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Abstract: Cutting, as the most widely used machining process, is applied in both primary and
secondary wood processing. Optimum cutting conditions that result in the high quality of the
machined surface and low energy consumption are crucial for wood processing. The effects of
the feed speed, cutting speed and average chip thickness on the energy consumption and surface
temperature of a circular saw blade during the cutting process of two types of plywood with a
thickness of h = 14 mm is described in this paper. In experimental measurements, two circular saw
blades with cutting tungsten carbide inserts for wood were used as tools. One circular saw blade
was standard, and was not surface treated (CSB1), and second circular saw blade (CSB2) differed
by the powder coating surface and the length of the cutting edge. In the experiment, the energy
consumption and the surface temperature of the circular saw blade was measured in order to find the
optimal cutting conditions for the most energy-efficient cutting process. The results show that the
cutting power and the surface temperature of the circular saw blade increased when the feed speed
increased. The investigated values of the surface-treated circular saw blade were lower compared
to the values of the standard circular saw blade. When comparing the lightweight plywood with
the classic plywood, experimentally obtained cutting power values of the circular saw were made
19% lower on average by using the circular saw blade CSB1. When using the CSB2 circular saw
blade, these values of the cutting power of the circular saw were 22% lower on average. The surface
temperature of the circular saw blade is the highest on the outer edge (tooth root area 31.7 ◦C) and
decreases towards the center of the circular saw blade. There must be a reasonable compromise
between machine productivity and energy consumption.

Keywords: circular saw blade; powder coated surface; classic plywood; cutting power; lightweight
plywood; temperature

1. Introduction

Circular saws are the most frequently used machines in primary and secondary wood
processing. They are designed for transverse cutting (cutting in the direction perpendicular
to the fibers) and longitudinal cutting (cutting in the direction of the wood fibers). When
using forest resources, cross-cutting to a preliminary dimension is often used, such as when
cutting trunks to planks and producing various wood products. Krilek et al. [1] report
that lower values of cutting power were measured in the transverse cutting of prisms from
(soft) coniferous tree species (spruce) than in the case of (hard) broadleaved tree species
(beech). The face angle (γ = −5◦; 0◦; 20◦) has a great influence on the cutting power. The
lowest values of cutting power were achieved at different feed speeds in the case of the
face angle γ = 20◦. In their work, Kminiak and Kubš [2] also report the different effects of
(soft) coniferous tree species (spruce) and (hard) broadleaved tree species (beech and oak)
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on the cutting power when cross-cutting lumber. So far, little attention has been paid to the
cutting process in primary wood processing (i.e., lumber production). Energy consumption
and waviness, as reported by the authors of [3], increase with an increasing feed speed
and cutting height. Similar conclusions were drawn by Cristóvão et al. [4]. Among several
monitored parameters, the thickness of a particle and the cutting direction significantly
affects the magnitude of the main cutting force. Other parameters such as wood density,
wood moisture and cutting wedge face angle have a lower effect.

