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Abstract: Composite sandwich structures have been used in high performance applications such as
wind turbine blades, due to their unique lightweight structure and superior mechanical properties. In
the current study, a new liquid thermoplastic and thermoset resin were used to fabricate four different
composite sandwich panels with two various foam types and densities. Composites made with epoxy
resin are presented to comprehensively compare the mechanical properties of sandwich structures to
elium resin. In the case of the mechanical properties and due to a new liquid thermoplastic resin,
extensive comparisons of three-point bending, climbing drum peel, and flatwise tensile strength were
investigated and compared with each other. The flexural and flatwise strength of sandwich composite
increased by 53% and 75%, respectively, when using Elium resin. Then, the highest value was shown
in the GF/PVC/ELIUM structure. The results revealed that Elium resin could be excellent in the case
of mechanical properties to replace traditional resins to fabricate various composite structures and
manage the challenge of recyclable composites. Elium resin can replace thermoset-based resins for
the manufacturing of laminates and composites that are fully recyclable at room temperature with
comparable mechanical properties.

Keywords: liquid thermoplastic resin; vacuum infusion; sandwich structures; three-point bending;
wind turbine industry

1. Introduction

Fiber-reinforced composite materials have become the preferred materials for ad-
vanced national defense equipment, essentially aircraft structures and wind turbines. They
have incomparable advantages over other materials for reducing structural weight, improv-
ing efficiency and reliability, and extending structural life [1–4]. After more than 20 years
of research and accumulation of domestic fiber-reinforced structural composite materials,
resin systems and composite materials used in the temperature range of 80~300 ◦C have
been formed, and composite material prepreg and honeycomb production lines have been
established [5]. However, there is still a big gap between domestic fiber-reinforced com-
posite materials’ application and development levels. In recent years, composite sandwich
structures have been widely used in large applications due to their properties such as being
lightweight structures, having good specific stiffness and strength, ability to absorb energy,
resistance to corrosion and having highly flexural behavior; these features make them very
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appropriate in the wind energy field [6–8]. One of the main components of the sandwich
composites is FRP as reinforcement. FRP (also known as glass fiber reinforced plastic,
internationally recognized abbreviation as GFRP or FRP) is a wide variety of composite
materials with various properties and applications [9–11]. It is a new functional material
made of synthetic resin and glass fiber through a composite fabrication process. FRP
material is lightweight, has highly specific strength, corrosion resistance, good electrical
insulation performance, slow heat transfer, good thermal insulation, good instantaneous
ultra-high temperature resistance, easy coloring and the ability to transmit electromagnetic
waves [12–15]. The commonly used FRP molding methods at home and abroad include
hand lay-up molding, injection molding, compression molding, molding material, filament
winding, coil process, bag press molding process, resin casting and injection molding.
Process, RTM molding process, pultrusion molding process, continuous molding process of
sheet and pipe, reinforced reaction injection molding process, bonding and joining technol-
ogy and sandwich structure manufacturing technology are some of its uses [16–19]. Glass
fiber composites offer flexible processing, excellent sturdiness and are lightweight [20].
Wind blades and nacelles have been the key drivers of the expansion of fiberglass utiliza-
tion in the 21st century [21,22]. Typical sandwich structures are laminates used as skin
materials in the top face sheet and bottom face sheet, and low-density foam as core and
adhesive [23]. Several studies in the field of sandwich structures have been carried out
in various aspects to figure out the performance of these materials at various mechanical
properties with or without simulation and understand the complex interactions between
different materials forming composites. Three-point bend tests were conducted for carbon
fiber honeycomb structures manufactured using a liquid thermoplastic resin to determine
the flexural strength of the sandwich samples and to identify the failure modes. The results
showed that the CF/thermoplastic honeycombs exhibited enhanced structural stability
and displayed a more uniform and progressive core failure mode than the longitudinal
splitting observed in the CF/epoxy honeycombs [24]. Studies on damping, impact, and
flexural performance of novel carbon/Elium® thermoplastic tubular composites have been
carried out by Bhudolia et al. [25]. The results of flexural properties in flexural tests have
shown comparable load-carrying capability, higher strain to failure, and less delamination
for carbon/Elium® composites compared to carbon/epoxy composites.

Recently, ARKEMA has produced a reactive Methylmethacrylate, MMA thermoplastic
resin (Elium® resin) with a viscosity of 200 cP, which can cure at room temperature and
is appropriate for RTM and VARI composite fabrication processes. In addition, there is a
weight reduction of up to 10% with this new technology of using FRP sandwich composite
bonded with Elium® instead of the traditional materials [26–29].

