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Abstract: In order to solve the problem of accurate and efficient detection of welding defects in the
process of batch welding of metal parts, an improved Probabilistic Neural Network (PNN) algorithm
was proposed to build an automatic identification model of welding defects. Combined with the
characteristics of the PNN model, the structure and algorithm flow of the FAST-PNN algorithm
model are proposed. Extraction of welding defect image texture features of metal welded parts
by a Gray Level Co-occurrence Matrix (GLCM) screens out the characteristic indicators that can
effectively characterize welding defects. Weld defect texture features are used as input to build a
defect classification model with FAST-PNN, for accurate and efficient classification of welding defects.
The results show that the improved FAST-PNN model can effectively identify the types of welding
defects such as burn-through, pores and cracks, etc. The classification recognition accuracy and
recognition efficiency have been significantly improved. The proposed defect welding identification
method can accurately and effectively identify the damage types of welding defects based on a small
number of defect sample images. Welding defects can be quickly identified and classified by simply
collecting weld images, which helps to solve the problem of intelligent, high-precision, fast real-time
online detection of welding defects in modern metal structures; it provides corresponding evidence
for formulating response strategies, with a certain theoretical basis and numerical reference.

Keywords: welding defects; digital image processing technology; gray level co-occurrence matrix;
FAST-PNN

1. Introduction

Metal welding processing methods exist in various industries, aerospace, automobile
manufacturing, shipbuilding, etc., and are all inseparable from welding. The welding
process is affected by various parameters and the testing environment, resulting in various
welding defects such as burn-through, porosity, cracks and lack of fusion in the welds of
metal parts [1,2]. It is very difficult to accurately detect the weld seam of welded products
in the actual industrial welding process. On the one hand, the investment is large, and on
the other hand, the labor cost is high and the misjudgment rate is high. At the same time,
the existence of welding defects seriously affects the service life of welded parts. Therefore,
product post-weld inspection is an important issue that needs to be solved urgently [3–6].

Building a mathematical model according to the actual problem, solving the mathe-
matical model and then solving the actual problem according to the results are widely used
in various fields [7–9]. An artificial neural network is also a kind of mathematical modeling,
which makes predictions after building models. With the wide application of intelligent
welding defect detection instruments in engineering practice, how to accurately identify
welding defects under complex constraints has become a research hotspot, and the existing
research results demonstrate that the performance of welding defect recognition models
based on artificial neural networks is particularly outstanding [10–13]. Welding defect
recognition based on neural networks [14,15] involves selecting the parameters sensitive to
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defects as the input of the neural network, training the neural network through the defect
data in the numerical simulation and finally applying the trained network to the detection
of metal parts to realize the automatic identification of defects [16–20]. Ma et al. constructed
a Convolutional Neural Network (CNN) to identify the spectrum graphs, realizing the
online detection of porosity [21]. Gao et al. applied a deep CNN to identify welding defects
obtained in different inspection environments, and obtained better inspection results [22].
Fan et al. carried out real-time classification and identification of laser welding defects
using s CNN algorithm model and Auxiliary Classifier Generative Adversarial Network
(ACGAN) model classification [23]. Amirafshari et al. predicted the Probability of Detection
(POD) using Bayes’ theorem with commonly used hit/miss models, and estimated weld
defect size and frequency [24]. Liu et al. proposed a class activation mapping method that
fuses multi-scale features [25]. However, the complex constraints of the inspection environ-
ment impair the image quality, various defects on the welding surface seriously interfere
with the inspection efficiency and the lack of sample space in the actual measurement site
limits the establishment of an intelligent system for defects. This series of problems leads
to the problem of reduced accuracy and prolonged testing waiting time in welding defect
identification research [26–28]. Therefore, it is necessary to explore a fast and high-precision
welding defect identification method that is more in line with on-site inspection.

