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Abstract: Surface texture plays an important role in improving the tribological properties of materials.
In this paper, the effect of different shapes (i.e., triangle, square, hexagon, round) on the tribological
performance of cross-grooved texture was investigated. First, the mixed lubrication condition was
used for the pin-on-disc rotating sliding tests. Then, the stress distribution of the four textures
was analyzed to better explain the experimental results. Overall, the hexagon-textured specimens
exhibited lower friction coefficients than the other shape-textured specimens under the examined
conditions. Simulation results indicate that the contact stress can be reduced on the surface of
hexagon-textured specimens, and this leads to a better oil film for lubrication. Furthermore, the
hydrodynamic lubrication stood out with the increase of speeds to 250 rpm. However, as the test
loads further increased, the film thickness decreased, resulting in the increase in the asperity contact
areas, which dropped the above advantage of hexagon-textured specimens. This study would be
beneficial for the texturing tribological and lubrication design.

Keywords: cross-grooved; texture shape; tribological performance; mixed lubrication

1. Introduction

Friction has always been the major concern of part failure, which causes an excessive
loss of resources. Surface texturing, as an effective engineering technology to improve
the anti-wear properties, has been proposed and studied by many scholars [1–3]. Surface
textures have been widely investigated in recent decades and proven to be effective at
reducing friction force and improving wear resistance under normal workpiece conditions
with better tribological properties [4–7]. Furthermore, surface texturing has been success-
fully applied to sliding bearings, machine components in sliding contacts, cylinders of
internal combustion engines, and mechanical seals [8–10]. Table 1 summarizes the recent
research on surface texture for practical engineering applications.

The generally accepted mechanisms to explain the friction reduction by surface tex-
tures include textures that can store lubricant to introduce secondary lubrication and entrap
wear debris or impurities to protect the contact surface from scratching again [16–18].
Meanwhile, the load carrying capacity of hydrodynamic lubrication is increased due to the
cavitation effect.

The design of new texture shape is an effective way to further improve the tribological
performance. The shape form of surface texturing is divided into two general types: a
discrete (dimple) texture and a continuous one (groove) [19–21]. The dimple, as the general
texture form, is the most investigated, and the tribological properties of various dimple
shapes have been studied extensively. The oil pockets of spherical and drop shapes textured
on the steel rings have been tested under lubrication; the results of their abrasive wear
demonstrated that the dimple of the spherical shape was superior to that of the drop shape
in terms of wear resistance [22]. In addition, the ring surfaces with oil pockets of short drop,
long drop, and spherical shapes were compared to clarify the influence of the geometrical
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characteristics of the surface texture on the Stribeck curve in lubricating sliding; the results
showed that the proper textured shape can improve lubricating characteristics [23]. As
such, the role of round dimple, diamond dimple, and ellipse dimple were distinguished
under boundary and mixed lubrication, during which the round dimple geometry yielded
the lowest friction and wear among others [24]. In a recent study, the numerical simulation
can also predict the effect of texture shapes on surface tribological properties: the influence
of six types of pit shapes on the friction coefficients of gas-lubricated parallel slider bearings
(i.e., circle, ellipse, sphere, ellipsoid, triangle, and chevron) were reconstructed by numerical
simulation, and it drew the conclusion that the ellipsoidal shape obtained the lowest friction
coefficient and the highest bearing stiffness [25]. Similarly, another numerical simulation
based on the sequential quadratic programming algorithm was used to optimize texture
shapes for lubrication and acquired the results that chevron-shapes and trapezoid-like
shapes generated the load carrying capacity (LCC) in the corresponding sliding directions
and always had a greater LCC at the area ratio of 30% [26]. Moreover, the geometric shape
(i.e., ellipse dimple, circle dimple, and triangle dimple) effect of the textured surface on
hydrodynamic pressure were investigated by both experiments and theoretical models. It
was found that the geometric shapes of dimples had a non-negligible influence on the LCC,
and the textured specimens with ellipses perpendicular to the direction of sliding showed
the highest LCC [27]. In order to maximize the LCC of the textured surface, the level set
method was introduced to optimize the shape of the surface texture with dimples under
the cavitating hydrodynamic lubrication condition. The results showed that the optimal
geometries were the chevron-type shape [28].

Table 1. Application of surface texture in practical engineering.

