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Abstract: Aiming at the shortcomings of high cost and time-consumption in traditional liquid chro-
matography, an effective surface enhanced Raman scattering (SERS)-based trace detection method
has been proposed to quantitatively identify the active component of traditional Chinese medicine.
In this paper, a high-performance and versatile SERS platform based on Ag nanoparticles (NPs)
self-assembly Ag-anodized aluminium (Ag NPs-Ag-AAO) nanoarray was fabricated by control-
lable physico-chemical preparation technology. The results indicated that the electromagnetic field
enhancement effect was sharply strengthened as Ag NPs assembled, and the experimental enhance-
ment factor (EEF) value was calculated to be 1.0083 × 106. This novel Ag NPs-Ag-AAO nanoarray
with substantial “hot spots” exhibited high SERS signal reproducibility, with the relative standard
deviation (RSD) value at less than 2.23%. More importantly, this SERS platform was applied to detect
active component Baicalein in Scutellaria baicalensis, and the limit of detection (LOD) was located at
10 fg/mL. Therefore, this Ag NPs-Ag-AAO nanoarray with high sensitivity, strong Raman signal
reproducibility and reliable practicability has broad application prospects in the rapid detection
of trace substances in the active components of traditional Chinese medicine and is expected to
be popularized.

Keywords: SERS; AAO; Ag nanopillar; Ag NPs; Baicalein; pesticide residue

1. Introduction

In visible and near-infrared light bands, noble metal (Cu, Ag, Au and Pt) composite
nanoarrays can stimulate a strong surface plasmon resonance (SPR) effect. This effect
improves the light scattering conversion efficiency of nonlinear optical processes that are
sensitive to electromagnetic field intensity changes, of which the most representative one is
surface enhanced Raman scattering (SERS) technology [1,2]. Based on the advantages of
normal Raman detection, SERS technology effectively improves the intensity and sensitivity
of Raman signal, which can realize single molecule detection [3]. At the same time, it
overcomes the problem that Raman signal is easily interfered by fluorescence signal;
therefore, it is widely used in surface science, food safety, public safety and biomedical
detection, among other fields [4–6].
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Since the SERS phenomenon was discovered in 1974 [7], researchers have been com-
mitted to revealing its enhancement mechanism. During this period, more than a dozen
theoretical models have been put forward, and these numerous enhancement mechanisms
can be mainly classified into two categories: electromagnetic enhancement (EM) mecha-
nisms and chemical enhancement (CM) mechanisms [8]. It is generally believed that the
EM mechanism contributed the most to the SERS enhanced effect. In recent years, the
SPR model has been widely accepted to explain the EM mechanism [9]. According to
the SPR model theory, when the incident light irradiates the rough surface of noble metal
nanostructures, the free electrons will oscillate collectively at the interface between the
noble metal and dielectric. If the frequency of incident light is the same as the natural
frequency of free electron oscillation, the SPR effect will occur, which makes the electro-
magnetic field intensity of the noble metal surface significantly enhanced. When the probe
molecule is in the electromagnetic field enhancement region, the Raman scattering cross
section of the probe molecule will be significantly enhanced, and the obtained spectrum
is the SERS spectrum of the probe molecule [10]. The CM mechanism suggests that the
SERS phenomenon is caused by the change in the polarizability of the probe molecules
adsorbed on the rough noble metal nanostructures. In CM mechanisms, the charge transfer
model is widely accepted [11]. This charge transfer process will produce a resonance-like
effect, which leads to an increase in the polarization of the probe molecule and the Raman
scattering cross section, resulting in the enhancement of the Raman scattering signal in-
tensity [12]. In most SERS systems, the mechanisms of EM and CM exist simultaneously
and both contribute to the enhancement of the SERS effect. Theoretical and experimental
studies have also confirmed that EM plays a major role in Raman signal enhancement
(104–1012), while chemical enhancement usually contributes about 101–102 [13].