A PNN is an algorithm based on the Bayes decision theory and parzen window
probability density function, which is developed on the basis of a radial basis neural
network [29–31]. Compared with other neural networks, the calculation process of a PNN
is simple, the convergence speed is fast and the stability is high. The network has strong
fault tolerance for individual abnormal data and, for newly added or deleted sample
data, it can maintain a high classification accuracy without retraining. It can also meet
the requirements of modification at any time during sample training. At present, PNNs
are widely used in the field of fault diagnosis [32,33]. There are difficulties in welding
defect damage identification research, metal materials are industrialized products and the
degree of mechanization, automation and intelligence of infrastructure is low. The welding
defect samples that can be extracted at this stage are extremely scarce, which seriously
affects the identification accuracy of welding defects. Due to the network characteristics
of a PNN, it can still maintain high recognition accuracy under the condition of a small
amount of sample data. However, the traditional PNN model is limited by the network
structure, and the recognition efficiency is generally low, which cannot meet the current
requirements for efficient and fast detection of welding defects. Therefore, this paper
improves the traditional PNN model structure and learning algorithm, and proposes a
FAST-PNN model.

The research object of this paper is pictures of weld defects of CO2 gas shielded arc
welding. The steps involve obtaining welding defect images using an image acquisition
system; selecting digital image processing techniques to optimize image quality in the
inspection area; extracting the characteristic parameters of welding defects through image
texture analysis technology, and establishing a standard sample database for identifying
welding defect images. We build a FAST-PNN model for welding defect classification
and identification, gaining higher identification accuracy in a limited sample of weld
defects. The validity of the improved model is verified based on the recognition accuracy
of detection samples and test samples.

2. Method
2.1. Gray Level Co-Occurrence Matrix (GLCM)

Weld defect images are varied and extremely complex. A GLCM based on statistical
theory meets the actual detection conditions by adjusting three important construction
factors (gray level g, generation step d and generation direction θ). Based on the GLCM, 14
characteristic parameters can be extracted to quantify the texture characteristics of welding
defects in a multi-dimensional and all-round way. Taking the screened feature parameters
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as standard and the sample as the input of the network model, a PNN model of welding
defects with low demand for samples and high recognition accuracy can be constructed.

The GLCM starts from the pixel (x, y) whose gray value is i, and counts the pixel (x +
a, y + b) whose distance is d and whose gray value is j, and the probability of simultaneous
occurrence is mathematically expressed as:

P(i, j, d, θ){[(x, y) , (x + a, y + b)| f (x, y) = i; f (x + a, y + b) = j]}. (1)

Among them, the value range of i, j determines the image gray level g, d is the
generation step size; θ is the generation direction of the GLCM, usually taking four growth
directions of 0◦, 45◦, 90◦ and 135◦.

2.2. Construction Factor

The image gray level g, the generation step size d and the generation angle θ are the
three construction factors of the GLCM, which together determine the conditional criteria
for generating the GLCM. The form of the GLCM generated under the criterion determines
the reliability of the extracted feature parameters.

(1) The image grayscale of g

The image gray level g determines the size of the grayscale co-occurrence matrix of the
welding defect image and is an important parameter to measure the quality of the welding
defect image.

(2) The generation step size of d

The generation step d is used as the connection distance between the center positions
of the pixel points of the defect image in the process of constructing the gray level co-
occurrence matrix of the welding defect image. The generation step size d is set based on
the distance between the welding defect texture primitive and the primitive. Weld defect
primitives are finely textured with small d values, weld defect texture primitives are coarse
textured with large d values.

(3) The generation direction of θ

The generation direction θ is the angle between the two pixels of the welding defect
image, that is, the angle between the initial defect pixel and the end defect pixel according to
the counterclockwise direction, taking 0◦, 45◦, 90◦, 135◦. This is because the welding defect
image texture base element and the base element constitute a certain angle. Therefore, it
is very important to choose the appropriate generation direction to describe the defect
texture.

2.3. Characteristic Parameters

The grayscale matrix of the image reflects the visual information of the image, and
the GLCM reflects the comprehensive information of the image grayscale on the direction,
adjacent interval and variation range. The local pattern and arrangement rules of the image
can be analyzed by the GLCM, but generally not the co-occurrence matrix obtained by direct
application, but the secondary statistics are obtained on the basis of it. Before obtaining the
characteristic parameters of the GLCM, it is necessary to perform normalization processing:

P(i, j, d, θ) = P(i, j, d, θ)/R. (2)

Among them, R is the normalization constant, and is the sum of all elements in
the GLCM.