Application Texture Results

Cutting tool Vertical groove texture [11] Reduce friction by 11.9%

Piston ring Partially texture with ‘open pockets’ [12] The total friction dropped by 15%

Cylinder liner Honing & circular texture [13] Peak engine power increased by 5.8%

Mechanical seals Asymmetric ‘V’ shapes texture [14] Provided higher load-carrying capacity
than conventional shapes

Journal bearing Dimple texture [15] The friction is reduced by up to 18%

Correspondingly, different forms of continuous grooves were also considered as an
alternative option for friction reduction. The parallel grooves and crossed grooves were
compared at high pressure and low sliding speed under lubrication, and the effect of the
crossed grooves on the reduction in friction coefficients relative to parallel grooves stood
out [29]. Other studies found that wavy grooves led to a lower friction coefficient in both
unlubricated and MoS2-lubricated conditions than parallel grooves [30]. Additionally,
textured specimens with grooves, circle dimples, and chevron-like dimples at different
orientations, depths, densities, and aspect ratios were tested under hydrodynamic lubri-
cation. Among all these texturing features, circle dimples and chevron-like dimples had
better tribological properties by generating hydrodynamic films with the highest thick-
ness [31]. When grooves were applied on the surface of non-metallic materials (e.g., a
poly(dimethylsiloxane) (PDMS) elastomer), pillar-textured specimens could also minimize
the friction coefficients by 59% compared with non-textured specimens [32]. Inspired by
microstructures on the animal surface, recently, the bionic texture (e.g., hexagonal texture)
has been proposed by some researchers and its superiority in reducing friction has been
verified experimentally and through modeling [33,34].

However, except for the mentioned parallel or other continuous grooves, there is little
research into how the cross-grooved texture shapes tune the tribological properties. The
cross-grooved texture is composed of a pattern of interlacing repeated units, which include
square, triangle, diamond, hexagon, etc. While only triangles, squares, and hexagons
can cover the surface effectively, hexagonal patterns are more frequently used in nature
(e.g., within beehives), and are the most effective way to pack the largest number of
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similar objects in a minimum space [35,36]. Inspired by this fact, four types of cross-
grooved texture shapes (i.e., triangle, square, hexagon, round) have been fabricated on AISI
1045 steel specimens by a fiber laser to compare the friction coefficients with the change in
loads and rotating speeds under mixed lubrication.

2. Materials and Methods
2.1. Fabrication of Specimens

The samples were cut from AISI 1045 steel into small cylinders with a diameter of
35 mm and a height of 16 mm. The cylindrical counter-disks with a diameter of 80 mm and
a height of 14 mm in the tribo-testing were prepared from AISI 52100 steel. The traditional
heat treatment was performed on the samples and counter-disks to enhance the hardness of
the surface, and the sequence of the heat treatment process for AISI 1045 steel is annealing,
quenching, and tempering. The Rockwell hardness of specimens and counter-disks were
48 and 60 HRC, respectively.

Then, laser surface texturing (LST) was used to engrave four shape textures on the
surface of the sample. Among all the texture-manufacturing technologies, LST was chosen
because of its characteristics of simple operation, high efficiency, and low pollution [37,38].
A fiber laser with a 1064 nm wavelength was used. The laser processing used the laser
power of 30 W with a scanning speed of 500 mm/s. The defocused laser was 0.05 mm in
diameter, and the pulse duration was 20 kHz [39]. Both the specimens and counter-disks
were polished by abrasive paper and grinding paste to achieve the RMS surface roughness
(Ra) of 0.2 µm after laser texturing [33].

The schematic diagram of the specimen is shown in Figure 1. In order to explore
the effect of cross-grooved texture shapes on the lubricated characteristics, all the areas
of simple shapes were the same and the groove width was 0.5 mm. The specimens were
replicated. The micrographs of the textured groove were obtained by the principles of
White Light Interferometry, and the groove depth was measured to be 10 µm, as shown in
Figure 2. For a better comparison, the preparation process of the non-textured specimen was
the same, only without laser processing. Before each test, the specimens and counter-disks
were cleaned with a mixture of acetone (5%) and ethanol (95%) in an ultrasonic apparatus.
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round-textured specimen.
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Figure 2. Micrographs of the textured surface. The average groove depth was about 10 µm.