With the development of nanotechnology, researchers have developed a large number
of noble metal nanostructures with different functions. The key to the vigorous develop-
ment of SERS technology is the low cost and simple preparation technology. Because SERS
technology can characterize the molecular information of the sample at the nanoscale and
the highly sensitive and stable SERS active substrate can combine the molecular informa-
tion with the plasmon characteristics of noble metal nanostructures, researchers prefer
Au, Ag, Cu and other noble metal nanostructures, as these noble metals have large optical
responses in the visible range [14–16]. Through reactive ion etching and ion sputtering
technology, Prof. Liu prepared a kind of flexible and ordered Au nanocap-like SERS ac-
tive substrate [17]. This flexible SERS substrate with periodic nanostructures has high
sensitivity and reproducibility for the detection of organic molecules. Prof. Yang’s team
prepared a kind of bioinspired Ag brochosomes-hollow microscale particle with submi-
croscale pits-having broadband and omnidirectional SERS performance [18]. In 2019, this
group assembled the double layer polyethylene microspheres colloidal crystal template by
the self-assembly method and prepared a type of highly uniform volume enhanced Raman
scattering (VERS) substrate by combining the thermal evaporation and reverse mode pro-
cess [19]. Because the VERS substrate was composed of a microbowl and a hollow nanocone
at the bottom of the bowl, the strong electromagnetic field was not only generated on the
surface of the microbowl but also inside the hollow nanocone. Therefore, compared with
the conventional SERS substrate, this periodic and regular geometry can achieve the highly
reproducible and reliable detection of viruses and other macromolecular substances. In
terms of SERS enhancement performance, Ag nanomaterials have a large optical response
in the visible light range, a higher efficiency of enhanced Raman scattering and a simple
geometric modulation structure, so they have been widely used in SERS detection, such as
for graphene oxide film dip-coated Ag nanoarrays [20], Ag NPs-decorated Au nanorod
arrays [21], Ag NPs-poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects [22]
and so on. At the same time, many research teams have developed active SERS substrates
by using biomaterials as templates, such as Ag/Razor Clam [23], GO/Ag/Lotus leaf [24]
and GO/Ag/cicada wing [25]. The surface of these biomaterials has a natural hierarchical
structure, which not only provides abundant electromagnetic “hot spots” but also shows
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super-hydrophobicity for the enrichment of analytes, thus obtaining strong electromagnetic
field enhancement and high detection sensitivity.

However, these noble metal nanostructured SERS substrates also have some disad-
vantages. For example, the contacts of noble metal nanoparticles with the molecules and
environmental media will lead to an unnecessary charge transfer, which will affect the
Raman detection results. In addition, the proportion of “hot spots” in the total adsorption
surface area of noble metal nanoparticles is very small (<1%) [26], which leads to poor
statistical results of ultra sensitive detection. Some SERS substrates also have defects, such
as complex manufacturing process, high equipment requirements, high preparation cost
and low output, which greatly limit the application of regular noble metal nanostructures
in the field of SERS [27].

Aiming at the above defects of SERS preparation technology, in this work, we first
prepared an AAO template by anodizing high-purity aluminum foil after high-temperature
annealing and chemical electropolishing. Then, Ag nanopillar arrays were deposited on the
AAO template by magnetron sputtering to construct Ag-AAO nanostructures. The surface
of this nanoarray was covered with sub−10 nm nanogaps, which can excite uniform and
high intensity electromagnetic enhancement “hot spots”. Due to the existence of large-
scale nanocavities on the Ag-AAO nanoarray, Ag NPs with a diameter of 30 nm were
assembled on the Ag-AAO (Ag NPs-Ag-AAO) nanoarray by the oil-water separation self-
assembly method, which can efficiently improve the electromagnetic field enhancement
performance. The schematic diagram of the preparation process was shown in Figure 1.
More importantly, combined with the rapid solvent pretreatment method, Ag NPs-Ag-
AAO SERS substrate was used for the rapid analysis of acephate pesticide residues on
the surface of Scutellaria baicalensis, which improved the efficient and time-saving Raman
detection method of pesticide residues. Meanwhile, the Ag NPs-Ag-AAO SERS platform
can quickly and accurately detect Baicalein under neutral pH conditions with a LOD of
10 fg/mL, which is expected to open up a new method for the identification of traditional
Chinese medicine and biomedical sensing.
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2. Experimental
2.1. Chemicals and Materials

The silver target (diameter: 60.0 mm, thickness: 2.0 mm, purity: 99.99%) and high pu-
rity aluminum foil (thickness: 0.25 mm, purity: 99.999%) were purchased from Nanchang
Hanchen New Materials Technology Co., Ltd., Nanchang, China. The 4-aminothiophenol,
Methylene blue (MB), oxalic acid, perchloric acid, acephate, crystal violet (CV) and anhy-
drous ethanol were all analytical grade and purchased from J & K Scientific Ltd., Beijing,
China. The N-Hexane was obtained from the Damao Chemical Reagent Factory in Tian-
jin, China. Deionized water (18.25 MΩ) was used to prepare the solutions throughout
the experiment.