Most of the research on the cutting process is focused on secondary wood processing
(i.e., production of wood products). Research on optimal woodworking conditions [5,6]
showed that the cutting process is influenced by three basic factors: factors related to the
type of wood, the technical equipment and the factors including the water absorption
coefficient. Sawing wood is affected by specific properties of the workpiece (material—
hard or soft wood; agglomerated materials—particleboard, MDF, plywood, etc.; moisture;
density; temperature, etc.), circular saw blade (face angle γ, back angle α, cutting wedge
angle β, cutting speed vc, etc.), feed (feed speed vf, cutting height H, overlap f, etc.) and
a combination of factors. The effect of these factors on energy consumption has been
investigated by several authors [7–15]. When using circular saws, the corrugation of the
machined surface is affected by cutting parameters such as cutting height and feed speed.
Dynamic behavior, oscillation and deflection of the circular saw blade from the cutting
plane are other factors that affect the undulation of the machined surface [16]. Research
on the effect of vibration and deflection of the circular saw blade on the corrugation of the
machined surface has not yet been sufficiently carried out. Only some works that contain
information on this exist [3,17–21]. This means that the influences of various cutting factors
on the deflection and waviness of the machined surface have not yet been thoroughly
investigated and require further research. Heating in the tooth part during the cutting
process is one of the factors that influences the oscillation and deflection of circular saw
blades. The most significant obstruction during cutting is its aberration (deformation) in
a plane [22]. This effect is only caused by compressive stress in the circular saw blade,
which is dependent on the temperature distribution status inside. Knowing the accurate
temperature distribution is one of the main ways of solving this problem. The measurement
of the tool surface temperature during a high cutting speed (vc = 50 to 100 m/s) is not
easy. Some results follow the experiments of other authors. The use of a thermocouple
with a diameter wire d = 0.125 to 0.15 mm was applied [23–25]. Measurement of the
temperature of a circular saw blade body with an infrared thermometer is mentioned by
the authors of [26–34]. The simulation of the temperature cutting process by means of a
digital computer was carried out by the author of [35].

The optimal machining of wood and wood materials is a multi-parameter problem
when low energy consumption, low noise emission and low dust emission versus high
cutting accuracy, tool life and high productivity of the cutting process are required. The
main goal of this article is to determine the effect of circular saw blade treatment and
weight reduction in plywood on the energy consumption (cutting power) of a circular
saw and the heating temperature of a circular saw blade. The range of monitored feed
and cutting speeds was designed to meet extreme cutting conditions during secondary
wood processing.

2. Materials and Methods
2.1. Sawing Experiment

In furniture manufacturing, plywood is mainly used as a filling material in frame
constructions, as a construction material for the frames of upholstered furniture or as
worktops in kitchen furniture. In recent years, the trend of producing lightweight wood-
based materials has begun [36]. Lightweight materials result from the change in structure
and density in the cross-section of a board or a combination of wood materials with
plastics [37,38]. Despite their reduced density, lightweight wood materials show satisfactory
mechanical and thermal insulation properties [39].
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In the experiments, two types of plywood were used: non-lightweight (classic) ply-
wood and lightweight plywood. The weight was reduced by incorporating air gaps into
the construction of plywood [40,41]. Air gaps (100 mm wide) were located in the transverse
layers of the plywood. The plywood was made of beech veneers with a thickness of 2 mm.
The adhesive PVAc D3 was used, and the plywood was cold pressed at the temperature of
19 ± 1 ◦C. The overall view and construction of the tested plywood materials are shown in
Figure 1. From the produced plywood materials, test specimens with dimensions of length
= 1000 mm, width = 500 mm and thickness = 14 mm were made.
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Figure 1. Construction of the plywood: (a) classic plywood; (b) lightweight plywood; L is solid
veneer (longitudinal), i.e., the fibers are in the direction of longer dimension of the board; P is veneer
strips with width Wp = 160 mm (transverse veneer), i.e., the fibers are perpendicular to the fibers of
solid veneer; AG is air gap; Wag is width of the air gap (100 mm); ol is overlap of the layers (30 mm),
i.e., places where the veneers are joined.

The physical and mechanical properties of the plywood used in the experiments are
shown in Table 1. The bending properties were determined according to the STN EN
310 [42] and density according to the STN EN 323 [43].

Table 1. Properties of tested plywood.

Plywood Density
(kg/m3)

MOR (1)

(MPa)
Limit of

Proportionality (MPa)
MOE (2)

(MPa)

Bendability
Moisture Content (%)

ko
(3) 1/ko

(4)

Classic 708 82.5 47.4 7916 0.01803 56 8.31
Lightweight 587 36.7 20.4 10,692 0.02562 39 7.91

Notes: (1) MOR is bending strength; (2) MOE is modulus of elasticity; (3) ko is coefficient of bendability; (4) 1/ko is
unit coefficient of bendability.