2.2. Tribo-Testing

The friction tests under lubrication were implemented at ambient temperature and
humidity (around 28 ◦C and 30% RH) with a tribo-testing machine (M2000, Hebei Testing
Machine Co. Ltd., Hebei, China) using a disc-on-pin setup shown in Figure 3. The upper
was the counter-discs, and the lower was the tested specimen, the lubrication of which
could flow through the grooves. A commercial diesel (0#) with a viscosity (η) of 0.0027 Pa·s
was selected as the lubricant, and 0.6 mL of lubricant was applied in each test. The tests
were conducted under a series of loads (20, 50, 70, and 100 N) and rotating speeds (50, 100,
200, and 250 rpm). The testing period was 60 min, after which the friction coefficient was
recorded. Five specimens were repeated for each condition to reduce test errors.
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3. Results and Discussion

Textured specimens with the four types of shapes were conducted by tribo-testing
under lubrication conditions and untextured specimens were compared. The average
friction coefficients of two independent experiments under the selected loads and rotating
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speeds were compared, as shown in Figure 4. Overall, all the specimens exhibited high
friction coefficients under the load of 20 N, and the friction coefficients would reduce with
the increase in loads. Furthermore, the friction coefficient (COF) of the textured specimens
were generally lower than that of the untextured samples, although the coefficient of
friction was comparable in a few cases. This observation was consistent with the findings
in previous studies [1,10].
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speeds of (a) 50 r, (b) 100 r, and (c) 250 r. T (triangular); S (square); H (hexagonal); R (round); and
U (untextured).

Interestingly, the hexagon-textured specimens showed the lowest friction coefficients
compared to textured specimens with other shapes. For the minimum loads of 20 N (the
black polyline in Figure 4), there was an obviously significant difference in COF between
hexagon-textured specimens and other shape-textured specimens; the difference of them
mitigated as the loads increased. When the load reached 70 N, with a rotating speed
of 250 rpm (the blue polylines in Figure 4c), the difference between hexagon-textured
specimens and other shape-textured specimens was still obvious. As the load further
increased to 100 N, the difference faded away (the green polyline in Figure 4c).

For a better visualization of the above trends, the relative increases in COF (COFri) are
shown in Figure 5. COFri is defined as follows:

COFri =
COFT , COFS or COFR − COFH

COFH
(1)

COFT, COFS, COFH, and COFR are defined as the COF of triangle-textured, square-
textured, hexagon-textured, and round-textured specimens, respectively. It is evident
that the COF of the hexagon-textured specimens showed the greatest improvement at the
minimum load of 20 N, but the friction coefficient improvement became less clear at the
higher loads of 70 N or 100 N. Particularly, the hexagon-textured specimens also exhibited
the lowest COF compared to other shape-textured specimens under different rotating
speeds, and this advantage for hexagon-textured specimens in lubrication increased with
the rotating speed in Figure 5.
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Figure 6 shows the interactions between the friction coefficient and the rotating speeds
for four species of textured-specimens. It can be seen that all the specimens yielded high
friction coefficients under the rotating speeds of 50 rpm, and then the friction coefficients
decreased with the increase in rotating speeds. This indicates that the hydrodynamic
lubrication is dominant and the oil film has a load-carrying capacity, which is in accordance
with former studies [40,41]. Excitingly, the hexagon-textured specimens also exhibited the
lowest COF compared to other shape-textured specimens under different rotating speeds.
Moreover, the advantages in the lubrication of hexagon-textured specimens increased
with the rotating speed, as shown in Figure 7. As the rotating speeds increased, the
difference between the hexagon-textured specimens and other shape-textured specimens
gradually increased.
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According to the experimental conditions and the obtained friction coefficients, it
can be presumed that the specimens are mainly conducted under mixed lubrication. In
the mixed lubrication, the asperity contacts and fluid film play an important role in load
capacity [42]. When the load is constant, the larger the contact area, the less contact
pressure per unit area. Meanwhile, high contact pressure appears at the edge of the grooves
and become adverse to lubrication by increasing the probability of asperity contact [43].
Although the four textured specimens had the same areas, their area densities (calculated
as the ratio of the total area excluding the texture to the whole area of the specimen) were
77.82% for triangular texture, 79.37% for square texture, 84.00% for hexagonal texture, and
77.32% for circular texture, respectively. Meanwhile, assuming that the oil volume on the
surface is not changed, since the groove can achieve the function of oil storage, the groove
will lead to a decrease in the thickness of the oil film on the surface, thereby decreasing the
distance of contact surface and asperity contacts. Hexagon-textured specimens have the
largest area densities compared to other shape-textured specimens, which imposes less
contact pressure on the surface of hexagon-textured specimens and weakens the acting
force of asperity contact. This may be one of the reasons for the reduction in the friction
coefficient. Furthermore, the oil volume on the surface of hexagon-textured specimens
was more than the others because of the smallest number of grooves, which separates the
upper and lower surface in favor of lubrication in the clearance between contact surfaces.
Unfortunately, as the loads increase, the above performance is not prominent due to the
limited carrying capacity and the increased asperity contact areas. In addition, the oil
between the contact areas will be squeezed because of the higher loads, so the difference in
COF of each specimen-textured with each shape is not as obvious. Therefore, it is believed
that the hexagon-textured specimens have a remarkable load capacity at the load of 20 N.