2.2. Sample Preparation
2.2.1. Preparation of Porous AAO Template

First of all, we assembled a thermostatic electrolytic cell to prepare a porous AAO
template. The electrolyte was an oxalic acid solution with a concentration of 0.3 M, and
the schematic diagram of the preparation device is shown in Figure 2. First, the high
purity aluminum foil was annealed in an annealing furnace at 400 ◦C for 2 h and then
electropolished in the mixture of perchloric acid and anhydrous ethanol (volume ratio
1:4) for 5 min. After high temperature annealing and electro-chemical polishing, the high
purity aluminum foil was anodized. Then, the polished aluminum foil was cleaned with
acetone and deionized water. After natural drying, the aluminum foil was placed in the
thermostatic electrolytic cell. The oxidation voltage was between 40 V, the oxidation time
was controlled within 300 s and the constant temperature was 5 ◦C. Finally, the AAO
nanofilm can be obtained.
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2.2.2. Preparation of Ag-AAO Nanoarray

The Ag-AAO nanoarray was prepared by high vacuum magnetron sputtering (Radio
frequency, Shenyang Scientific Instruments Co., Ltd., Shenyang, China) and an ion beam
composite thin film deposition system (FJL560, Shenyang Scientific Instruments Co., Ltd.,
Shenyang, China). First, the AAO template was fixed in the sputtering chamber. Before
the sputtering, the plasma cleaning was carried out in the sputtering chamber with 5 sccm
argon that flowed for 10 min. As the intensity of the pressure in the sputtering chamber
reached 3.5 × 10−3 Pa, the sputtering began. When the sputtering power was controlled at
14 W and the MFC2 value in the flow indicator reached 50, the sputtering chamber built up
luminance successfully. By controlling the sputtering time and sputtering power, we were
able to obtain a series of Ag-AAO nanoarrays with different morphologies.
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2.2.3. Preparation of Ag NPs-Ag-AAO Nanoarray by Oil-Water Separation
Self-Assembly Method

First, we poured 1/3 volume of N-hexane into a clean petri dish. Then, the concen-
trated Ag sol was slowly added to the N-hexane. The Ag sol (sphere) was evenly distributed
in the upper layer of the N-hexane. In this paper, the classic Lee & Meise method [28] was
used to prepare Ag sol. Then, the anhydrous ethanol was taken with a pipette and dropped
on the mixture interface of the Ag sol and N-hexane. At this time, the Ag NPs would be
adsorbed to the interface of the N-hexane. Under the induction of ethanol, the adsorbed
Ag NPs would gradually increase and form a mirror-like Ag film, as shown in Figure 1.
The prepared Ag-AAO nanoarray was placed under the mirror-like Ag film with a tweezer
and then lifted upward. The Ag film would remain on the Ag-AAO nanoarray, and a dense
layer of Ag NPs formed on its surface. After natural drying, we used deionized water to
clean the substrate three times to eliminate the influence of N-hexane and ethanol on the
experimental results. Lastly, the composite structure of the Ag NPs-Ag-AAO nanoarray
was constructed. What needs illustration is that the terminology to describe the samples of
Ag-AAO fabricated at the sputtering time of x min was Agx-AAO substrate.

2.3. Characterization and SERS Measurements

The morphology of the prepared AAO, Ag-AAO and Ag NPs-Ag-AAO were charac-
terized by field emission scanning electron microscopy (FE-SEM) (SU8220, Hitachi of Japan,
Tokyo, Japan). The morphology and the size of the Ag NPs were characterized by the Trans-
mission Electron Microscope (TEM) (HT7700, High-Technologies Corp., Ibaraki, Japan).
UV-vis absorption spectra were obtained by the Shimadzu UV-2550 system (Shimadzu
(China) Co., Ltd., Shanghai, China). The Raman spectra in this paper were all obtained by
a Raman system (Horiba LabRAM HR800, HORIBA Jobin Yvon, Paris, France). During the
SERS measurements, the laser power was 0.1 W, the laser wavelength was set at 532 nm,
the objective lens of × 50 was used, the numerical aperture was 0.75, the acquisition time
of each Raman spectrum was 10 s and the spectral resolution was 1 cm−1. Each probe
molecule with a different concentration was prepared with deionized water by means of
the dilution method with a factor of 10.

2.4. Electromagnetic Field Simulations

Because the theory of Mie scattering is not applicable to the aggregation state of noble
metal nanoparticles, nor is it applicable to the complex shape of nanostructures, the current
commonly used method is the three-dimensional finite-difference time-domain (3D-FDTD)
simulation method [29]. In this paper, the 3D-FDTD method was used to simulate the
interaction between Ag nanostructures and electromagnetic fields, including the interaction
between the irregular shape of Ag nanofilm and the size of Ag NPs with an excitation
wave. The Ag nanomaterials studied in this paper belong to the dispersive materials, and
the relative dielectric constant varies with frequency. According to the modified Drude
model, the properties of the Ag nanomaterials were processed, and their relative dielectric
constant can be expressed as:

ε(ω) = ε∞ +
εs − ε∞

1 + iωτ
+

σ

iωε0
= εr + iεi (1)

By expanding the Equation (1), the real and imaginary parts can be expressed as:

εr = ε∞ +
εs − ε∞

1 + ω2τ2 (2)

εi =
(εs − ε∞)ωτ

1 + ω2τ2 +
σ

ωε0
(3)

where the εs is the static relative permittivity, ε∞ represents the infinite high frequency
relative permittivity, τ is the conductivity and σ is the relaxation time. In order to ensure
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the reliability of the simulation results, in this paper, the parameters of Ag can refer to Gai’s
theoretical research on the modified Drude model of wide wave bands [30].