On 17 March 2022, the ZEBRA (Zero wastE Blade ReseArch) consortium announced
that it had produced the first samples of its 100% recyclable wind turbine blades, marking a
new step in the industry’s transition to a circular economy (Figure 1). Due to its recyclable
properties, Arkema’s Elium® resin was used to make a blade that is 62 m long. The benefit
of using long blades is that they can achieve a 15% increase in energy efficiency without
replacing the base or frame of the wind turbine [30].

Elium®-based composite components can be recycled using advanced chemical re-
cycling methods that allow complete depolymerization of resin, separation of fibers from
resin, and recovery of new resin stock and high modulus glass for reuse, enabling closed-
loop recycling. This method, developed by Arkema and CANOE partners, was tested on
all composite parts, including waste generated during production.

The vision of zero-waste blades can be achieved by preventing and recycling the waste
generated during the manufacturing process. On the other hand, this technology also
brings blade recyclability to a new level; end-of-life thermoplastic composite blade material
has high value in itself, can easily be used in other industries as a new compound material,
and of course can be depolymerized and the resin reused to produce new blades.
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Figure 1. Zebra 100% recyclable wind turbine blade [31].

Many industries, especially wind turbines, aerospace, and automotive, use thermoplas-
tic matrix composites (TPMCs). This is due to its increased strength and stiffness compared
to net thermoplastics and its higher manufacturability than traditional thermosetting matrix
composites [32]. An excellent review article has presented a comprehensive summary of
recent works on various types of liquid thermoplastic acrylic resins and their composites
structures under mechanical properties. They reported that these matrices had been shown
to exhibit competitive thermomechanical and mechanical performance to more established
epoxy resin systems [33].

Many studies have been deeply involved in demonstrating the behavior and failure
modes of composite sandwich structures under bending load by considering several factors,
such as reinforcement materials [34–36], skin stacking sequences [37,38], foam types [39–44],
adhesive types and manufacturing conditions. In high-performance applications, the
composite sandwich structures have been used in various parts such as aeronautical
materials [45], the sailboat hull [35,39], wind turbine blade [46], marine applications [47],
aerospace engineering [48–50] and automotive applications [6,51–54].

Glass fiber thermoplastic composites can be recycled from wind turbine blades with
various techniques, for example, Pyrolysis. Additionally, it can potentially introduce cost
savings due to non-heated tooling, shorter manufacturing cycle times, and recovery of
raw materials [55]. Recovery and reuse of carbon fiber and elium resin from thermoplastic
composites used in marine application has been investigated by Haithem et al. [56]. If the
composite structures consist of glass reinforced in epoxy resins used for wind turbines
structure, of course these highly engineered materials are difficult to recycle, as epoxy is a
thermoset resin and is not re-moldable. This poses an environmental problem and a loss
in terms of recoverable capital [57]. Furthermore, thermoset composite structure could
be recycled for wind blade applications using several methods such as mechanical and
thermo-chemical recycling [58]. The main design of the wind turbine blade is aerodynamics,
aero elasticity (the correct damping of the blade) and fatigue behavior. The technical
requirements of the blade are lightning, ice, erosion and strong wind resistant [59].

In the current study, the behavior of a new thermoplastic resin and traditional ther-
moset resin has been used to fabricate composite sandwich structures under flexural load
and climbing drum peel, and flatwise tensile strength was investigated and compared. In
addition, the influence of process parameters, exceptionally varied resin materials, core
types and densities of the mechanical properties of GFRP sandwich composites, as well
whether this material might be suitable for the blade of wind turbines using glass fiber
as reinforcement, PVC and PET as foam core, and epoxy and elium resins as a matrix,
were determined.
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2. Materials and Methods
2.1. Materials
2.1.1. Skin Material

The skin used in this study consists of glass fiber plain weave with high specific
strength and stiffness. The areal fiber weight was 227 g/m2. The upper and lower skins are
comprised of two plies, each with the same stacking sequence.