In order to better understand the influence of the oil film on the load-carrying capacity
of the four texture specimens, a simulation model was set up in the commercial software
ANSYS. To simplify the model, each groove shape unit able to cover the surface of speci-
mens in the X and Y axis of cartesian coordinate system was selected for study, as shown
in Figure 8.

The simulation experiment in this part was completed in ANSYS Workbench. Apply a
series of loads (20, 50, 70, and 100 N) to the textured surface. The mesh was generated by
tetrahedral elements, the element size was 3 mm. The mesh on the surface of the tested
specimen was refined with an element size of 0.2 mm. Figure 9 shows the meshed hexagonal
texture specimen. Other options used default values. By applying the analysis over the
texture surface under load, we obtained the stress distribution numerically. Figure 10
shows the simulation results of the equivalent stress on the surface of each texture-unit. It
can be seen that the hexagonal-unit exhibits uniform stress distribution and less equivalent
stress than other textured-units, except for the triangle-unit. We should note that the
maximum equivalent stress of hexagonal-unit was nearly equal to that of the triangle-unit
(3.7752 and 3.5441, respectively), but the area of the triangle-unit was twice that of the
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hexagonal-unit. However, the edge loading makes peak values potentially misleading.
Overall, the equivalent stress was concentrated at the edge, especially the round-unit. It
can be seen from the round-unit that the equivalent stress in a fair portion of the region
(dark blue) was almost zero, which caused the greater stress at the edge.
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There was an interaction of fluid load support and asperity load support that must
balance the applied load under mixed lubrication. A high contact stress results in a
thinner oil film [43] and reduces the contribution of the fluid load, so that the asperity
contact dominates and the friction coefficient increases [39]. In addition, as shown in
Figures 4 and 6, although the COF of specimens reduced with the increase in rotating
speeds and loads, the four types of textured specimens had less differences in COF with
the increase in loads, which is consistent with the experimental results of Zhong et al. [33].
This trend indicates that the asperity contact has a more prominent effect on the lubrication
than oil film. In conclusion, the tribological properties of the hexagon-textured specimens
were significantly improved compared with those of the other textured specimens at the
load of 20 N and the rotating speed of 250 rpm.

4. Conclusions

In conclusion, we systematically explored the effects of cross-grooved texture shapes
(i.e., triangle, square, hexagon, round) on tribological performance with the change in loads
and rotating speeds under mixed lubrication. Overall, the hexagon-textured specimens
exhibited lower friction coefficients than the triangle, square, and round-textured specimens
under the experimental conditions. More importantly, hexagonal texture has a more
prominent effect on lubrication than the three other textures when the loads decreased and
the rotating speeds increased.

The reduction in the contact pressure can decrease the acting force of asperity contacts
on the surface between specimens and counter-disk, thus lowering the friction force.
According to the simulation, the equivalent stress on the hexagon-textured surface was
less than square-textured and round-textured, which is beneficial to increase the oil film
thickness between the contact surfaces with a hexagon texture. There is an interaction of
fluid load support and asperity load support that must balance the applied load under the
mixed lubrication. In summary, the asperity contact is of huge importance to load capacity
under mixed lubrication, and inevitably affects oil film for lubrication. In our study, the
hexagon-textured specimens exhibited better tribological properties under the load of 20 N
and the rotating speed of 250 rpm.

Author Contributions: Conceptualization, S.H. and L.Z.; Methodology, S.H. and L.Z.; Software, S.H.;
Validation, S.H. and L.Z.; Formal analysis, S.H. and L.Z.; Investigation, S.H. and Q.G.; Resources, L.Z.;
Data curation, S.H. and L.Z.; Writing—original draft preparation, S.H.; Writing—review and editing,
S.H.; Visualization, S.H.; Supervision, L.R., L.Z. and S.H.; Project administration, L.Z.; Funding
acquisition, L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51905208)
and the China Postdoctoral Science Foundation (2020M670855).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Wakuda, M.; Yamauchi, Y.; Kanzaki, S.; Yasuda, Y. Effect of surface texturing on friction reduction between ceramic and steel

materials under lubricated sliding contact. Wear 2003, 254, 356–363. [CrossRef]
2. Kovalchenko, A.; Ajayi, O.; Erdemir, A.; Fenske, G.; Etsion, I. The effect of laser surface texturing on transitions in lubrication

regimes during unidirectional sliding contact. Tribol. Int. 2005, 38, 219–225. [CrossRef]
3. Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement.