3. Results and Discussion
3.1. Morphology Characterization of the AAO Nanotemplate

AAO has been widely used in the preparation of SERS substrates because of its highly
uniform nanopore structure. Once the structure is combined with the Ag nanomaterial, the
SPR effect will be generated on the edge of the nanopore, thus ensuring the formation of
the high density “hot spot”. On the other hand, the three-dimensional ordered nanopore
structure can also effectively expand the specific surface area of adsorbed analyte molecules,
which is more conducive to the regulation of electromagnetic enhanced “hot spots”, and
then optimize the SERS performance of regular nanoarrays. Figure 3a shows the top-view
FE-SEM images of the as-prepared AAO nanotemplate. The large-scale nanoporous array
was formed on the surface of the AAO nanotemplate with high uniformity and periodicity.
The diameter of the nanopore was 50 ± 3 nm and the nanospace was about 140 ± 2 nm.
Figure 3b exhibits the cross-section view FE-SEM image of AAO. We can observe that the
single-channel nanopores on the surface of AAO were highly homogeneous, with a length
of 400 ± 5 nm.
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3.2. Nanomorphology of the Ag-AAO Nanoarrays and 3D-FDTD Simulations

According to the previous research [31], we concluded that the magnetron sputtering
technology has the advantages of a fast deposition rate, high purity, good uniformity and
strong controllability. By controlling the key parameters of sputtering time and sputtering
power, we regulated the enhancement effect of the electromagnetic field, which depended
on the distribution of “hot spots” in the nanogaps. The FE-SEM images of the Ag-AAO
nanoarrays with different sputtering times (and the same sputtering power) were displayed
in Figure 4a–d. Because the AAO prepared by anodization was highly homogeneous, the
Ag-AAO nanoarrays were also highly uniform after sputtering Ag nanofilms. When the
sputtering time was controlled at 10 min, the Ag nanofilms began to strictly grow at
the edges of the AAO nanopores. With the increase in sputtering time, the regular Ag
nanofilms became thicker and thicker. As shown in Figure 4c, the six-petal nanoflower-
like nanostructure appeared. The average length of the nanopetal was 55 ± 3 nm and
the average diameter of the nanopore was 40 ± 2 nm. Therefore, these rough six-petal
flower-like nanostructures and nanopores could stimulate the potential SPR effect. More
importantly, the average size of the nanogap between the nanopetals was less than 10 nm,
resulting in a strong SPR coupling effect. Due to the regular distribution of these nanogaps,
the Ag20-AAO (sputtering time was 20 min) nanoarrays can stimulate a uniform SPR
effect and produce high-intensity electromagnetic “hot spots”. When the sputtering time



Coatings 2021, 11, 1054 7 of 17

was further extended to 25 min, as shown in Figure 4d, the regular six-petal flower-like
nanostructure disappeared, and the nanogaps, which were less than 10 nm, were gradually
filled by the sputtered Ag atoms. Therefore, the Ag25-AAO (sputtering time was 20 min)
nanoarray presented irregular island-like nanostructures. In this case, the SPR coupling
effect was reduced, which led to the decrease of SERS signal strength.
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Figure 4. FE-SEM images of (a) Ag10-AAO, (b) Ag15-AAO, (c) Ag20-AAO and (d) Ag25-AAO
substrates with different sputtering times.

The compositional distribution of the Ag20-AAO nanoarray was further investigated
using energy dispersive X-ray spectroscopy (EDX) (Hitachi of Japan, Tokyo, Japan). Overlay
maps of Ag and Al EDX are shown in Figure 5a with a clear separation and uniform
distribution, which confirmed the Ag-coated AAO nanostructure. The cross-section view
FE-SEM image of the Ag20-AAO nanoarray was displayed in Figure 5b. We can see
that the as-sputtered Ag flower-like nanostructures consisted of a nanopillar roughly
100 ± 6 nm in height, which tended to be vertically oriented and uniformly distributed on
the AAO surface.