In the experiment, two circular saw blades with cutting inserts with tungsten carbide
for wood manufactured by the company Stelit Ltd. Trenčín, the Slovak Republic were used
(Figure 2). The material of the circular saw blades was steel (DIN 75Cr1, EN 1.2003). There
were radial and tangential compensating slots in the body terminated by holes and filled
with copper threads. The teeth of the circular saw blades had irregular tooth pitch and were
alternately slanted grinds. CSB2 differed from CSB1 in the surface treatment and the length
of the cutting edge. The circular saw blade CSB1 was not surface treated (Figure 2a). The
surface of the circular saw blade CSB2 (Figure 2b) was altered by a powder coating RAL
9006 from the producer Tiger LACQUER SLOVAKIA Ltd. Pezinok, the Slovak Republic,
by the company K-system Ltd. Kosorín, the Slovak Republic. The sprayed sides with a
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thickness of 100 µm were fired in a kiln for 20 min at a temperature of 192 ◦C. We chose the
surface treatment by powdering on the basis of preliminary experiments.
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treatment.

The basic parameters of the circular saw blades used in the experiment are given in
Table 2.

Table 2. The basic parameters of the circular saw blades used.

Parameters CSB1 CSB2

Circular saw blade diameter (mm) 350 350
Clamping hole diameter (mm) 30 30

Number of teeth (–) 36 36
Body thickness (mm) 2.4 2.4

Length of the cutting edge (mm) 4.0 3.8
Tooth height (mm) 13 13

Tooth geometry
αf (◦) 15 15
βf (◦) 65 65
γf (◦) 10 10

A full factorial experimental design resulted in six different machining treatments
(Table 3). The experiment was conducted with six replicates for each treatment.

Table 3. Rotation speed, feed speed and cut height for the 6 cutting treatments. Corresponding
average chip thickness is also listed.

Treatment
Number

Rotation Speed
(min−1)

Feed Speed
(m/min)

Cut Height
(m)

Average Chip
Thickness (mm)

1 4050 14 0.014 0.059
2 4050 21 0.014 0.089
3 4050 28 0.014 0.119
4 4150 14 0.014 0.058
5 4150 21 0.014 0.087
6 4150 28 0.014 0.116

The average chip thickness in orthogonal cutting and parallel to the fiber direction with
a circular saw blade (Figure 3) is defined according to Juan [44] as follows (Equation (1)):

tchip =
1000 × v f

vc × z × D
×
(√

(D − H − f )× f +
√
(D − f )× (H + f )

)
(1)
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where tchip is average chip thickness (mm), vf is feed speed (m/min), vc is rotation speed
(min−1), z is number of teeth, D is tool diameter (mm), H is cutting height (mm) and f is
override (mm).
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Figure 3. Average chip thickness, cutting trajectory through the plate thickness and cutting kinematics.

The experiment was carried out using an experimental single-shaft circular saw located
in the laboratory of the Faculty of Technology in the workshops of the Technical University
in Zvolen, Zvolen Slovak Republic. The machine is especially used for the integrated
production of semi-finished components and the research. The specimens were sawn using
the above-mentioned machine; the scheme is shown in Figure 4.
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Figure 4. A circular saw including a device for measuring the cutting power and the surface
temperature of the circular saw blade, where 1 is frequency converter (UNIFREM 400 007 M); 2 is
sine filter (SKY3FSM25); 3 is control panel with digital display connected to the frequency converter
via RS232C serial interface; 4 is electric motor; 5 is V-belt transmission; 6 is frame circular saw with a
shaft mounted in radial bearings; 7 is circular saw blade with clamping flanges; 8 is three positions of
the Calex PUA8-CF temperature sensor; 9 is PC (personal computer).

