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Abstract: Antiferromagnetic oxides have recently gained much attention because of the possibility
to manipulate electrically and optically the Néel vectors in these materials. Their ultrafast spin
dynamics, long spin diffusion length and immunity to large magnetic fields make them attractive
candidates for spintronic applications. Additionally, there have been many studies on spin wave
and magnon transport in single crystals of these oxides. However, the successful applications of the
antiferromagnetic oxides will require similar spin transport properties in thin films. In this work, we
systematically show the sputtering deposition method for two uniaxial antiferromagnetic oxides,
namely Cr2O3 and α-Fe2O3, on A-plane sapphire substrates, and identify the optimized deposition
conditions for epitaxial films with low surface roughness. We also confirm the antiferromagnetic
properties of the thin films. The deposition method developed in this article will be important for
studying the magnon transport in these epitaxial antiferromagnetic thin films.

Keywords: chromium oxide; hematite; reactive magnetron sputtering; epitaxial thin film; roughness;
antiferromagnetic oxides

1. Introduction

Antiferromagnets have gained renewed interest due to their capability to support
spin currents via their magnon excitations. This was first recognized in spin pumping
experiments, where it was observed that spin currents can be conducted through much
thicker insulating antiferromagnetic layers than conventional dielectric materials [1,2].
Subsequently, it was shown that the magnon contribution to heat currents in insulating
antiferromagnets can give rise to spin Seebeck effects and therefore can be used to inject
spin currents into adjacent metallic layers [3–5]. While this thermal spin current injection
relied on incoherent magnons, it has in the meantime also been shown that spin current
injection from coherently excited magnons is also possible [6,7]. More importantly, non-
local transport measurements demonstrated the possibility to electrically inject and detect
magnons in both Cr2O3 [8] and α-Fe2O3 [9,10]. Magnons can propagate over micrometer
distances in both of these materials. Lastly, it has also been shown that current induced
inhomogeneous temperature profiles can give rise to strains and thus allow to manipulate
the magnetic structure within the insulating antiferromagnets [11]. Thus, antiferromagnetic
insulators and specifically oxides are promising materials for spintronics applications (i.e.,
logic, memory, thermoelectric etc.) as they have zero resistive loss, tera-hertz spin dynamics
and are immune to high magnetic fields [12,13]. In order to realize their full potential these
applications require these antiferromagnetic materials in the thin film form [14].

In this article, we show the systematic variation of the thin films properties (film
roughness and strain) of two antiferromagnetic hexagonal materials (i.e., Cr2O3 and α-
Fe2O3 (Hematite)) by varying the deposition parameters (i.e., O2 flow rate, deposition
temperature and deposition pressure). There have been a few studies on the deposition of
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these oxides in thin film form [15–17], in particular, on (0001) sapphire. We here show the
epitaxial growth of these antiferromagnetic thin films on [1120] sapphire substrates. These
antiferromagnetic materials show no residual magnetism within the thickness ranging
from 10 to 200 nm. However, the Morin transition was observed in α-Fe2O3 with thickness
above 200 nm. The deposition process developed in this article will enable many exciting
spintronic studies in these antiferromagnetic oxides.

2. Deposition Methods and Characterizations

In this work, we deposited Cr2O3 and α-Fe2O3 by using radio frequency (RF) mag-
netron sputtering at high temperature from 2′′ Cr and Fe sputtering targets, respectively,
on (11–20) Al2O3 (A-plane sapphire) substrates in the presence of both oxygen and argon.
Initially, we varied the oxygen flow rate from 1.0 to 5.0 sccm while keeping the argon flow
rate at 70 sccm and the chamber pressure at 3 mTorr. Here, we calibrated the deposition
rate of Cr2O3 and the α-Fe2O3 using the crystal monitor. The temperature of the substrate
was varied from 625 to 750 ◦C and the deposition pressure was varied from 2 to 5 mTorr
for both Cr2O3 and α-Fe2O3.

The crystal orientation and the deposition rate of the epitaxial oxide films are character-
ized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), respectively, using the Bruker
D8 Advance XRD System (Bruker Corporation, Billerica, MA, USA) with a monochromatic
Cu Kα source with a wavelength of 1.54 Å. The roughness of the films is characterized by
both XRR and atomic force microscopy (AFM) and the magnetic properties are character-
ized by superconducting quantum interference device (SQUID) magnetometer (Quantum
Design North America, San Diego, CA, USA).