According to the geometric configuration of the Ag20-AAO nanoarray in Figures 4c
and 5b, we simulated the electromagnetic field intensity distribution near the Ag20-AAO
nanostructure. Figure 5c was the Ag20-AAO structural model, in which the top diameter of
the Ag nanopillar was 55 nm and the height of the nanopillar was 150 nm. The parameters
of the simulation have been described in detail in Section 2.4. The continuous sinusoid
laser with a wavelength of 532 nm was chosen as the incident light in our simulation,
and the laser perpendicularly propagated into the model with the polarization direction
of E. Figure 5d,e shows the electromagnetic field simulation results from the x-y plane
and x-z plane. There were dense nanogaps in the Ag20-AAO model, which formed multi-
level and uniform “hot spots” with obvious local electromagnetic field enhancement. The
simulation results of the Ag20-AAO model showed that the maximum value of the local
electromagnetic field was 42.91 V m−1. According to the following Equation (4) [32]:

GSERS =

∣∣∣∣ Eloc(ω)

Einc(ω)

∣∣∣∣4 (4)
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where the Eloc(ω) and Einc(ω) are the E and E0 in the 3D-FDTD calculations, respectively.
Therefore, the theoretical enhancement factor (TEF1) value was 3.39 × 106.
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In an effort to improve the electromagnetic field enhancement performance of the
Ag20-AAO SERS substrate, the Ag NPs were assembled onto the Ag20-AAO surface by
the oil-water separation self-assembly method. The TEM image of the Ag NPs with a
high magnification in Figure 6a revealed that a nanoparticle count obtained from differ-
ent regions of the sample confirmed the presence of essentially monodispersed Ag NPs
adopting a spherical-like morphology with an average diameter of 30 nm. The FE-SEM
image of the Ag NPs modified Ag20-AAO SERS substrate prepared by the oil-water sep-
aration self-assembly method is shown in Figure 6b. Ag NPs with a size of 30 nm were
closely packed on the surface of the Ag20-AAO nanoarray and formed a dense Ag NPs
nanolayer, as shown in the Figure 6b1. In order to further investigate the electromagnetic
field enhancement characteristics of the Ag NPs30-Ag20-AAO (30 nm Ag NPs self-assembly
Ag20-AAO) nanoarray, we constructed the Ag NPs30-Ag20-AAO structure model, as shown
in Figure 6c. The intensity distribution of the electromagnetic field near the Ag NPs30-
Ag20-AAO model shown in Figure 6d,e indicates that there were strong electromagnetic
fields in the whole space. Especially, high electromagnetic field intensity was confined and
enhanced at the inter-Ag NPs nanogaps. Meanwhile, the electromagnetic field intensity at
the Ag NPs-Ag nanofilms junctions can also be observed. According to the Equation (4),
the calculated TEF2 was 2.847 × 109, which was 839.8 times high than that of the Ag20-AAO
model. With the improvement of the nanomorphology of the Ag20-AAO nanoarray, the Ag
NPs can effectively fill the cavity between the Ag nanopillar, resulting in the formation of
abundant sub−10 nm nanogaps. When the Ag NPs30-Ag20-AAO model was excited by
the incident light, the effective Raman cross section increased and the collective resonance
effect of the electrons enhanced. Therefore, the electromagnetic field intensity increased at
the sub−10 nm gaps.
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3.3. SERS Performances of the Ag NPs30-Ag20-AAO Substrate

Referring to the wavelength position of the absorption peak in the UV-vis absorption
spectrum, the optimal excitation wavelength in Raman measurement can be determined.
Consequently, the best SERS intensity can be obtained by choosing the best excitation
wavelength [33,34]. Figure 7a shows the UV-vis absorption spectrum of the Ag NPs30-Ag20-
AAO substrate. The absorption peak center was located at 524 nm, which was near the
532 nm. Therefore, in the SERS measurement, we chose the 532 nm laser as the excitation
light source.

The SERS spectrum of the bare AgNPs30-Ag20-AAO substrate has been detected first,
as shown in Figure 7b. The characteristic peak of the N-hexane and ethanol did not appear
in the SERS spectrum. The N-hexane and ethanol were volatile. After assembling the Ag
NPs on the Ag20-AAO substrate, they would quickly evaporate during the drying process.
Therefore, the influence of N-hexane and ethanol on the Raman spectroscopy were excluded.
Figure 7c shows the Raman spectra of 10−5 M 4-aminothiophenol solution adsorbed on
different Ag-AAO substrates and the Ag NPs30-Ag20-AAO substrate. Meanwhile, the
Raman spectrum of the 10−5 M 4-aminothiophenol solution adsorbed on the Ag NPs-AAO
substrate was also exhibited. Notably, the Raman signal intensity of 4-aminothiophenol on
Ag NPs30-Ag20-AAO was stronger than that of the 4-aminothiophenol Raman intensities
obtained on the Ag-AAO nanoarrays and the Ag NPs-AAO substrate, owing to the heavy
self-assembled nature of the Ag NPs by the oil-water separation self-assembly method.
The same conclusion was also obtained in the calculation of the Raman characteristic peak
integral area in the range of 1502–1811 cm−1, which extracted from the Raman spectra in
Figure 7c, as shown in Figure 7d1–d4. In order to quantitatively analyze the enhancement
performance of the Ag NPs30-Ag20-AAO SERS substrate, the increase factor values were
calculated in Table 1. From the calculation results of the increase factors, it can be concluded
that the SERS enhancement effect of the Ag NPs30-Ag20-AAO substrate was much higher
than that of the Agx-AAO substrates. This result can be attributed to the wide range of
“hot spots” density introduced by the Ag NPs after self-assembly. Compared with the more