Haralick et al. defined 14 GLCM feature parameters for texture analysis [34], and the
characteristic parameters and their calculation formulas are shown in Table 1.
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Table 1. The 14 characteristic parameters and their expressions.

Texture Feature Parameters Expression

Angular second moment, ASM W1 =
g
∑

i=1

g
∑

j=1
p2(i, j, d, θ)

Correlation, COR W2 =
g
∑

i=1

g
∑

j=1
[(i× j× p(i, j, d, θ)− u1 × u2]

/
(d1 × d2)

Significant clustering, SIC W3 = −
g
∑

i=1

g
∑

j=1
[(i− u1) + (j− u2)]

4 × p(i, j, d, θ)

Sum of mean, SUM W4 =
2g
∑

k=2
k× PX(k); PX(k) =

g
∑

i=1

g
∑

j=1
p(i, j, d, θ)

Variance, VAR W5 =
g
∑

i=1

g
∑

j=1
(i−m)2 p(i, j, d, θ)

Sum of variance, SUV W6 =
2g
∑

k=2
(k−W6)

2PX(k); PX(k) =
g
∑

i=1

g
∑

j=1
p(i, j, d, θ)

Inverse matrix, INM W7 =
g
∑

i=1

g
∑

j=1
p(i, j, d, θ)/[1 +

(
i− j)2]

Difference of Variance, DIV W8 =
g−1
∑

i=1
[k−

g−1
∑

k=0
k× PY(k)]2 × PY(k); PY(k) =

g
∑

i=1

g
∑

j=1
p(i, j, d, θ)

Entropy, ENT W9 =
g
∑

i=1

g
∑

j=1
p(i, j, d, θ)2 × log10 p(i, j, d, θ)

Sum of entropy, SUM W10 = −
2g
∑

k=2
PX(k)× log[PX(k)]; PX(k) =

g
∑

i=1

g
∑

j=1
p(i, j, d, θ)

Difference of Entropy, DIE W11 = −
g−1
∑

k=0
PY(k)× log[PY(k)]; PY(k) =

g
∑

i=1

g
∑

i=1
p(i, j, d, θ)

Clustering shadow, CLS W12 = −
g
∑

i=1

g
∑

j=1
[(i− u1) + (j− u2)]

3 × p(i, j, d, θ)

Contrast, CON W13 =
g
∑

i=1

g
∑

j=1
[(i− j)2 × p2(i, j, d, θ)]

Maximum probability, MAP W14 = MAX[
i,j

p(i, j, d, θ)]

In the formula, u1 =
g
∑

i=1
i

g
∑

j=1
p(i, j, d, θ), u2 =

g
∑

i=1
j

g
∑

j=1
p(i, j, d, θ),

d1
2 =

g
∑

i=1
(i− u1)

2
g
∑

j=1
p(i, j, d, θ), d2

2 =
g
∑

j=1
(j− u1)

2
g
∑

i=1
p(i, j, d, θ); PX(k) =

g
∑

i=1

g
∑

j=1

p(i, j, d, θ)|i+j|=kk = 2, 3, . . . 2g; PY(k) =
g
∑

i=1

g
∑

j=1
p(i, j, d, θ)|i−j|=kk = 2, 3, . . . 2g; m is the

mean of p(i, j, d, θ).
It can be seen from Table 1 that the 14 characteristic parameters are related to the

combination of construction factors, different combinations will generate different GLCMs,
resulting in different feature parameters, and the obtained feature parameters will express
different textures. The main tool for analyzing textures is texture feature parameters.
Therefore, in this study, from the perspective of characteristic parameters, the GLCM
construction method suitable for welding defect texture was determined.

2.4. Fast Probabilistic Neural Network

In the process of welding defect identification, the extracted feature vector is usually
used as the input, and the output is the probability of the category. In order to improve the
performance of the welding defect recognition network model, the network structure is
improved, and the improved PNN model is shown in Figure 1.
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Figure 1. Network structure.

