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Abstract: The effect of entropy optimization on an axisymmetric Darcy–Forchheimer Powell–Eyring
nanofluid flow caused by a horizontally permeable stretching cylinder, as well as non-linear thermal
radiation, was investigated in this research work. The leading equations of the current problem were
changed into ODEs by exhausting appropriate transformations. To deduce the reduced system, the
numerical method bvp4c was used. The outcome of non-dimensional relevant factors on velocity,
entropy, concentration, temperature, Bejan number, drag force, and Nusselt number is discussed and
demonstrated using graphs and tables. It is perceived that, with a higher value of volume fraction
parameter, the skin friction falls down. Likewise, it is found that the Nusselt number drops with
enhancing the value of the volume fraction. Moreover, the result reveals that the entropy generation
increases as the volume fraction, curvature parameter, and Brinkman number increase.

Keywords: heat transfer; stretching cylinder; nonlinear radiation; Powell–Eyring; nanofluid; porous
medium; Darcy–Forchheimer

1. Introduction

It is a well-known fact that stretching flows have acquired a lot of attention because of
their numerous applications. In industrial and mechanical engineering progressions (rubber
and plastic sheets, cooling of electronic chips, glass blowing, metal spinning, production
of glass fiber, liquid film crystallization during condensation, etc.), stretching surfaces are
used extensively. In addition, various research of boundary layer flow in conjunction with a
plane extending surface has already been carried out. However, research journals offer just
a few experiments on horizontally stretching sheets with the axisymmetric flow. Crane [1]
first studied the flow of viscous materials caused by a stretched sheet. Nadeem and Haq [2]
investigated the convective flow of viscous nanoparticles using radiation beyond a stretched
sheet. Ahmad et al. [3] explored power-law fluid in the occurrence of axisymmetric flow
and heat transfer. Ariel [4] looked at the classic problem of an axisymmetric flow caused by
a stretched sheet and gave perturbed, asymptotic, exact, and numerical solutions. Hsiao [5]
investigated MHD heat transfer across a stretching surface utilizing Maxwell fluid flow by
means of radiative and viscous dissipation properties.
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Researchers are still interested in studying non-Newtonian fluids because they are
more suitable for industrial areas such as power engineering, polymer solution industries,
food engineering, and petroleum production. A linear association flanked by stress and
rate of strain cannot be used to represent non-Newtonian fluids. Because of their various
features, non-Newtonian fluids are much more complex than Newtonian fluids. Powell–
Eyring fluids [6] are a type of non-Newtonian fluid with several compensations upon
the power-law model, for example, they are built on liquid kinetic theory and behave
Newtonian at both low and high shear rates. Patel et al. [7] used asymptotic boundary
conditions to study a numeric solution of MHD Powell–Eyring fluid flow. Hayat et al. [8]
discovered the radiative effects in electrically conducting Eyring–Powell fluid in three
dimensions. Ara et al. [9] inspected the effect of radiation on Eyring–Powell fluid boundary
layer flow across an exponentially shrinking sheet. Hayat et al. [10] showed boundary
layer stagnation-point flow of Powell–Eyring fluid including dissolving heat transfer. In
the existence of a double-stratified medium, Rehman et al. [11] numerically measured
a flow study with heat generation/absorption influences of Powell–Eyring fluid mixed-
convection flow around a stretching cylinder. According to Hayat et al. [12], these fluids
had a variety of complicated features that provided them an edge and various applications
over Newtonian fluids. Improvements in mud house renovation and the production of
clay pots, gels, medical syrups, and fruit juices, such as Delmonte, yoghurt, Afya, and
energy drinks are just a few of the benefits. Additionally, they are used in the production of
pseudo-plastic fluids, paints, and medications in the pharmaceutical industry.

In thermodynamics, entropy is a key term. The concept of irreversibility is inextricably
linked to the concept of entropy. Irreversibility is something that everyone instinctively
understands. We may easily comprehend the irreversibility phenomenon by watching a
movie in both forward and reverse sequences. Many progressive processes in ordinary life
cannot be reversed, such as plastic deformation, pouring water into a glass, unrestrained
fluid expansion, gas rising from a chimney, egg unscrambling, and so on. Originally, the
term entropy was manipulated to define the loss of energy in numerous mechanical systems
and heat engines that could not efficiently transform the energy into work. Many engineers
and scientists are working hard in this modern period to find novel ways to control or limit
the waste of valuable energy. This energy loss in thermodynamic systems can cause a lot of
chaos. Using Bejan number and entropy creation, any system’s efficiency can be boosted.
Bejan [13] studied if heat transfer and flow mechanism abnormalities might be scrutinized
in expressions of entropy formation. Many investigators have inspected entropy production
results in heat flow and transmission to back up his claim. In a dissipative Blasius flow,
But et al. [14] looked at entropy creation as well as radiative flux. Their findings show
that as the heat radiation variable rises, entropy decreases. Entropy formation for mass
and heat transmission over an isothermal medium was proposed by San and Laban [15].
Tamayol et al. [16] looked at how entropy affects heat transmission and fluid flow past a
leaky material on a stretchy surface. Rashidi et al. [17] used the homotopy approach to
entropy production in hydromagnetic flow across a spinning disk. Shit et al. [18] studied
the irreversibility of hydromagnetic nanoparticle flow and heat transit on an exponentially
speeded sheet. In the existence of radiative heat flux, convective boundary conditions,
and MHD, the flow was explored. But and Ali [19] used a radially stretched surface to
scrutinize the impact of a magnetic force on entropy formation in heat transfer and flow
processes. Munawar et al. [20] deliberate the formation of entropy in viscid flow via an
oscillated stretching cylinder. Khan et al. [21] used a radially stretched disk to evaluate the
influence of entropy formation on Carreau nanofluid due to nonlinear thermal radiation.

