. The results show that
when the mass fractions of the microcapsules were 10.0–20.0%, the impact resistance of the
coating was stronger.
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Table 5. The impact resistance of the coatings.

Mass
Fraction of
Microcap-

sules
(%)

Impact Resistance (kg·cm)

Core–Shell
Ratio 0.42:1

Core–Shell
Ratio 0.50:1

Core–Shell
Ratio 0.58:1

Core–Shell
Ratio 0.67:1

Core–Shell
Ratio 0.75:1

Core–Shell
Ratio 0.83:1

Core–Shell
Ratio 0.92:1

0 6.0 ± 0.5 6.0 ± 0.5 6.0 ± 0.5 6.0 ± 0.5 6.0 ± 0.5 6.0 ± 0.5 6.0 ± 0.5
5.0 8.0 ± 0.8 8.0 ± 0.5 8.0 ± 0.8 9.0 ± 0.2 9.0 ± 0.1 9.0 ± 0.9 8.0 ± 0.7

10.0 9.0 ± 0.1 12.0 ± 0.5 9.0 ± 0.8 10.0 ± 0.5 10.0 ± 0.8 12.0 ± 0.5 12.0 ± 0.5
15.0 10.0 ± 0.8 11.0 ± 0.5 10.0 ± 0.5 13.0 ± 0.5 10.0 ± 0.5 12.0 ± 0.5 10.0 ± 0.5
20.0 12.0 ± 0.5 10.0 ± 0.5 13.0 ± 0.5 11.0 ± 0.5 11.0 ± 0.5 10.0 ± 0.5 10.0 ± 0.5
25.0 9.0 ± 0.8 10.0 ± 0.5 13.0 ± 0.5 11.0 ± 0.5 11.0 ± 0.5 10.0 ± 0.8 10.0 ± 0.5

3.2.4. Elongation at the Break

Combined with the above coating performance test results, the 0.42:1, 0.50:1, 0.58:1
and 0.67:1 microcapsules were added into the waterborne primer, and the elongation at
the break is shown in Table 6. At the same core–shell ratio, the elongation at the break
of the coating increased first and decreased later. The coating with a microcapsule core–
shell ratio of 0.67:1 had the highest elongation at the break. When the mass fraction of
the microcapsules increased from 0 to 15.0%, the elongation at the break increased from
7.63% to 16.59%. When the mass fraction of the microcapsules increased to 25.0%, the
elongation at the break decreased to 9.21%. When the core–shell ratio of the microcapsules
was 0.67:1 and the mass fraction of the microcapsules was 10.0–15.0%, the coating had the
best flexibility and the highest elongation at the break.

Table 6. The elongation at the break of the coatings.

Mass Fraction of
Microcapsules (%)

Elongation at the Break (%)

Core–Shell Ratio
0.42:1

Core–Shell Ratio
0.50:1

Core–Shell Ratio
0.58:1

Core–Shell Ratio
0.67:1

0 7.63 ± 0.10 7.63 ± 0.10 7.63 ± 0.10 7.63 ± 0.10
5.0 8.20 ± 0.30 7.91 ± 0.30 8.47 ± 0.10 9.03 ± 0.20
10.0 11.09 ± 0.10 8.88 ± 0.20 10.16 ± 0.10 12.21 ± 0.10
15.0 12.25 ± 0.20 10.25 ± 0.20 12.18 ± 0.20 16.59 ± 0.10
20.0 9.47 ± 0.10 13.56 ± 0.40 14.18 ± 0.10 9.90 ± 0.10
25.0 7.52 ± 0.30 9.28 ± 0.20 6.84 ± 0.20 9.21 ± 0.10

3.3. Effect of the Microcapsules on the Liquid Resistance of the Coatings

As shown in Table 7, after the NaCl, ethanol and detergent resistance test, the chro-
matic aberration of the coatings was basically unchanged. After the red ink resistance test,
the chromatic aberration did not change significantly, ranging from 0.4 to 4.0. As shown
in Table 8, the glossiness had no change before and after the four liquid resistance tests.