The improved PNN is a feedforward neural network with multiple parzen windows.
The structure is divided into 4 layers, namely input layer, pattern layer, summation layer
and output layer. As shown Figure 1, the improved output layer consists of a planar array.

2.5. Fast Probabilistic Neural Network Algorithm (FAST-PNN)

The traditional PNN model, its output layer is one-dimensional. The improved PNN
(FAST-PNN) optimizes its output layer from a traditional one-dimensional output layer to a
two-dimensional output surface and defines a neighborhood window. Its network process
is as follows: the input layer of the FAST-PNN is used as the input of the feature vector,
and the feature vector is passed to the next layer of the network to normalize the input
samples. The core key of the FAST-PNN model is to establish a neighborhood window in
the output array to quickly detect the category of multiple output neurons. The specific
algorithm steps are as follows:

(1) Determination of input vector: The input feature vector of the data sample is passed
to the FAST-PNN network, that is, the feature vector X calculated by the GLCM
processing is used as the input of the FAST-PNN. Since the number of neuron nodes
in the input layer in FAST-PNN is equal to the dimension of the input vector, the input
layer of the network contains n neuron nodes.

(2) Establishment of radial base: The radial base layer kernel function is a Gaussian
function. The number of neuron nodes in this layer is the same as the number of
input training samples. It directly stores the training samples as the pattern vector
of the network and calculates the radial basis of each input vector and mode vector
when classifying the data, so as to obtain an estimate of the density function of the
input vector.

(3) Calculation of the summation layer: The number of neurons in the summation layer
is the same as the data pattern category. Each node is only connected to the neurons
of the corresponding mode category in the radial base layer, and the probability
estimates under each mode are summed and averaged.

(4) Determination of the output layer: The output layer sets the pattern output with the
largest posterior probability to 1 and the rest to 0, thus realizing pattern prediction
classification.

(5) Establishment of the neighborhood window: The neighborhood shape and the neigh-
borhood radius are determined according to the output layer array and the number
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of categories. The neuron and its neighboring neuron categories are determined, the
window slides until all the output layer arrays are judged and the process ends.

3. Test and Result Analysis

The working steps of a welding defect recognition model based on the combination of
a GLCM and probabilistic neural network are shown in Figure 2.
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According to Figure 2, it can be seen that the recognition and classification of welding
defect patterns based on a GLCM and FAST-PNN are divided into three core steps: image
processing, feature parameter extraction and screening and network construction. First,
acquire and process welding defect images and analyze the texture characteristics of
welding defects. Then, extract and screen the characteristic parameters of the welding
defect image to construct a parameter set. Finally, a welding defect recognition model
is constructed based on the improved FAST-PNN, the pattern vector density function is
used to calculate its probability, the probability is summed and then the average value is
calculated. Design the output layer neighborhood window, slide the neighborhood window
until the welding defect types of all neurons are output and end the process.

3.1. Image Acquisition and Processing

The complex defect types on the welding surface and the existence of many unfavor-
able factors in the inspection environment seriously interfere with inspection, such as light,
welding fumes, oil on the surface of welding parts, etc. In order to provide high-quality
sample labels, Digital Image Processing (DIP) technology is applied to optimize image
quality, remove noise information that affects image quality, such as light, welding smoke
and image transmission, reduce redundant information and obtain images of defective
areas. The welding-related parameters of the target weld are obtained as shown in Table 2.
The welding picture of the assembly obtained by the target weld is shown in Figure 3.
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Table 2. Target welding seam parameter table.