The construction of the machine is compact; the main supporting part of the machine is
a frame welded from a plate steel material. The circular saw cutting mechanism is attached
to the frame by screw connections. The high-speed part of the cutting mechanism (shaft)
is mounted in radial ball bearings in the bearing housings. The feeding mechanism of
the circular saw consists of a belt conveyor and an upper roller feeder specific type MW
102 from the company TOS Svitavy inc, Svitavy, Czech Republic. The feed speed of the



Coatings 2022, 12, 55 6 of 16

belt conveyor is continuously variable by means of an electric drive conversion unit in
the range from vf = 4 to 40 m/min. The feed speed of the upper roller feeder is gradually
variable by means of a gearbox from vf = 4 to 34 m/min. The moving parts of the machine
are mounted in plain bushes or ball bearings. The drive of the circular saw shaft is ensured
by an electric motor, pulleys and V-belts. The electric motor has a power of P = 5.5 kW,
n = 2910 min−1. A smooth change of shaft speed is ensured by using a frequency converter
from the company VONSCH Ltd. Brezno, Slovak Republic. In this experiment, the circular
saw was connected to a mobile sawdust extractor type U 1500.

2.2. Cutting Power Consumption and Circular Saw Blade Surface Temperature Measurements

The apparatus at the measuring cutting power and temperature (Figure 4) was con-
structed at the Department of Production and Automation Technology at the Technical
University in Zvolen, Zvolen, Slovak Republic. The cutting power was monitored by
measuring the change in the electric current output from the frequency converter and that
consumed by the electric motor of the circular saw. The power measurement was provided
by a frequency converter, while the active power input without losses and the power of the
electric motor were evaluated following the current, voltage and efficiency of the electric
motor. Recording the measured power quantities meant that they could be read, displayed,
and saved in a computer via VDS software (Vonsch Drive Studio, Version 2.20), Brezno,
Slovakia. An illustrative example of the display of measured values according to the
program is shown in Figure 5. The computer was connected to the measuring apparatus by
a serial USB (Universal Serial Bus) interface. By this measuring device, 20 power values per
second were generated. Individual measurements of the specimens lasted for more than
2 s, providing 50 to 100 values. The idle values prior to and after cutting were considered.
The values were modified for further processing. Thus, the only values recorded when
idling and when cutting were selected. These values are considered important. Following
the values, the mean value of each cutting condition was calculated.
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Cutting power is calculated following Equation (2). The parameters substituted into
the equation are calculated according to Equations (3) and (4):

Pr = PC − PC0 (2)

PC = 3 × U f × I f × cos ϕ (3)

PC0 = 3 × U f 0 × I f 0 × cos ϕ (4)

where Pr is cutting power (W); Pc is the total power consumed by the electric motor during
sawing (W); PC0 is the power consumed during the operation of the circular saw idling
(W); Uf and Uf0 are the phase voltages (V); If and If 0 are the phase currents (A); cos ϕ is the
power factor.

The temperature distribution in the circular saw blade is determined by the following
factors: friction in the cutting process and heat dissipation from the saw blade surface. The
differential equation determining the temperature distribution according to [45] is given by
Equation (5). Some parameters in Equation (5) are determined by Equations (6)–(9):

1
κ
× ∂φ

∂τ
=

∂2φ

∂r2 +
1
κ
× ∂φ

∂r
− n × φ + B (5)

φ = T − T0 (6)

κ =
λ

c × ρ
(7)

n =
2 × α

λ × a
(8)

B =
2 × Q1

λ × a
(9)

where λ is the thermal conductivity of steel (W/m·K) (for steel = 50), a is the thickness of a
circular saw blade (m), τ is time (s), r is the radius of a circular saw blade (m), c is specific
heat (J/kg·K) (for steel ≈ 469), ρ is density (kg/m3) (for steel ≈ 7800), α is the coefficient of
heat transfer (W·m2/K) (for air 10 to 500), κ is thermal diffusivity (m2/h) (for circular saw
blade steel ≈ 0.049), Q1 is the quantity of heat generated at the unit surface area by friction
in time (J), T is the temperature of this place (K), T0 is the temperature of the air (K), φ is
the temperature difference; n and B are constant in this paper.