2.1.2. Core Materials

PVC-Poly Vinyl Chloride is a vinyl polymer, and its material is amorphous. In practical
use of PVC materials, stabilizers, lubricants, auxiliary processing agents, pigments, impact
resistance agents and other additives are often added. It has non-flammability, high
strength, weather resistance and excellent geometric stability. PVC is resistant to oxidizing
agents, reducing agents and strong acids. However, it can be eroded by concentrated
oxidizing acids such as concentrated sulfuric acid and concentrated nitric acid and is also
not suitable for contact with aromatic hydrocarbons and chlorinated hydrocarbons. Gurit®

PVC is a closed-cell, cross-linked PVC foam. It provides superior strength to weight ratio for
all composite applications. Other key features of Gurit® PVC include outstanding chemical
resistance, negligible water absorption and excellent thermal insulation capabilities. Gurit®

G-PET™—Polyethylene Terephthalate is a highly versatile, recyclable, thermoplastic core
material with a good balance of mechanical properties, temperature resistance, density and
the cost of various Gurit® G-PET™ is compatible with many resin systems, including epoxy,
vinyl ester, unsaturated polyester and phenolic resins. It offers class-leading high shear
elongation properties. It can provide outstanding fatigue properties, chemical resistance,
good adhesion and a highly consistent extruded foam. Uniaxial compression tests have
been investigated according to the ASTM D1621-10 standard [60] to get the foam properties
(Figure 2). The manufacturing properties of the two types of foam are presented in Table 1.
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Table 1. Description of the properties of foam material being used.

Property
PVC PET

Value Value

Density (kg/m3) 60 75
Elastic modulus (MPa) 100 89
Shear modulus (MPa) 21 13
Tensile strength (MPa) 1.82 1.49

Compressive strength (MPa) 0.98 0.96
Shear strength (MPa) 0.79 0.53

Elongation at break (%) 18 44

2.1.3. Liquid Thermoplastic Resin

ELIUM® 188 is a low viscosity liquid thermoplastic resin suitable for vacuum infusion
processes.

This new resin can manufacture glass fiber, carbon fiber or natural fiber reinforced
thermoplastic composites using low-pressure processing technology and molds widely
used today for unsaturated polyesters and epoxy resins. Molded thermoplastic composite
parts possess the mechanical properties comparable to epoxy composites while demon-
strating the main advantages of thermoplastic shape and recyclability and providing an
assembly bond between composites and composites or between composites and metals.
The manufactured properties of the Elium 188 resin compared with epoxy 2040 resin are
presented in Table 2.

Table 2. Description of the mechanical properties of resins being used.

Property
Epoxy 2040 Elium® 188

Value Value

Density (kg/m3) 1.16 1.18
Tensile strength (MPa) 45–85 55–76
Tensile modulus (MPa) 2800–3400 3100–3300

Flexural modulus (MPa) 2600–3600 3250
Flexural strength (MPa) 100–130 130
Elongation at break (%) 1.3–5.0 4–6

3. Sandwich Composites Fabrication

The core materials chosen for sandwich composite structures in this study are closed-
cell PVC and PET foams with a density of 60 and 75 kg/m3, respectively. The thickness
of the foam core provided by the manufacturer and used in the current investigation is
20 mm. A vacuum infusion technique was used to fabricate the sandwich panel (Figure 3).
The foam is located between two GFRP face sheets, each composed of two layers (±45)2 of
plain weave E-glass. Two types of resin were used in a 4:1 proportion of resin to hardeners
for the resin infusion. The PVC and PET foam panel has the function of light weight and
high strength. The upper and lower layers of GFRP cloth are covered with foam panel to
form a sandwich structure. The panels are cured at room temperature (20 ◦C and 25 ◦C) for
six hours and humidity between 50 and 70% and consolidated under uniform atmospheric
pressure. After the resin is cured, the vacuum material was adhered to the surface of the
product, which is not easy to tear off. The release cloth with the surface treated with Teflon
can remove the vacuum material more easily, which can save a lot of labor and prevent the
surface of the product from being damaged. A flowchart of composite sandwich structures
regarding methodology and testing is presented in Figure 4.
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4. Experimental Test Setup and Procedure
4.1. Sandwich Composite Flexural Tests

ASTM C393 [20] indicated that Flexural tests were completed utilizing a three-point
bending test. Figure 5 delineates the test contraption, installation, sample aspects and
regular supporting circumstances for every one of the tests. As displayed schematically,
the radius of the semi-round indenter is 10 mm. Somewhere around three samples for each
composite sandwich design were estimated. The tests were performed on a 24 Universal
Testing Machine MTS® E45.105 outfitted with a 100 kN load cell. The applied speed was 5
mm/min. A water stream machining was utilized for blue-pencil bending test examples,
which were 150 mm long, 50 mm wide and 24 mm thick. Load versus displacement curves

RETRACTED



Coatings 2022, 12, 1423 7 of 15

were obtained for each test example. The three-point flexural test utilizes a 100-mm support
span with center loading. The samples were tested until disappointment, and afterward,
flexural strength was determined for different sandwich structures.
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4.2. Sandwich Composites Climbing Drum Peel

The climbing drum peel test of sandwich constructions is performed according to
ASTM D1781-93 [62]. It is used to determine the peel resistance of the adhesive bond
between the relatively flexible skin of a sandwich panel and its core. Test specimens are
typically 76 mm wide by 350 mm long and are machined to have a 25 mm overhang of one
skin at each end of the sample. One end of the overhanging skin is clamped to the top of
the apparatus while the other is connected to the drum. The instrument is configured so
that as the test machine crosshead moves down (at a recommended rate of 25.4 mm/min),
and the drum is rolled upwards, peeling the skin from the core.