Arc Welding Robot Welding Parameter Table

Robot
Model

Panasonic
TM1400

Part
Name

Cushion
Skeleton

Raw
Material

45 Gauge
Steel

Raw
Material

Thickness
(mm)

2 ± 0.2 Diameter of Welding
Wire (mm) 1

Protective
Gas CO2 Gas Flow 15–20 L Number

of Welds 7
Welding

Proce-
dure

Prog160 -

Welding Specifications

Weld
Serial

Number

Weld
Length
(mm)

Voltage
(V)

Electric
Current

(A)

Welding
Speed

(mm/min)

Gas Flow
(L/min)

Welding
Wire

Extension
Length
(mm)

Arcing
Time (s)

Arc
Extingu-
ishing
Time

(s)

Arc-
Closing
Current

(A)

Arc-
Closing
Current

(V)

1 15 + 5 18.8 125 850 15 15 0.12 0.12 120 18.8
2 15 + 5 19.2 130 850 15 14 0.12 0.3 80 16.8
3 15 + 5 19.4 135 850 15 15 0.12 0.3 80 17.8
4 10 + 5 20.2 150 800 15 15 0.15 0.3 100 16.2
5 15 + 5 19.6 140 800 15 13 0 0.25 75 17

Coatings 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

3.1. Image Acquisition and Processing 
The complex defect types on the welding surface and the existence of many unfavor-

able factors in the inspection environment seriously interfere with inspection, such as light, 
welding fumes, oil on the surface of welding parts, etc. In order to provide high-quality 
sample labels, Digital Image Processing (DIP) technology is applied to optimize image 
quality, remove noise information that affects image quality, such as light, welding smoke 
and image transmission, reduce redundant information and obtain images of defective 
areas. The welding-related parameters of the target weld are obtained as shown in Table 
2. The welding picture of the assembly obtained by the target weld is shown in Figure 3. 

Table 2. Target welding seam parameter table. 

Arc Welding Robot Welding Parameter Table 

Robot 
Model 

Panasonic 
TM1400 

Part 
Name 

Cushion 
Skeleton 

Raw Mate-
rial 

45 
Gauge 
Steel 

Raw Mate-
rial Thick-
ness (mm) 

2 ± 0.2 
Diameter of Welding 

Wire (mm) 1 

Protective 
Gas CO2 Gas Flow 15–20 L Number of 

Welds 7 Welding 
Procedure Prog160 - 

Welding Specifications 

Weld Serial 
Number 

Weld 
Length
（mm） 

Voltage 
(V) 

Electric 
Current 

(A) 

Welding 
Speed 

(mm/min) 

Gas 
Flow 

(L/min) 

Welding 
Wire Exten-
sion Length 

(mm) 

Arcing 
Time (s) 

Arc Ex-
tingu-ish-
ing Time 

(s) 

Arc- 
Closing 
Current 

(A) 

Arc- 
Closing 
Current 

(V) 
1 15 + 5 18.8 125 850 15 15 0.12 0.12 120 18.8 
2 15 + 5 19.2 130 850 15 14 0.12 0.3 80 16.8 
3 15 + 5 19.4 135 850 15 15 0.12 0.3 80 17.8 
4 10 + 5 20.2 150 800 15 15 0.15 0.3 100 16.2 
5 15 + 5 19.6 140 800 15 13 0 0.25 75 17 

 

  
Figure 3. Welding parts. 

Each weldment in Figure 3 is welded by multiple welds and, during the mass pro-
duction process, different types of welding defects will occur. A Nikon-d850 (Nikon, To-
kyo, Japan) was used to build a welding defect image acquisition system (30–40 cm away 
from the weld, perpendicular to the weld), and 150 target weld surface defect images were 
randomly collected. The region of interest was extracted sequentially, followed by gray-
scale transformation, histogram equalization and median filtering. Figure 4 is the gray-
scale image of five kinds of welding defects after processing. In order to better distinguish 
between normal and defective welds, we also incorporate normal welds into the target 
welds for weld detection and identification, which is more conducive to engineering prac-
tice applications. 

Figure 3. Welding parts.