A Pixsys/Calex PUA8-CF device (RALPH AUTOMATION INC., Irvine, CA, USA,
Figure 6) was used to measure the temperature. Pixsys/Calex PUA8-CF devices are
industrial infrared contactless temperature sensors with standardized current outputs and
USB connections. Small dimensions, adjustable emissivity, good accuracy, and linearity
over the entire range of operating temperatures are considered the advantages of this
device. A USB connection is used to set sensor parameters quickly and easily, as well as
for direct connection to a computer. Values such as a measuring range corresponding to
analog output, emissivity, etc., can be set. The sensor can work when it is connected to an
analog output (powered by a Pixsys power terminal) or with a connected USB, or with
both outputs connected.

The infrared thermometer is based on the law of Stefan–Boltzmann for the temperature
calculation [46], which is given by Equation (10):

I = ε·σ·
(

T4 − T4
0

)
(10)

where I is heat energy (W/m2), ε is emissivity, σ is the Stefan–Boltzmann constant (W/m2·K4),
T is the temperature of the measured body (K) and T0 is the surrounding temperature (K).

The temperature sensor was set to three positions relative to the center of the circular
saw blade, as shown in Figure 4. From the temperature values obtained under the same
cutting conditions, we calculated the arithmetic mean.
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3. Results and Discussion

The measured sets of values of the power input of the electric motor of the circular
saw drive, as well as the sets of values of the surface temperature of the saw blades, were
pre-processed in the Excel program. The cutting power values were further processed in
the Statistics 12 program. The mean values from six repeated measurements are given in
the figures showing the dependence of the cutting power on the individual parameters.
The mean values from two repeated measurements are mentioned in the figures showing
the dependence of the surface temperature of the circular saw blades on the individual
parameters.

3.1. Cutting Power Consumption

The results of the processing of the cutting power values in the program Statistics 12
are given in the following Table 4.

Table 4. Analysis of variance (Statistics 12) showing the influence of plywood, circular saw blade
(CSB), feed speed (vf) and rotation speed (n) on the cutting power (Pr).

Source
Cutting Power (Pr)

F Value p Value

Plywood 405.46 0.000 *
Circular Saw Blade (CSB) 395.33 0.000 *
Feed speed (vf) (m/min) 321.32 0.000 *

Average chip thickness (mm) 130.21 0.000 *
Rotation speed (n) (min−1) 6.72 0.011 *

Type CSB * vf 6.29 0.003 *
Note: * significant at p < 0.05.

Following the program Statistics 12, it can be stated that all studied cutting factors
have a significant effect on the consumption of cutting power at a significance level of
0.95. Thus, the value of the cutting power is affected by the construction of the material
(plywood), the construction of the circular saw blade and the feed speed. According to
the program Statistics 12, the material construction (plywood) was the factor with the
greatest impact on the cutting performance. The design of the circular saw blade was the
second most important factor affecting the cutting performance (Table 4). The effect of feed
speed and circular saw blade design on cutting power is shown in Figure 7. An increase
in the feed rate from vf = 14 to 28 m/min resulted in the cutting power increasing from
26% to 32%. Similar results are reported by other authors in their works [3,14,15]. The
lightweight construction of the material (plywood) compared to conventional material
(classic plywood) reduced the cutting power values by an average of 19.0% when using
CSB1 and by an average of 22.0% when using CSB2. The measured values of the cutting
power shown in Figure 7 show that the values of the cutting power can be influenced both
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by the construction of the material and by changing the construction of the saw blade.
Through the interaction of these parameters, an average saving of 34% in the cutting power
of the circular saw can be achieved.
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Average chip thickness, as a critical factor in the sawing process, significantly affects
the cutting power. An increase in the cutting power in average chip thickness in the case of
both examined cut materials (classic and lightweight plywood) is shown in Figure 8. The
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dependence is mentioned in other scientific work [3,13]. Figure 8 shows that the highest
coefficient of determination obtained between the cutting power and the average chip
thickness was achieved in the case of classic plywood using a CSB2 circular saw blade
(r2 = 99%). A very high tightness is ensured by the value (80% ≤ r2) [47]. A lower coefficient
of determination between the cutting power and the average chip thickness was achieved
in the case of lightweight plywood compared to classic plywood using a circular saw blade
CSB1 (r2 = 82% and 90%). Equation (1) shows that in the case of both materials, an increase
in the feed speed corresponds to an increase in the chip thickness, which results in higher
cutting power.
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3.2. Circular Saw Blade Surface Temperature