Regarding the liquid resistance of the coating, grade 1 means no mark, grade 2 means
a slight discoloration mark, grade 3 means a slight discoloration or obvious discoloration
mark, and grade 4 means an obvious change, blister, or wrinkle, etc. From the results in
Table 9, the liquid resistance to NaCl was grade 1, and there was no mark. The liquid resis-
tances to alcohol and detergent were basically grade 1. However, when the microcapsules
were increased, the liquid resistance grade for alcohol and detergent was poor, at grade
2–3. The coating without microcapsules had a poor liquid resistance to red ink, which
was grade 3, with an obvious mark. When the microcapsules were increased, the liquid
resistance of the coating to red ink gradually became worse. When the core–shell ratios of
the microcapsules was 0.42:1 to 0.67:1, the liquid resistance of the coating to red ink was
in the range of grade 1–3. When the core–shell ratios of the microcapsules was 0.75:1 to
0.92:1, the liquid resistance to red ink was in the range of grade 2–3. In conclusion, the
liquid resistance was better when the core–shell ratio of the microcapsules was relatively
small and the mass fraction of the microcapsules was 5.0–15.0%.
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Table 7. Chromatic aberration of the waterborne primer coatings after the resistance to liquid test.

Core–Shell Ratio of
Microcapsules

Mass Fraction of
Microcapsules (%)

Chromatic Aberration

NaCl Ethanol Detergent Red Ink

0.42:1

0 1.0 0.9 1.1 3.0
5.0 1.0 0.7 0.6 1.4

10.0 1.1 0.6 1.1 0.8
15.0 0.7 0.8 1.0 0.8
20.0 1.1 0.4 0.8 1.1
25.0 0.7 8.8 ± 0.1 1.5 3.6 ± 0.1

0.50:1

0 1.0 0.9 1.1 3.0 ± 0.1
5.0 0.9 1.1 ± 0.1 1.1 ± 0.1 1.4 ± 0.1

10.0 1.1 ± 0.1 0.3 0.9 0.8
15.0 0.6 1.0 1.0 1.1 ± 0.1
20.0 1.0 1.7 ± 0.1 1.4 ± 0.1 2.9 ± 0.1
25.0 0.9 4.9 ± 0.1 1.5 ± 0.1 4.0 ± 0.1

0.58:1

0 1.0 0.9 1.1 3.0 ± 0.1
5.0 0.7 0.8 1.1 0.4

10.0 0.6 1.1 0.7 1.9 ± 0.1
15.0 0.7 1.0 1.0 1.0
20.0 1.0 0.5 0.7 2.5 ± 0.1
25.0 1.1 2.8 ± 0.1 2.4 ± 0.1 3.4 ± 0.1

0.67:1

0 1.0 0.9 1.1 3.0 ± 0.1
5.0 0.4 0.9 1.1 ± 0.1 1.5 ± 0.1

10.0 1.0 0.8 1.1 1.1
15.0 0.6 1.1 1.1 1.3 ± 0.1
20.0 0.9 0.4 1.0 0.6
25.0 1.0 2.7 ± 0.1 0.9 2.1 ± 0.1

0.75:1

0 1.0 0.9 1.1 3.0 ± 0.2
5.0 1.0 1.0 1.1 2.2 ± 0.1

10.0 0.7 0.4 0.4 2.3 ± 0.1
15.0 1.1 ± 0.1 0.6 0.5 2.2 ± 0.1
20.0 0.9 0.6 0.4 2.6 ± 0.2
25.0 1.0 1.0 1.0 2.8 ± 0.1

0.83:1

0 1.0 ± 0.1 0.9 1.1 3.0 ± 0.1
5.0 0.4 0.9 0.7 2.1 ± 0.2

10.0 0.9 0.5 0.4 2.1 ± 0.1
15.0 1.1 ± 0.1 0.3 0.2 2.2 ± 0.1
20.0 1.1 ± 0.1 4.3 ± 0.2 2.4 ± 0.1 2.2 ± 0.2
25.0 1.3 ± 0.1 8.2 ± 0.1 1.7 ± 0.1 3.4 ± 0.1