4.3. Sandwich Composites Flatwise-Tensile Strength

The PVC and PET foam core characterization has been obtained utilizing the flatwise
tensile test carried out directly on the core material according to ASTM C297/C297M-16 [63].
The specimen’s size was 25 mm × 25 mm. The crosshead speed was 0.50 mm/min.

5. Results and Discussion
5.1. Sandwich Composite Three-Point Bending

Load versus displacement and flexural strength graph of various GFRP composites
prepared have been presented in Figures 6 and 7. From Figure 6, the GF/PVC/ELIUM
GFRP composite panel gives the highest load absorption of 1308 N at the significant
displacement of 5.3 mm, equal to the flexural strength of 244 MPa. However, the other
sandwich structures offer effective load absorption and flexural strength. GF/PVC/EPOXY,
GF/PET/ELIUM, and GF/PET/EPOXY sandwich structures observed loads of 1156 N, 868
N, and 845 N, equal to 206, 165, and 159 MPa, respectively. Cousins et al. measured higher
flexural strengths in the Elium-based composite laminates (1006 MPa) than the epoxy-based
reference material (809 MPa) [64]. Davies and Arhant reported flexural strengths of 703
MPa and 606 MPa for glass fiber-reinforced elium and epoxy composites with fiber volume
fractions of 52 and 53%, respectively [65].
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PET. Since the PET is semi-crystalline or amorphous based on the curing condition, the
molecules are rigid, with no free volume to stretch. Thus, the PET core sandwich panels
produced lesser load absorption, whereas, in PVC, the load could transfer uniformly with-
out crack propagation and cleavage formation [66]. However, the PVC core unit contains
composites that offer higher flexural strength. PVC is robust and linear. PVC has a mostly
atactic stereochemistry, which means that the chloride centers’ relative stereochemistry
is unpredictable [67]. Thus, the PVC foam structure could control the degree of crack
propagation and not grow further. Hence, the bending load in the three-point bending
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could be absorbed by the form core, and so, the matrix is free from the stress intensity
factor. The composites could withstand the higher load since the stress intensity factor
is less [47]. Photos of the samples before, during and after flexural testing are presented
in Figure 8. Table 3 present higher loads, flexural strength and the flexural modulus of
sandwich GFRP composite structures. Table 3 presents higher loads, flexural strength and
the flexural modulus of sandwich GFRP composite structures. GF/PVC/Elium sandwich
obtained the highest value of flexural properties attributed to interface bonding between
GF with Elium matrix and PVC core foam structure.
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Table 3. Flexural test results of sandwich GFRP composites.

Sandwich Structure Load (N) Flexural Strength (MPa) Flexural Modulus (GPa)

GF/PVC/ELIUM 1308 243.75 0.26
GF/PVC/EPOXY 1156 206.25 0.215
GF/PET/ELIUM 868 165 0.18
GF/PET/EPOXY 845 159.4 0.16

The higher peak load was restricted to less than 7 mm in displacement. Beyond this
level, the composites start repelling the amount of load applied. Due to the elastic limit,
it ends up with the boundary and begins to fracture beyond this. The core part absorbs
and slightly elongates when an oversized load is applied to the composite sandwich. Once
the load reaches the tear limit of foam, the composite cannot withstand the applied load,
leading to fracture [68]. It is noted that the GF/PET/EPOXY sandwich structure gives
significantly lower flexural strength than the peer group. This is because of the highly
rigid molecular structure of PET since PET comprises polymerized units of the monomer
of ethylene terephthalate with repeating (C10H8O4) units. The retained brittleness in the
PET is the cause of cleavage fracture during the bending process [69,70]. Apart from
experimental test results (shown in Figure 6), novel and strong numerical methods have
been recently proposed to find the stress-strain properties of composites. Among them,
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the “Differential Quadrature” and “Bezier” methods proved to have higher stability and
accuracy than other numerical methods [71–74].