The adverse effect of the heating of the circular saw blade in the cutting zone and
thus the resulting temperature difference between the central hole and the edge of the
circular saw blade caused increased variability in the cutting process [24]. Lehmann [29]
also emphasized that the temperature differences of the circular saw blade between the
edge and the center hole have a fundamental effect on its rigidity. Therefore, it is necessary
to measure the temperature of the circular saw blade both at the time, in the middle of the
radius and at the center hole. This demonstrates the heating and cooling principles of the
circular saw blade. The temperature sensor was set to three positions relative to the center
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of the circular saw blade, as shown in Figure 4. From the temperature values obtained
under the same cutting conditions, we calculated the arithmetic mean.

Figure 9 shows the dependence of the surface temperature of the circular saw blades
on the feed speed at the rotation speed n = 4050 min−1. As we can see from Figure 9,
the surface temperatures of the circular saw blades CSB1 and CSB2 had values at about
24.5 ± 0.2 ◦C at the sensor position of 65 mm from the shaft axis (near the flanges). These
temperatures increased slightly with increasing feed speed to the values of 25 to 26.5 ◦C.
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Based on experimental measurements, other authors [23,33,34] reported similar tem-
perature values in the range between 22 and 24 ◦C for the area of clamping flanges. At the
position of the temperature sensor of 110 mm from the shaft axis, there was a significant
increase in the surface temperatures of the discs to values of 25 to 26.5 ◦C. At the last
position of the sensor closest to the heel circle of the teeth, (R = 155 mm) from the shaft
axis, the surface temperature of the CSB1 reached 31.5 ◦C. Mohammadpanah et al. [34]
state a temperature of 33 ◦C for the area of the heel circle of teeth. The circular saw blade
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CSB2, which had a powder-coated coating applied to the surface, differed significantly in
temperature from CSB1, mainly in the area R = 155 mm. The highest temperature gradient
between the areas R = 155 mm and R = 65 mm was at a feed speed of 28 m/min. In the
case of CSB1, this value is 5.0 ◦C, and in the case of CSB2, it is 1.0 ◦C. Compared to the tem-
perature gradient of CSB2 (1.0 ◦C), there is a big difference. This difference in temperature
gradient may be one of the parameters that caused the different dynamic behavior of CSB2.

In Figure 10, the dependence of the temperature on the surface of the circular saw
blades from the distance of the temperature sensor from the axis of the saw blades (shaft)
at the rotation speed n = 4150 min−1 is shown.
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Following Figure 10a–c, it can be seen that the surface temperatures of the saw blades
differ. In all cases of feed speed, the values of the modified circular saw blade CSB2 are lower
than the values of the conventional circular saw blade CSB1. The highest difference between
the surface temperature of the circular saw blades is at the position of the temperature
sensor from the shaft axis (R = 155 mm) and the feed speed vf = 28 m/min, which is
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about 5 ◦C. In Figure 10, it can be stated that the temperature gradient between the sensor
positions 155 mm and 65 mm is not uniform; there is most likely an exponential dependence.
The same conclusions are drawn by the authors of [48]. When comparing circular saw
blades CSB1 and CSB2, it can be seen that the temperature gradient is similar, but the CSB2
differs in lower temperature values at each position of the sensor.