0.92:1

0 1.0 0.9 1.1 ± 0.1 3.0 ± 0.1
5.0 0.6 1.9 ± 0.1 1.1 ± 0.1 2.1 ± 0.1

10.0 0.6 1.6 ± 0.1 0.4 2.0 ± 0.1
15.0 0.4 0.7 0.4 2.2 ± 0.1
20.0 0.6 1.2 ± 0.1 0.9 2.5 ± 0.2
25.0 0.8 2.3 ± 0.1 0.9 3.1 ± 0.1
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Table 8. Glossiness of the waterborne primer coatings after the resistance to liquid test.

Core–Shell Ratio of
Microcapsules

Mass Fraction of
Microcapsules (%)

Glossiness (%)

NaCl Ethanol Detergent Red Ink

0.42:1

0 18.5 ± 0.4 18.4 ± 0.2 18.7 ± 0.3 18.6 ± 0.2
5.0 14.2 ± 0.2 14.3 ± 0.5 14.8 ± 0.5 14.4 ± 0.4

10.0 9.6 ± 0.3 9.9 ± 0.3 9.8 ± 0.2 10.2 ± 0.3
15.0 5.7 ± 0.1 6.7 ± 0.2 6.2 ± 0.3 5.6 ± 0.2
20.0 3.5 ± 0.1 3.4 ± 0.1 3.7 ± 0.1 3.3 ± 0.2
25.0 2.1 ± 0.1 2.7 ± 0.1 2.3 ± 0.1 1.9 ± 0.1

0.50:1

0 18.5 ± 0.5 18.4 ± 0.4 18.7 ± 0.5 18.6 ± 0.3
5.0 15.2 ± 0.3 15.3 ± 0.2 15.1 ± 0.3 14.8 ± 0.2

10.0 10.1 ± 0.2 9.8 ± 0.1 10.2 ± 0.1 9.6 ± 0.2
15.0 6.1 ± 0.1 6.2 ± 0.1 6.0 ± 0.1 6.0 ± 0.2
20.0 2.9 ± 0.1 2.9 ± 0.1 2.7 ± 0.1 2.2 ± 0.1
25.0 2.1 ± 0.1 2.2 ± 0.1 2.1 ± 0.1 1.9 ± 0.1

0.58:1

0 18.5 ± 0.3 18.4 ± 0.4 18.7 ± 0.5 18.6 ± 0.5
5.0 14.6 ± 0.7 14.6 ± 0.5 14.9 ± 0.4 14.6 ± 0.6

10.0 7.9 ± 0.2 7.8 ± 0.1 7.5 ± 0.1 7.5 ± 0.1
15.0 5.0 ± 0.0 4.7 ± 0.1 4.9 ± 0.1 4.4 ± 0.1
20.0 4.0 ± 0.1 4.1 ± 0.2 4.3 ± 0.2 3.7 ± 0.1
25.0 2.2 ± 0.1 2.1 ± 0.1 2.2 ± 0.1 2.3 ± 0.1

0.67:1

0 18.5 ± 0.5 18.4 ± 0.3 18.7 ± 0.4 18.6 ± 0.4
5.0 13.3 ± 0.3 13.7 ± 0.2 13.5 ± 0.3 12.5 ± 0.3

10.0 9.3 ± 0.2 9.3 ± 0.3 9.2 ± 0.3 8.8 ± 0.1
15.0 8.1 ± 0.2 8.2 ± 0.2 8.2 ± 0.3 7.7 ± 0.2
20.0 5.4 ± 0.1 5.5 ± 0.1 5.5 ± 0.2 5.1 ± 0.2
25.0 2.5 ± 0.2 2.6 ± 0.1 2.8 ± 0.2 2.8 ± 0.1