3. Results and Discussions
3.1. Crystal Structures of Epitaxial Oxide Films

Figure 1 shows the XRD data of the 20 nm Cr2O3 epitaxial films grown at 675 ◦C with
an oxygen flow of 2.5 sccm and chamber pressure of 5 mTorr. The base pressure of the
chamber was 3 × 10−8 Torr. After the deposition, the films were annealed at 700 ◦C for one
hour at 2 mTorr in the presence of oxygen at 1 mTorr. XRD θ–2θ patterns of film in Figure
1a show the peak at 2θ = 36.02◦, which comes from the Cr2O3 [11–20] Bragg reflection
corresponding to the corundum structure. The peak at 37.8◦ is the [11–20] Al2O3 substrate
peak. The films grown at oxygen flow varying from 2.0 to 3.5 sccm show similar structure
with different strains in the films as discussed in detail below. It was, however, found
that when the amount of O2 in the gas mixture was above 5.0 sccm, the deposition rate
decreased sharply. This finding is consistent with the previously reported results [18].

Figure 1b shows the rocking curve data for the [11–20] Bragg reflection of the same
20-nm Cr2O3 sample. The full width at half maximum value of the rocking curve is 0.145◦.
This indicates that the Cr2O3 film is formed with conformal a-axis orientation on the
Al2O3 substrate. To confirm the epitaxial state of the in-plane orientation of the film, we
performed the XRD Φ-scan of the Cr2O3 film from −190◦ to 190◦ (see Figure 1c). The
Φ-scanning result from the Cr2O3 films indicates that there are two equivalent peaks, each
being separated by 180◦. These commensurate peak positions of the film and the substrate
confirm the epitaxial relationship between the two. And this two-fold symmetry of the
deposited film indicates that the film consists of a single crystalline domain.

We deposited both Cr2O3 and Fe2O3 samples by varying the flow rate of oxygen. The
XRD θ–2θ scan of the Cr2O3 thin films deposited with different oxygen flow are shown
in Figure 2. The thickness of the films deposited at 3.5 sccm is 10 nm, while it is 20 nm
for the other films deposited films. For both 2.5 and 3.0 sccm, the Cr2O3 peaks show
finite size oscillations up to the fifth order, which confirms low surface roughness of these
films. However, the film deposited with 3.5 sccm pressure shows a much broader XRD
peak. The broadening may result from the shorter out of plane coherence length in thinner
film [19]. Thus, for the subsequent depositions, we choose the oxygen flow of 2.5 sccm for
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all the deposition conditions as this flow of oxygen provides the optimum oxidation for
both oxides.
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Figure 2. θ–2θ scan of Cr2O3 thin films deposited with different oxygen flow at a deposition pressure
of 5 mTorr and temperature of 675 ◦C with 150 W RF power.

We characterize the roughness of the Cr2O3 epitaxial films using XRR. Figure 3a,b
shows the roughness at different deposition temperatures as a function of O2 flow and
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deposition pressure, respectively. All the Cr2O3 films shown in Figure 3a were deposited
with a chamber pressure of 5 mTorr. The roughness of the Cr2O3 films is lowest at the
oxygen flow rate of 2.5 sccm and the deposition temperature of 675 ◦C. The roughness of
the films increases for both lower and higher oxygen flow rate. Figure 3a also shows the
in-plane compressive strain in Cr2O3 deposited at 675 ◦C due to lattice mismatch between
the thin films and the sapphire substrate. Figure 3b shows that the roughness of the films
gradually decreases for higher deposition pressure. We limit the deposition pressure to
5 mTorr to obtain an epitaxial films film with low surface roughness while the deposition
rate is still reasonable (3.5 Å/s). The low surface roughness of these antiferromagnet oxide
films is important for the low damping of the magnon modes [20].
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Figure 4 shows the XRD data of a 200-nm Fe2O3 film on an A-plane sapphire substrate.
The peak at 35.6◦ is the [11–20] peak of α-Fe2O3. This film is capped with 5 nm of Pt. The
broader peak at 39.5◦ shows the [111] XRD peak of the Pt layer. It was deposited on Fe2O3
at room temperature at a deposition pres × 3 µm area and found to be only 3 Å (Figure 5).
The in-plane Φ XRD-scan of the α-Fe2O3 film indicates two-fold symmetry along the
<1120> direction, and therefore, single crystalline domain structure. The roughnesses of
thinner α-Fe2O3 films show a similar trend with the oxygen flow and deposition pressure
as observed for the Cr2O3.
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3.2. Magnetic Properties