Coatings 2021, 11, 1054 10 of 17

dispersed Ag NPs, as shown in Figure 6a, the Ag NPs on the Ag NPs30-Ag20-AAO SERS
substrate prepared by the self-assembly method showed slight aggregation, which can
further facilitate the formation of more “hot spots” to enhance the SERS response.
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Figure 7. (a) UV-vis extinction spectra of the Ag NPs30-Ag20-AAO substrate; (b) Raman spectra of the bare AgNPs30-Ag20-
AAO substrate; (c) Raman spectra of the 4-aminothiophenol on different types of SERS substrates; (d1–d4) the integrated
integral area of the Raman shift in the range of 1502 cm−1–1811 cm−1.

Table 1. Raman intensities of different SERS substrates at the peak of 1582 cm−1.

Sputtering Time (min)
Peak Intensity I (cps) Increase Factor

(IAg NPs30-Ag20-AAO/IAgx-AAO)IAgx-AAO IAg NPs30-Ag20-AAO

10 182,101.97 ± 5480.78 1.037 × 106 ± 159.3 5.69 ± 0.029
15 296,142.98 ± 3581.30 1.037 × 106 ± 159.3 3.50 ± 0.044
20 407,642.04 ± 6139.09 1.037 × 106 ± 159.3 2.54 ± 0.026

3.4. Sensitivity of the Ag NPs30-Ag20-AAO Substrate

As a complete study on the preparation and application of the SERS substrate, the
potential application in sensitivity detection of the as-proposed SERS-based platform for
quantitatively analyzing the MB molecule was investigated by directly adsorbing the MB
molecule on the Ag NPs30-Ag20-AAO substrate. Figure 8a exhibits the sensitivity response
of the Ag NPs30-Ag20-AAO substrate to the MB molecule with the concentrations from
10−7 M to 10−12 M. The Raman spectra detection results showed that the Raman charac-
teristic peaks located at 768 cm−1, 1155 cm−1, 1396 cm−1 and 1626 cm−1 can be observed
in Figure 8a, and the corresponding vibration modes [35] of these Raman characteristic
peaks were collected in Table 2. The characteristic peak intensity at 1626 cm−1 was used
to indirectly monitor the corresponding concentrations of the MB molecule. As expected,
the SERS intensity of the Ag NPs self-assembly SERS substrate increased with the increase
of the MB molecular concentration in the range of 1 × 10−12 M−1 × 10−7 M. At the same
time, a good linear relationship was established between the logarithm of SERS intensities
at 1626 cm−1 and the logarithm of MB concentrations, as shown in Figure 8b. The linear
calibration curve was fitted as y = 7.104 + 0.258, x (R2 = 0.98636). Error bars in the plot
represented the standard deviations from five measurements of different spots for each
concentration. Therefore, the LOD of the MB molecule on the Ag NPs30-Ag20-AAO was
1 × 10−11 M. Here, the effect of the pre-resonance Raman enhancement performance on
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LOD was not considered. These results indicated that the proposed SERS-based platform
had good potential for the practical detection in real samples of other aromatic molecules,
even pesticide residues and active ingredients of Traditional Chinese medicine.
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Table 2. Vibrational modes of the MB Raman characteristic peaks.

Raman (cm−1) SERS (cm−1) Vibrational Mode

596 (w) 595 (w) Skeletal deformation of C–S–C
671 (w) 672 (w) Out-of-plane bending of C–H
770 (w) 768 (w) In-plane bending of C–H
1154 (w) 1155 (w) In-plane bending of C–H
1394 (m) 1396 (m) Symmetrical stretching of C–N

- 1468 (w) Asymmetrical stretching of C–N
1623 (s) 1626 (s) Ring stretching of C–C

Notation: s, strong; m, medium; w, weak peak intensity.

3.5. Reproducibility of the Ag NPs30-Ag20-AAO Substrate

In practical application, another important content of Raman scattering research is
the reproducibility of the SERS signals. In many cases, random distribution or a lack of
electromagnetic “hot spots” can lead to a great deviation in the SERS signal strength [36].
Therefore, the reproducibility of the Raman signal greatly affected the reliability and
practicability of the SERS system detection. In order to further reveal the Raman signal
reproducibility and practicability of the Ag NPs30-Ag20-AAO substrate, the Raman de-
tection of acephate on the surface of Scutellaria baicalensis was carried out by using the
“pasted and peeled off” method. First, Scutellaria baicalensis was thoroughly washed with
deionized water and anhydrous ethanol. Then, 10 µL of 10−10 mg/mL acephate solution
were sprayed directly on the surface of Scutellaria baicalensis. After natural evaporation at
room temperature, the 10 µL anhydrous ethanol solution was dropped onto the pre-treated
sample. In this step, the ethanol acted as an extraction. Finally, the Ag NPs30-Ag20-AAO
SERS substrate was pressed onto the sample for 30 s and then peeled off for further Ra-
man detection. This process was repeated five times to ensure the successful collection
of acephate.