0.75:1

0 18.5 ± 0.3 18.4 ± 0.3 18.7 ± 0.4 18.6 ± 0.5
5.0 13.3 ± 0.2 13.3 ± 0.3 13.2 ± 0.1 13.4 ± 0.2

10.0 9.6 ± 0.2 9.9 ± 0.1 9.3 ± 0.3 9.7 ± 0.2
15.0 5.6 ± 0.1 5.8 ± 0.1 5.5 ± 0.2 5.4 ± 0.1
20.0 4.4 ± 0.1 4.6 ± 0.3 4.4 ± 0.2 4.4 ± 0.1
25.0 3.4 ± 0.1 3.3 ± 0.1 3.2 ± 0.1 3.3 ± 0.2

0.83:1

0 18.5 ± 0.2 18.4 ± 0.3 18.7 ± 0.3 18.6 ± 0.4
5.0 14.8 ± 0.3 14.8 ± 0.5 14.3 ± 0.4 14.2 ± 0.3

10.0 10.2 ± 0.3 10.8 ± 0.2 10.4 ± 0.2 10.0 ± 0.4
15.0 5.6 ± 0.1 5.5 ± 0.1 5.8 ± 0.1 5.7 ± 0.2
20.0 2.5 ± 0.1 2.7 ± 0.1 2.5 ± 0.1 2.7 ± 0.1
25.0 2.3 ± 0.1 2.3 ± 0.1 2.3 ± 0.1 1.8 ± 0.1

0.92:1

0 18.5 ± 0.4 18.4 ± 0.3 18.7 ± 0.4 18.6 ± 0.3
5.0 13.1 ± 0.2 12.3 ± 0.3 12.4 ± 0.4 12.3 ± 0.5

10.0 8.4 ± 0.2 8.2 ± 0.1 8.4 ± 0.1 8.3 ± 0.2
15.0 5.1 ± 0.2 4.9 ± 0.2 5.0 ± 0.3 5.1 ± 0.3
20.0 3.1 ± 0.1 3.3 ± 0.1 3.1 ± 0.1 2.8 ± 0.1
25.0 2.2 ± 0.1 2.3 ± 0.1 2.5 ± 0.1 2.4 ± 0.1
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Table 9. Liquid resistance of the waterborne primer coatings.

Core–Shell Ratio of
Microcapsules

Mass Fraction of
Microcapsules (%)

Liquid Resistance (Level)

NaCl Ethanol Detergent Red Ink

0.42:1

0 1 1 1 3
5.0 1 1 1 1

10.0 1 1 1 1
15.0 1 1 1 1
20.0 1 1 1 1
25.0 1 3 1 3

0.50:1

0 1 1 1 3
5.0 1 1 1 1

10.0 1 1 1 1
15.0 1 1 1 1
20.0 1 1 1 2
25.0 1 3 1 3

0.58:1

0 1 1 1 3
5.0 1 1 1 1

10.0 1 1 1 1
15.0 1 1 1 1
20.0 1 1 1 2
25.0 1 2 2 3

0.67:1

0 1 1 1 3
5.0 1 1 1 1

10.0 1 1 1 1
15.0 1 1 1 1
20.0 1 1 1 1
25.0 1 2 1 3

0.75:1

0 1 1 1 3
5.0 1 1 1 2

10.0 1 1 1 2
15.0 1 1 1 2
20.0 1 1 1 2
25.0 1 1 1 2

0.83:1

0 1 1 1 3
5.0 1 1 1 2

10.0 1 1 1 2
15.0 1 1 1 2
20.0 1 3 2 2
25.0 1 3 1 3

0.92:1

0 1 1 1 3
5.0 1 1 1 2

10.0 1 1 1 2
15.0 1 1 1 2
20.0 1 1 1 2
25.0 1 2 1 3

3.4. Microstructure Analysis

The optical and mechanical features of the investigated systems showed that the 0.67:1
microcapsules had a better effect on the comprehensive properties of the wooden surface
waterborne primer. Figure 4 shows the SEM and optical microscopy images of the 0.67:1
microcapsules. The results reveal that most of the microcapsules display a spherical shape,
with a relatively narrow distribution of the particle size.