Each weldment in Figure 3 is welded by multiple welds and, during the mass pro-
duction process, different types of welding defects will occur. A Nikon-d850 (Nikon,
Tokyo, Japan) was used to build a welding defect image acquisition system (30–40 cm
away from the weld, perpendicular to the weld), and 150 target weld surface defect images
were randomly collected. The region of interest was extracted sequentially, followed by
grayscale transformation, histogram equalization and median filtering. Figure 4 is the
grayscale image of five kinds of welding defects after processing. In order to better dis-
tinguish between normal and defective welds, we also incorporate normal welds into the
target welds for weld detection and identification, which is more conducive to engineering
practice applications.
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We contrast and analyze the information contained in each grayscale image in Figure 4.
The images have the advantages of clear texture, clear defect target and strong overall
contrast. Different types of welding defect texture images each show unique linear texture
primitives, and the uniformity and randomness of texture distribution are different. There-
fore, the characteristic parameters of each defect can be extracted according to the texture
analysis method as the standard sample of the welding defect identification network model.

3.2. Feature Parameter Extraction and Screening

The characteristic parameters of each defect image were extracted based on GLCM,
and the construction factor was determined as follows: generation step size d = 1, image
gray level g = 256, the generation direction θ takes 0◦, 45◦, 90◦, 135◦. Under this construction
factor, a GLCM suitable for characterizing defect image information was constructed. The
matrix was normalized and all feature parameters were extracted. In order to extract more
representative parameters and obtain higher defect recognition accuracy in a limited sample
space, 6 characteristic parameters were screened out, to establish high-quality standard
samples, as shown in Table 3.

Table 3. Characteristic parameters and their characteristic defect characteristics.

Characteristic Parameters Characterizing Weld Defect Image Properties

ASM Measuring the texture thickness of welding defects
CON Judging the texture distribution of welding defects
ENT Analysis of weld defect texture complexity
VAR Comparing weld defect texture period sizes
COR Judging the texture direction of welding defect images
CLS Weld defect texture uniformity

3.3. Standard Sample Establishment

In order to accurately extract defect information, crack, burn-through, porosity, non-
fused and normal images were selected, and the average value of their characteristic
parameters as the standard sample value was obtained. The angular second moment is
denoted as X1, contrast as X2, entropy as X3, variance as X4, correlation as X5 and clustering
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shadow as X6. Table 4 shows the standard sample parameter values corresponding to
each defect.

Table 4. Standard sample parameter values.

Defect Type X1 X2 X3 X4 X5 X6

Crack 0.5617 0.1143 0.0307 −0.7688 1.6167 6103.61
Burn-through 0.1489 1.7984 0.0102 5.7984 1.0089 6005.39

Porosity 0.9660 0.6460 0.0429 3.7294 1.1347 6183.92
Not fused 1.8978 1.0561 0.0945 1.6733 1.9456 6033.77
Normal 0.7642 1.3334 0.3271 0.6698 1.4775 6073.79

We contrast and analyze the fluctuations of the parameter values in Table 4, and build
a standard set in a specific interval from X1 to X6, which can be used as an evaluation
standard for effectively distinguishing defect types.

3.4. Network Model Building

A Nikon-d850 (Nikon, Tokyo, Japan) was used to obtain five kinds of welding defect
images, and the welding defect images were processed. Figure 4 shows the process of
image acquisition.

Based on the method shown in Figure 5, 70 images of each welding defect were
collected and processed. The processed 50 images were taken as training samples and 20 as
test samples. The feature parameters were extracted by the gray level co-occurrence matrix
as the input pattern set of the PNN model, and the standard sample vector of welding
defect types is formed:

X = (X1, X2, X3, X4, X5, X6) (3)
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The feature dimension is 6, the number of training samples for each welding defect is
50 and there are 1500 sample data in total. Then, there are:

X =


x11 x12 x13 x14 x15 x16
x21 x21 x21 x24 x25 x26

...
...

...
... · · ·

...
x2501 x2502 x2503 x2504 x2505 x2506


250×6

(4)

The total energy of the eigenvectors of the PNN model of welding defects is calculated,
denoted as matrix A, then:

A =

 1√
∑6

i=1 x21i

1√
∑6

i=1 x22i

1√
∑6

i=1 x23i
· · · 1√

∑6
i=1 x2250i


1×250

(5)
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After normalizing the welding defect samples, matrix B is obtained:

B =



1
1
1
1
...

1


250×1

∗ A ∗


x11 x12 x13 x14 x15 x16
x21 x21 x21 x24 x25 x26

...
...