Wear 2017, 372–373, 21–41. [CrossRef]
4. Ronen, A.; Etsion, I.; Kligerman, Y. Friction-Reducing Surface-Texturing in Reciprocating Automotive Components. Tribol. Trans.

2001, 44, 359–366. [CrossRef]

http://doi.org/10.1016/S0043-1648(03)00004-8
http://doi.org/10.1016/j.triboint.2004.08.004
http://doi.org/10.1016/j.wear.2016.11.020
http://doi.org/10.1080/10402000108982468


Coatings 2022, 12, 305 10 of 11

5. Brizmer, V.; Kligerman, Y.; Etsion, I. A Laser Surface Textured Parallel Thrust Bearing. Tribol. Trans. 2003, 46, 397–403. [CrossRef]
6. Saeidi, F.; Parlinska-Wojtan, M.; Hoffmann, P.; Wasmer, K. Effects of laser surface texturing on the wear and failure mechanism of

grey cast iron reciprocating against steel under starved lubrication conditions. Wear 2017, 386–387, 29–38. [CrossRef]
7. ZHANG, Z.; PAN, S.; YIN, N.; SHEN, B.; SONG, J. Multiscale analysis of friction behavior at fretting interfaces. Friction 2021,

9, 119–131. [CrossRef]
8. Etsion, I.; Sher, E. Improving fuel efficiency with laser surface textured piston rings. Tribol. Int. 2009, 42, 542–547. [CrossRef]
9. Ma, W.; Biboulet, N.; Lubrecht, A.A. Cross-hatched groove influence on the load carrying capacity of parallel surfaces with

random roughness. Tribol. Int. 2021, 153, 106610. [CrossRef]
10. Etsion, I. State of the art in laser surface texturing. J. Tribol. 2005, 127, 248–253. [CrossRef]
11. Orra, K.; Choudhury, S.K. Tribological aspects of various geometrically shaped micro-textures on cutting insert to improve tool

life in hard turning process. J. Manuf. Processes 2018, 31, 502–513. [CrossRef]
12. Shen, C.; Khonsari, M.M. Tribological and sealing performance of laser pocketed piston pings in a diesel engine. Tribol. Lett. 2016,

64, 26. [CrossRef]
13. Koszela, W.; Pawlus, P.; Reizer, R.; Liskiewicz, T. The combined effect of surface texturing and DLC coating on the functional

properties of internal combustion engines. Tribol. Int. 2018, 127, 470–477. [CrossRef]
14. Wang, X.; Shi, L.; Dai, Q.; Huang, W.; Wang, X. Multi-objective optimization on dimple shapes for gas face seals. Tribol. Int. 2018,

123, 216–223. [CrossRef]
15. Vlădescu, S.-C.; Fowell, M.; Mattsson, L.; Reddyhoff, T. The effects of laser surface texture applied to internal combustion engine

journal bearing shells—An experimental study. Tribol. Int. 2019, 134, 317–327. [CrossRef]
16. Gualtieri, E.; Borghi, A.; Calabri, L.; Pugno, N.; Valeri, S. Increasing nanohardness and reducing friction of nitride steel by laser

surface texturing. Tribol. Int. 2009, 42, 699–705. [CrossRef]
17. Shinkarenko, A.; Kligerman, Y.; Etsion, I. The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol. Int. 2009,

42, 284–292. [CrossRef]
18. Shinkarenko, A.; Kligerman, Y.; Etsion, I. The effect of elastomer surface texturing in soft elasto-hydrodynamic lubrication. Tribol.

Lett. 2009, 36, 95–103. [CrossRef]
19. Suh, M.-S.; Chae, Y.-H.; Kim, S.-S.; Hinoki, T.; Kohyama, A. Effect of geometrical parameters in micro-grooved crosshatch pattern

under lubricated sliding friction. Tribol. Int. 2010, 43, 1508–1517. [CrossRef]
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