As has already been mentioned, the average chip thickness is a decisive factor in the
sawing process, as it has a significant effect on the cutting power and the surface tempera-
ture of the circular saw blade. Figure 11 shows an increase in the surface temperature of
the saw blades in the average chip thickness in the case of the materials studied (classic
and lightweight plywood).
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Figure 11. Dependence between the surface temperature of the circular saw blade and the average
chip thickness when cutting classic and lightweight plywood: (a) classic plywood, CSB2, sensor
position 65 mm; (b) classic plywood, CSB2, sensor position 110 mm; (c) classic plywood, CSB2, sensor
position 155 mm; (d) lightweight plywood, CSB1, sensor position 65 mm; (e) lightweight plywood,
CSB1, sensor position 110 mm; (f) lightweight plywood, CSB1, sensor position 155 mm.
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The highest coefficient of determination between the surface temperature and the
average chip thickness was obtained in the case of the lightweight plywood using a CSB1
circular saw blade (r2 = 97%), as shown in Figure 10; Figure 11 shows that the high tightness
is ensured by the value 80% ≤ r2 [47]. The lowest coefficient of determination between the
surface temperature of the circular saw blade and the average chip thickness was obtained
in the case of classic plywood using the circular saw blade CSB2 (r2 = 73%). Equation (1)
shows that in the case of both materials, an increase in the feed speed rate corresponds
to an increasing chip thickness, which results in a higher value of the circular saw blade
surface temperature. Following Figures 8 and 11, the correlation between the consumed
cutting power and the temperature of the circular saw blades surface, depending on the
size of the average chip thickness, is demonstrated.

4. Conclusions

The effect of circular saw blade treatment, the type of material (classic and lightweight
plywood), feed speed, and average chip thickness on the consumed cutting power and
surface temperature of circular saw blades during cutting using an experimental single-
shaft circular saw was evaluated in this paper.

In the whole range of the feed speed of 14 to 28 m/min, the values of the cutting
power were lower in the case of the cut material (lightweight plywood) compared to the
material (classic plywood) at both revolutions of the circular saw shaft. The average value
represented a 20% reduction.

The treatment of the circular saw blade (CSB2) reduced the cutting power by 14.7%
to 22.7% when cutting classic plywood and by 18.3% to 25.7% when cutting lightweight
plywood.

Following the measurement results, the surface temperature of the circular saw blade
depended on the type of material cut. Lower values were obtained when lightweight
plywood was cut. The maximum temperature difference in the case of the unmodified
(conventional) circular saw blade CSB1 was T = 2.3 ◦C, and in the case of the modified
circular saw blade CSB2, it was T = 0.5 ◦C.

There was a significant increase in the surface temperature at the outer edge of the
circular saw blade (R = 155 mm) depending on the feed speed. The individual circular saw
blades differed from each other in the magnitude of the temperature drop.

In the case of the CSB1 circular saw blade, the temperature drop was ∆T = 5.0 ◦C; in
the case of the CSB2 circular saw blade, it was ∆T = 1.0 to 2.0 ◦C. The surface temperature
profile of the circular saw blades had an assumed exponential course from the edge to the
flange area. The difference in the temperature gradient of the two circular saw blades was
probably one of the reasons for the change in the dynamic behavior of CSB2 in the cutting
process, which was ultimately reflected in its lower values of cutting power.

An increase in the value of the average chip thickness in the range of 0.058 to 0.119
mm resulted in an increase in the cutting power and the surface temperature of the circular
saw blades in the process of cutting classic and lightweight plywood. All experiments
performed showed the correlation between the consumed cutting power and the surface
temperature of the circular saw blades depending on the size of the average chip thickness.

The practical use of the presented results gives the precondition to reduce the energy
balance of the process of cutting wood materials. Further research should focus on ex-
tending the experiment to the process of cutting other lightweight wood materials as well.
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