...
... · · ·

...
x2501 x2502 x2503 x2504 x2505 x2506


250×6

=



x11√
∑250

i=1 x21i

x12√
∑250

i=1 x22i

x13√
∑250

i=1 x23i

x14√
∑250

i=1 x24i

x15√
∑250

i=1 x25i

x16√
∑250

i=1 x26i
x11√

∑250
i=1 x21i

x12√
∑250

i=1 x21i

x13√
∑250

i=1 x21i

x14√
∑250

i=1 x24i

x15√
∑250

i=1 x25i

x16√
∑n

i=1 x26i

...
...

...
...

...
...

x11√
∑250

i=1 x21i

x12√
∑250

i=1 x21i

x13√
∑250

i=1 x21i

x14√
∑250

i=1 x24i

x15√
∑250

i=1 x25i

x16√
∑n

i=1 x26i


250×6

=


C11 C12 C13 C14 C15 C16
C21 C21 C21 C14 C15 C26

...
...

...
...

...
...

C2501 C2502 C2503 C2504 C2505 C2506


250×6

(6)

The normalized sample data C250×6 of the input end is input into the pattern layer, the
pattern layer is only connected to the summation layer corresponding to the same defect
category and the others do not interfere with each other. There are a total of 5 types of
welding defects in our welding defect category, and there are 50 of each type of sample
data, then the total number of neurons in the mode layer is 250, and the neurons in the
mode layer correspond to the same type of input sample data, that is, 1~50 neurons in
the mode layer represent the first type of welding defect, 51~100 neurons represent the
second type of welding defect, 101~150 neurons represent the third type of welding defect,
151~200 neurons represent the fourth type of welding defect, 201~250 neurons represent
the fifth type of welding defect. The pattern layer calculates the Euclidean distance between
the input normalized feature vector and the training samples of the summation layer, and
multiplies the pattern layer vector with the corresponding threshold. Finally, the Gaussian
function activation is used to obtain the probability of the corresponding mode.

In the prediction of welding defect pattern samples based on a probabilistic neural
network, the number of defect pattern test samples is 25, and matrix D composed of 25
6-dimensional vectors is used to calculate the Euclidean distance among the samples to be
identified and the training samples:

Ei,j =
[(

Di − Cj
)(

Di − Cj
)T
] 1

2
=
√

∑6
k=1|dik − cik|2 (7)

The Gaussian function is used to activate, taking the variance as:

E =



e

√
∑30

k=1 |d1i−c1i |
2

2σ2 e

√
∑30

k=1 |d1i−c2i |
2

2σ2 · · · e

√
∑30

k=1 |d1i−c30i |
2

2σ2

e

√
∑30

k=1 |d2i−c1i |
2

2σ2 e

√
∑30

k=1 |d2i−c2i |
2

2σ2 · · · e

√
∑30

k=1 |d2i−c30i |
2

2σ2

...
...

...
...

e

√
∑30

k=1 |d25i−c1i |
2

2σ2 e

√
∑30

k=1 |d25i−c2i |
2

2σ2 · · · e

√
∑30

k=1 |d25i−c30i |
2

2σ2


25×30

=


E11 E12 · · · E130
E21 E22 · · · E230

...
... · · ·

...
E251 E252 · · · E2530


25×30

(8)
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That is, the output probability of the mode layer can be expressed as F:

F =


∑6

h=1 E1h ∑12
h=7 E1h ∑18

h=13 E1h ∑24
h=19 E1h ∑30

h=25 E1h
∑6

h=1 E2h ∑12
h=7 E2h ∑18

h=13 E2h ∑24
h=19 E2h ∑30

h=25 E2h
...

...
...

...
...