Figure 5 includes SEM images taken for the waterborne primer coating with a different
content of 0.67:1 microcapsules. The coating without microcapsules was found to be smooth,
as was expected. Instead, the presence of particles with some degree of agglomeration
was observed on the surface of the coating with the mass fractions of microcapsules of
5.0% and 10.0%. When 25.0% microcapsules were added, the particles on the surface of the
waterborne primer coating became more and more agglomerated. With the increase of the
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microcapsule content, the overall surface density of the particles increased obviously, with
direct effects on the emphasis of the chromatic aberration, diminishing the glossiness of the
coatings and also changing their mechanical properties [35,36]. When the mass fractions of
the microcapsules were 0–10.0%, the microcapsules dispersed evenly in the coating.
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Figure 5. SEM of the waterborne primer coatings with different mass fractions of microcapsules (the
core–shell ratio is 0.67:1): (A) 0; (B) 5.0%; (C) 10.0%; (D) 25.0%.

Figure 6 shows the self-healing performance of the coating with the core–shell ratio of
0.67:1 microcapsules. We cut the coating with a blade and observed the healing effect of
the coating at the same crack after 1 day and 3 days. It can be seen from the figure that the
crack size at the same crack changed from the initial 20.71 µm to 16.25 µm, which proved
that the coating has a certain self-healing property for microcracks.
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3.5. Infrared Spectroscopy Analysis

Figure 7 shows the infrared (IR) spectra of the waterborne primer coatings (with
different contents of microcapsules of a 0.67:1 core–shell ratio). In the infrared spectrum
of the microcapsule, the peaks at 3360, 2929, 2865 and 1639 cm−1 were assigned to the
vibrations of N-H stretching, C-H stretching (asymmetric and symmetric) and C=O stretch-
ing, respectively, for the urea–formaldehyde resin representing the shell material. The
vibration at 1730 cm−1 was ascribed to C=O stretching in the -COOH groups belonging
to the acrylic acid residues present in the structure of the waterborne primer entrapped
in the microcapsules. In the infrared spectrum of the waterborne primer coating without
microcapsules, the C-H stretching vibrations located at 2929 and 2865 cm−1 discussed
above are also given by the CH2 groups of the polymeric component of the waterborne
primer together with the stretching vibration at 1730 cm−1, which was attributed to the
acrylic acid residues also present into the primer structure. The main component of the
waterborne coating was waterborne acrylic acid copolymer dispersion. Because the main
components of the microcapsules and primer coatings were very similar, the IR spectra in
the fingerprint regions resemble each other.
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4. Conclusions

When the microcapsule mass fractions were between 0 and 10.0%, the chromatic
aberration ranged from 1.0 to 2.1. The coating glossiness decreased with the microcapsule
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mass fractions. The hardness of the coating was improved, rising to 3H. When the core–
shell ratios of the microcapsules were 0.58:1 and 0.67:1, and the mass fractions of the
microcapsules were 0–20.0%, the adhesion was also enhanced to grade 0–1. Comparatively,
the impact resistance increased for the coatings containing microcapsules with a core–shell
ratio of 0.67:1. At the same time, for the coatings with 10.0–15.0% microcapsules of a 0.67:1
core–shell ratio, both the flexibility and elongation at the break reached the highest values.
In line with the tendencies mentioned, the liquid resistance of these coatings was enhanced
as well. The coating has a certain self-healing property for microcracks. Based on the
comprehensive analysis, when the content of the microcapsules of 0.67:1 core–shell ratio
was 10.0%, the overall performance of the waterborne primer coating on the surface of
the Basswood was the best, which provides a technical reference for the restraining of the
surface crack of the wood coating.
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