Acephate is a kind of organophosphate pesticide. In agricultural production, acephate
is often used as a protective fungicide for leafy vegetables, traditional Chinese medicine,
tea and corn. This pesticide can inhibit the activity of cholinesterase in the human body,
resulting in neurophysiological dysfunction. Once inhaled, acephate can cause poisoning
and even death. Therefore, the Ag NPs30-Ag20-AAO SERS substrate was applied to detect
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the acephate residue on Scutellaria baicalensis. Figure 9a shows the substrate-to-substrate
reproducible SERS spectra of 10−10 mg/mL acephate. These 25 SERS spectra were obtained
from 25 points randomly selected from the 5 Ag NPs30-Ag20-AAO substrates. From the
Raman spectra in Figure 9a, we found that the characteristic peaks of acephate did not shift
to red or blue, and the signal intensity of the characteristic peak showed no difference. The
relative standard deviation (RSD) values were calculated to evaluate the reproducibility on
the basis of Equation (5) [37]:

RSD =

√
n
∑

i=1
(Ii−I)

2

n−1

I
(5)

where Ī is the average intensity of all of the SERS spectra, n is 25 and Ii is the intensity of
each SERS spectrum on the same characteristic peak. The RSD values at the characteristic
peaks of 1356 cm−1 and 1572 cm−1 were exhibited in Figure 9b,c. Each RSD value was
less than 2.23%, which fully revealed that the Ag NPs30-Ag20-AAO substrate had a good
reproducibility of the Raman signal in the whole region. In order to further confirm the
point-to-point reproducibility of the Ag NPs30-Ag20-AAO substrate, a randomly selected
5 µm × 5 µm = 25 µm2 area was chosen, and the laser scanning step was 1 µm. The
point-to-point Raman mapping image at 1181 cm−1 is shown in Figure 9d. The brightness
of the grid was proportional to the Raman signal intensity at 1181 cm−1, which indicated
that the Ag NPs30-Ag20-AAO substrate had an excellent Raman signal reproducibility.
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Due to the excellent reproducibility and reliable practicability of the Ag NPs30-Ag20-
AAO substrate, the Raman spectra of acephate were successfully detected at an extremely
low concentration level (10−10 mg/mL). Compared with the limit of quantitation (LOQ)
specified in the national food safety standard of China (GB 2763-2014), the detection limit of
the Ag NPs30-Ag20-AAO SERS substrate was far lower than the LOQ. It was further proved
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that the Ag NPs30-Ag20-AAO substrate has super sensitivity and wins a wide application
prospect in actual industrial and agricultural production.

3.6. Experimental Enhancement Factor (EEF) Calculation

In the above description, we used the 3D-FDTD method to simulate the electromag-
netic field enhancement near the Ag NPs30-Ag20-AAO model, and the TEF was 2.847 × 109.
In order to further evaluate the Raman enhancement performance of the Ag NPs30-Ag20-
AAO SERS substrate from an experimental point of view, the experimental enhancement
factor (EEF) value was calculated according to the following Equation (6) [38]:

EEF =
ISERS
Ibulk

× Nbulk
NSERS

(6)

where the Ibulk and ISERS are the Raman signal intensities of 10−2 M CV solution on the Si
wafer and 10−6 M CV solution on the Ag NPs30-Ag20-AAO SERS substrate at the 1619 cm−1

characteristic peak. Nbulk and NSERS represent the number of CV molecules on the Si wafer
and the Ag NPs30-Ag20-AAO SERS substrate under the laser spot. Figure 10a,b exhibits
the Raman spectra of 10−2 M CV solution on the Si wafer and 10−6 M CV solution on the
Ag NPs30-Ag20-AAO SERS substrate, respectively. Through the integral calculation of the
1619 cm−1 characteristic peak area, the values of Ibulk and ISERS were 26,314 and 3,184,950.
Therefore, the value of ISERS/Ibulk was 121.036. The number of CV molecules (N: Nbulk and
NSERS) can be calculated according to Equation (7) [39]:

N =

(
NA × M × Vsolution

Ssub

)
× Slaser (7)

where NA is the Avogadro constant, M is the CV molecular concentration and Vsolution = 10 µL
is the volume of the CV solution on the Si wafer and the Ag NPs30-Ag20-AAO SERS
substrate. Ssub stands for the area of the CV drop and the Slaser is the laser area. In the
experiment, the Ssub on the Si wafer was 1.2 times larger than that on the Ag NPs30-Ag20-
AAO SERS substrate. In the SERS measurement, the diameter of the laser area was 1 µm.
Through calculation, the Slaser was 0.785 µm2. Therefore, the value of Nbulk/NSERS was
calculated as 0.833 × 104. Therefore, according to Equation (6), the EEF value of the Ag
NPs30-Ag20-AAO SERS substrate was 1.0083 × 106. The EEF value is less than TEF value.
In the simulation model of electromagnetic field intensity, the Ag nanospheres composed
of silver atoms were closely constructed, and large-scale “hot spots” were stimulated in
the narrow nanogaps. On the other hand, there was a monolayer Ag NPs film modi-
fied on the surface of the Ag-AAO model in Figure 6c. However, in the experiment, Ag
NPs were adsorbed in multiple layers. The aforementioned two main reasons caused
the TEF value to be greater than the EEF value. So far, we have successfully detected 4-
aminothiophenol, acephate, MB and CV molecules with the Ag NPs30-Ag20-AAO substrate.
These results indicate the universality of the Ag NPs30-Ag20-AAO SERS substrate in the
field of Raman spectroscopy.

3.7. Detection of the Baicalein by the Ag NPs30-Ag20-AAO Substrate

According to the above analysis, we know that the Ag NPs30-Ag20-AAO substrate
has strong electromagnetic field enhancement, ultra-high sensitivity and excellent Raman
signal reproducibility. At a very low concentration of 10−10 mg/mL, acephate residue
was successfully detected on the surface of Scutellaria baicalensis. In order to further study
the application prospects of the substrate in the detection of real active ingredients in
traditional Chinese medicine, we prepared Baicalein solutions with the concentration
ranging from 1 ng/mL to 10 fg/mL.

Scutellaria baicalensis is a kind of traditional Chinese medicine with roots as a medicine.
It is mainly used for warm heat disease, upper respiratory tract infection, lung heat
cough, pneumonia, dysentery, hypertension and so on [40]. Modern Chinese medicine
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research showed that Baicalein was the main active ingredient of Scutellaria baicalensis [41].
Baicalein can reduce cerebrovascular resistance, improve cerebral blood circulation and
increase cerebral blood flow and anti platelet aggregation. It is used for the treatment of
paralysis after cerebrovascular disease. Baicalein is an effective component in the body.
After Baicalein enters the animal body, it is rapidly transformed into Baicalin and other
metabolites in the blood.
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Therefore, a reasonable, low-cost and sensitive method for the detection of Baicalein
was essential. Figure 11a shows the Raman spectra of Baicalein at the concentrations of
1 ng/mL to 10 fg/mL on the Ag NPs30-Ag20-AAO substrate obtained by SERS technology.
Figure 11b1,b2 shows the Raman spectra of Baicalein powder and 1 ng/mL Baicalein. In
these Raman spectra, the characteristic peaks of Baicalein, including 691 cm−1, 1063 cm−1,
1370 cm−1 and 1599 cm−1, can be clearly observed. With the decrease of Baicalein concen-
tration, the intensities of the Raman characteristic peaks decreased. When the concentration
was as low as 10 fg/mL, the characteristic peak can still be clearly identified. Taking the
1599 cm−1 characteristic peak as an example, when the logarithms of Baicalein concen-
tration and Raman intensity were calculated at the same time, a perfect linear correlation
curve was shown in Figure 11c, where the calculation equation was y = 6.181 + 0.197 x
and R2 was 0.99128. The practical detection results show that this high-performance Ag
NPs30-Ag20-AAO SERS substrate can be applied for the rapid and quantitative detection of
other label-free active ingredient molecules in other traditional Chinese medicines.
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4. Conclusions

In summary, a facile approach for the high technical mature fabrication of the 30 nm
Ag NPs self-assembly Ag20-AAO nanoarray was successfully demonstrated for sensing
pesticide residues and active components of traditional Chinese medicine. Using ethanol
as an inducer, the designed plasma nanoarray was realized by the strategy of the self-
assembly of Ag NPs at the N-hexane/water interface. The close-packed Ag NPs on the
Ag20-AAO nanoarray with the nanogaps less than 10 nm between the neighboring Ag NPs
stimulated uniform and high intensity electromagnetic enhancement “hot spots”. The high-
performance Ag NPs30-Ag20-AAO substrate was used to detect the residue of acephate on
the surface of Scutellaria baicalensis, which proved that the substrate had excellent Raman
signal reproducibility and reliable practicability. In the practical detection, the Raman
spectra of Baicalein and its concentration dependence were given, and the LOD was located
at 10 fg/mL. The superiority of the constructed Ag NPs30-Ag20-AAO SERS platform in the
current study demonstrated the feasibility of both pesticide residues analysis and Chinese
medicine active components detection. It indicated that this preparation method has
great application potential in the trace detection of other active components of traditional
Chinese medicine, pesticides and antibiotics.
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