5.2. Sandwich Composites Climbing Drum Peel

Figure 9 presents the climbing drum peel (CDP) strengths of GFRP sandwich compos-
ites bonded with epoxy and Elium, measured using two different foam types (PVC and
PET). There were variations in the peel strength of the sandwich panels, suggesting other
failure mechanisms depending on the type of resin used. From Figure 9, the lowest and
highest peel strength has been shown in GF/PVC/EPOXY and GF/PET/ELIUM, respec-
tively, due to the significant effects of elium resin properties and their bonding consistency
with glass fiber. The aim of the test was to determine the skin-to-core bond strength of
sandwich constructions [75].
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5.3. Sandwich Composites Flatwise Tensile Strength

From Figure 10 and Table 4, the results offer some interesting points. First, the
peak load and flatwise strengths of the sandwich composites bonded with Elium were
significantly higher than those bonded with epoxy. The Elium has low viscosity and long gel
time to ensure excellent fiber impregnation and optimum mechanical properties, compared
with compare the flatwise-tensile strengths of sandwich panels made by different resins
but with the same foam core (GF/PET/ELIUM, GF/PET/EPOXY) and (GF/PVC/ELIUM,
GF/PVC/EPOXY). The highest peak load and flatwise-tensile strength has been shown in
(GF/PVC/ELIUM) and is better than the epoxy sandwich composite.

From Figure 8, Elium sandwich structures with PVC foam have been proven to have
better ultimate tensile strength than PET foam. Elium resin confirms that the bond strength
between skins and core is higher than the core.RETRACTED
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Table 4. Highest peak load and flatwise strength of GFRP sandwich composite structures.

Sandwich Structures Sample No. Force (KN) Strength (MPa)

GF/PVC/Epoxy

1 0.746 1.1936
2 0.595 0.952
3 0.804 1.2864
4 0.595 0.952
5 0.697 1.1152

Average 0.69 1.01
SD 0.075 0.12

GF/PET/Epoxy

1 0.626 1.0016
2 0.668 1.0688
3 0.836 1.3376
4 0.863 1.3808
5 0.869 1.3904

Average 0.77 1.24
SD 0.095 0.15

GF/PET/Elium

1 0.826 1.3216
2 0.661 1.0576
3 1.036 1.6576
4 1.042 1.6672
5 0.952 1.5232

Average 0.90 1.44
SD 0.131 0.21

GF/PVC/Elium

1 1.158 1.8528
2 0.84 1.344
3 1.305 2.088
4 1.118 1.7888
5 1.11 1.776

Average 1.10 1.77
SD 0.137 0.22
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6. Conclusions

The aims of the current study are to investigate and evaluate the flexural strength,
climbing drum peel and flatwise tensile strength behavior of glass fiber sandwich compos-
ites with two different foams (PVC, PET) and resin (elium and epoxy). The results showed
that the GF/PVC/ELUIM composite panel gives the highest load absorption of 1308 N
at a significant displacement of 5.3 mm, equal to the flexural strength of 243.75 MPa. The
GF/PET/EPOXY sandwich structure gives lower bearing load and flexural strength than
other structures. This is because of the highly rigid molecular structure of PET foam. When
subjected to flexural loads, the type and size of the damage caused on sandwich composites
could depend on the reinforcement, foam and resin properties. The results showed that
the GF/PET/ELUIM composite panel gives the highest peel strength of 838 N, and the
GF/PVC/EPOXY composite panel gives the lowest peel strength of 367 N due to the bond-
ing strength of liquid thermoplastic resin (elium) with PET and GF being better than epoxy
resin. The GF/PVC/ELUIM composite panel gives the highest flatwise tensile strength
of 1.77 MPa, and GF/PVC/EPOXY composite panel gives the lowest flat-wise strength
of 1.01 MPa due to the strength of a new liquid thermoplastic resin (Elium) and interface
bonding between GF and Elium better than epoxy resin. As a summary of this preliminary
study of GFRP sandwich composites, the Elium resin opened a new and interesting field
of high-performance applications and more challenges to implement more studies on this
type of liquid thermoplastic resin. Elium can be used as soon as possible in aerospace and
renewable energy due to it being easy to process and designed to make composites fully
recyclable. Shortcomings of the present study concern prototypes of at least small wind
turbine blades not having been fabricated to verify experimental results; this may be due to
the current status of the research only focusing on preliminary experiments.

Future considerations and recommendations of more studies should be carried out
on understanding the optimum design of thermoplastic sandwich structures using eEium
resin. In the meantime, it remains a challenge of recyclable composites and end-of-life
wastes.
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