∑6
h=1 E25h ∑12

h=7 E25h ∑18
h=13 E25h ∑24

h=19 E25h ∑30
h=25 E25h


25×30

(9)

The summation layer neuron obtains the initial probability sum of the pattern layer
and calculates the estimated probability of the welding defect category of the sample to be
identified and the output layer neuron receives the initial probability of various welding
defect categories input from the summation layer. According to the Bayes rule, the input
sample to be tested is divided into the welding defect types with the maximum posterior
probability, and the input sample X is mathematically described as:

h1l1Fi1(X) > hiliFir(X) r 6= 1, then X ∈ (1 0 0 0 0)
h2l2Fi2(X) > hiliFir(X) r 6= 2, then X ∈ (0 1 0 0 0)
h3l3Fi3(X) > hiliFir(X) r 6= 3, then X ∈ (0 0 1 0 0)
h4l4Fi4(X) > hiliFir(X) r 6= 4, then X ∈ (0 0 0 1 0)
h5l5Fi5(X) > hiliFir(X) r 6= 5, then X ∈ (0 0 0 0 1)

(10)

Among them: h1 = N1
N , h2 = N2

N , h3 = N3
N , h4 = N4

N , h5 = N5
N .

In the formula, h1, h2, h3, h4 and h5 are the prior probabilities of modes 1, 2, 3, 4 and
5, l1, l2, l3, l4 and l5 are the cost factors for fault judgment errors, f1, f2, f3, f4 and f5 are
the probability density functions of five welding defects. N1, N2, N3, N4 and N5 are the
number of samples for each type of welding defect, N is the total number of samples.

According to the number of welding defect neurons and the type of welding defect, the
output array hexagonal neighborhood window is selected, and the neighborhood radius
d = 1. The output layer obtains the maximum probability density function neuron, and
its output is 1, that is, (1 0 0 0 0), (0 1 0 0 0), (0 0 1 0 0), (0 0 0 1 0) and (0 0 0 0 1) represent
cracks, burn-through, pore, not fused and normal, respectively.

3.5. Result Analysis

Combined with the above FAST-PNN model, the feature parameters extracted from
250 defect sample pictures are processed and input into the network. Due to the large
amount of data, the output data graph cannot be fully displayed, and Figure 6 only shows
the renderings of 75 groups of training samples and their error maps after training.

It can be seen from Figure 6a,b that, after training, 75 sets of training data were taken as
input into the trained PNN, only five samples were judged incorrectly and the accuracy rate
reached 93.33%. At the same time, comparing FAST-PNN with the traditional PNN model, it
is found that the recognition accuracy remains unchanged, and the recognition consumption
time is shortened. For the same 75 sets of data, the traditional PNN identification took about
274 s, while the FAST-PNN identification took about 204 s, so the efficiency is increased
by 27.54%. Using the trained FAST-PNN, 25 sets of test data were input to check the
predicted effect of the neural network, and the result is shown in Figure 6c, in which the
squares represent the actual classification results, and the asterisks represent the predicted
classification results. As can be seen from Figure 6c, among the 25 sets of prediction samples,
only one set of test samples is wrong, with an accuracy rate of 96%, and the efficiency is
25.48% higher than the traditional model. Therefore, FAST-PNN can be used in welding
defect pattern classification.
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4. Conclusions

A welding defect identification method combining improved PNN and texture analysis
technology is proposed, which can effectively eliminate the interference of environmental
factors based on limited sample space (about 70 pieces for each defect), obtain higher
welding defect identification accuracy and effectively improve the network identification
efficiency. The following conclusions were reached:

(1) Based on image processing methods such as grayscale transformation, regional im-
age interception, histogram equalization and median filtering, the interference of
environmental factors is removed, and defect images with clear targets and strong
contrast are obtained. Combined with the gray level co-occurrence matrix, the texture
feature parameter set (angular second moment, entropy, etc.) is screened out, and the
standard sample of the network model is established.

(2) By adjusting various parameters of the network, the welding defect recognition
model of FAST-PNN is constructed. Based on FAST-PNN, five kinds of welding
defects, including cracks, burn-through, porosity, non-fusion and normal defects,
are predicted and classified, the accuracy rate reaches 93.33% and the efficiency of
network identification has been significantly improved.

In engineering practice, welding defects exist in real time. The research method in this
paper can quickly identify weld defects by simply obtaining weld pictures, and can quickly
classify and provide corresponding evidence to formulate coping strategies, which has a
certain theoretical basis and numerical reference.
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