Cr2O3 and α-Fe2O3 are both antiferromagnetic materials. To confirm the absence
of any residual magnetism in Cr2O3 and α-Fe2O3 films, SQUID measurements were per-
formed with magnetic fields of 0.4 and 0.2 T, respectively, applied perpendicular to the
A-plane of the substrates. For the SQUID measurement, a 5× 5 mm sample is loaded in the
chamber inside a straw. The sample plane is perpendicular to the magnetic field. Figure 6
shows the magnetization of the epitaxial oxide films as a function of temperature. There
is no hysteresis present in the magnetization data between the heating and cooling of the
Cr2O3 films from 5 to 320 K and, of the α-Fe2O3 films from 5 to 350 K. For the 20-nm Cr2O3
films, the magnetization is almost zero, which identifies the antiferromagnetic exchange
interaction between Cr3+ ions in neighboring layers [21]. There is no significant difference
observed between the zero-field cooled (ZFC) and the field cooled (FC) measurements.
For the FC measurement, the sample is cooled to 5 K from 320 K with a magnetic field
of 2 T applied perpendicular to the A-plane of the substrate. We noticed a very small
(0.01 emu/cm3) increase in the magnetization at 40 K for 20-nm Cr2O3 epitaxial films.
This minuscule magnetization comes from the magnetic impurities present in the sapphire
substrates as confirmed by measuring the magnetization of only the substrate as a function
of temperature (data not presented). The inset of Figure 6a shows the spin orientation of
the Cr3+ ions inside a unit cell of Cr2O3. The spins are pointing along the c-axis of the
sample for all temperatures.

In α-Fe2O3, the antiferromagnetic spin configuration changes its direction from being
parallel to the [0001] axis to being in the (0001) basal plane at temperatures above the Morin
temperature (TM). The Morin transition is due to the Dzyaloshinskii–Moriya interaction,
where asymmetric exchange interaction between two neighboring spins results in a weak
net magnetic moment in the (0001) plane at temperatures above TM [22]. Figure 4b shows
the temperature dependence of the out-of-plane magnetization of a 200-nm thick α-Fe2O3
film under an applied field of 0.2 T. An increase of the magnetization is observed above
225 K, which is lower than in bulk samples (≈260 K) [22]. The enhanced magnetization
reflects a weak net ferromagnetic moment at temperatures above TM. For thinner α-
Fe2O3 samples, we did not observe the Morin transition. The lowering of the transition
temperature in thinner films may result from the increased in-plane strain in those films.
The Morin transition is usually determined by the competition between the magnetic
dipolar and the structural anisotropy energies. The temperature variations of these two
energy contributions have quantum statistical basis and are different [23]. It is possible that
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their temperature variations change compared to bulk crystals because of the presence of
strain in the film, which eventually eliminates the secondary transition.
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4. Conclusions

In summary, we have shown a detailed study of radio frequency magnetron sput-
tering of epitaxial thin films of Cr2O3 and α-Fe2O3 on A-plane sapphire substrates for
spintronic applications. Optimized sputtering conditions are discussed together with the
characterizations of the crystal orientations and magnetic properties of these films. These
single domain antiferromagnetic oxide thin films will be very important for studying
the magnon dynamics and transport for extremely low-loss spintronic devices. They can
also potentially be used for antiferromagnetic ultra-dense memory with THz bandwidth
by utilizing current induced magnetization reversal. In addition, our developed deposi-
tion method confirms the single domain properties of these films, which is essential to
reproduce many exciting magnon properties, which were previously observed only in
single crystal oxides. Our epitaxial sputtering method will pave the way for the potential
application of antiferromagnetic oxides in the field of electronics.
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