Furthermore, nanotechnology is regarded as one of the most important conduits for
the advancement in key manufacturing rebellion in our sector. Nanofluids are mostly
employed due to their enhanced thermal properties. They are manipulated as coolants
in heat transfer devices such as electronic cooling systems (such as flat plates), radiators,
and heat exchangers. Nanofluid is made up of nanoparticles ranging in size from 1 to
100 nanometers. Choi and Eastman [22] were the first to propose the term “nanfluid”.
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Iqbal et al. [23] used the Newtonian Carreau model to do a computational investigation of
thin-film flow through a moving surface. Khan et al. [24] investigated the inspiration of
Cattaneo–Christov heat flux on Maxwell nanofluid boundary layer hydromagnetic flow
using the two-phase Buogiorno model. Ali et al. [25] created the mathematical model of
the unsteady and laminar couple stress nanofluid flow using engine oil and molybdenum
disulphide nanomaterial as the base fluid and nanoparticles, respectively. They discovered
that adding molybdenum disulphide nanoparticles to the base fluid improves the heat
transfer rate of engine oil by up to 12.38 percent. Acharya et al. [26], investigated the effect
of entropic production of a time-independent radioactive combination nanoliquid flowing
through a slip spinning disk. Acharya et al. [27], used an entropy approach to evaluate
mixed convection and radiation impacts in non-Newtonian-flowing fluid by a flexible
cylinder. Verra Krishna and Chamkha [28] examined the impact of Hall and ion slip on
the MHD convective flow of elastico-viscous fluid via a permeable channel between two
rigidly rotating parallel plates. Takhar et al. [29], characterized the free stream of a vertically
moving cylinder, as well as mass and heat transfer. A significant amount of noteworthy
work has recently been accomplished [30–41].

Several scholars have looked into entropy propagation effects in the context of heat and
mass transport on stretching surfaces. Although, there are just a few papers on the subject
of entropy generation’s impacts on inflow on a stretching disk. The consequences of entropy
formation in Powell–Eyring nanofluid caused by mass and heat transport on a horizontally
stretched disk are investigated in this article. The heat equation was modeled using several
factors such as viscous dissipation, heat radiation, thermophoresis, and Brownian diffusion.
The equations are numerically solved by the bvp4c method. The velocity, Bejan number,
concentration, temperature, and entropy are all graphically explained.

2. Mathematical Formulation

The flow of Powell–Eyring nanofluid in a two-dimensional axisymmetric flow across a
horizontally stretched sheet is assumed. We are using a system of cylindrical coordinates in
which the z-axis, is chosen parallel to the cylinder’s axis and the r-axis is chosen perpendicu-
lar to the cylindrical surface, as revealed in Figure 1. The cylinder is porous and continually
stretches horizontally at u = uω = U0z

L , where L is a characteristic length and U0 > 0.
Despite the fact that the moving fluid temperature is set to T∞, the cylindrical surface is
kept at Tω, with the assumption that Tω > T∞. The Buongiorno model and nanofluid
contain important slip mechanisms such as thermophoresis diffusion and Brownian motion.
The velocity profile for the assumed flow is V = [w(r, z), 0, u(r, z)].
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The equations that govern the flow are as follows [10,11]

∂(rw)

∂r
+

∂(ru)
∂z

= 0 (1)

w ∂u
∂r + u ∂u

∂z =
µn f
ρn f

(
∂2u
∂r2 + 1

r
∂u
∂r

)
+ 1

ρn f βc

(
∂2u
∂r2 + 1

r
∂u
∂r

)
− 1

6ρn f βc3

(
1
r

(
∂u
∂r

)3
+ 3
(

∂u
∂r

)2(
∂2u
∂r2

))
− µn f

ρn f K u− cb
ρn f
√

K
u2

(2)

w ∂T
∂r + u ∂T

∂z =
kn f

(ρcp)n f

(
∂2T
∂r2 + 1

r
∂T
∂r

)
+ τ

(
DB

∂C
∂r

∂T
∂r + DT

T∞

(
∂T
∂r

)2
)

+ 1
(ρcp)n f

(
µn f

(
∂u
∂r

)2
+ 1

βc

(
∂u
∂r

)2
− 1

6βc3

(
∂u
∂r

)4
)
− 1

(ρcp)n f

∂
∂r

(
− 16σ∗

3k∗kn f
T3 ∂T

∂r

) (3)

w
∂C
∂r

+ u
∂C
∂z

= DB

(
∂2C
∂r2 +

1
r

∂C
∂r

)
+

DT
T∞

(
∂2T
∂r2 +

1
r

∂T
∂r

)
(4)

With boundary conditions

u = uω = U0z
L , w = 0, T = Tω, C = Cω at r = R

u→ 0, T → T∞, C → C∞ at r → ∞
(5)

Illustrations of the description of the various symbols are shown in Table 1. The
fundamental equations can be transformed using the following transforms [21]:

ψ(r, z) =
√

uωµ f zR f (η), η =
r2 − R2

2R

√
uω

µ f z
, θ(η) =

T − T∞

Tω − T∞
, φ(η) =

C− C∞

Cω − C∞
(6)

Table 1. A description of the multiple symbols that appear in the governing equations is illustrated.

Symbols Description Symbols Description

u, v, w Velocity in r, θ, z direction β, c Fluid parameter
µ f Base fluid dynamic viscosity µn f Nanofluid dynamic viscosity
v f Base fluid kinematic viscosity cp Specific heat
cb Drag factor K Permeability of porous medium
k f Base fluid thermal conductivity kn f Nanofluid thermal conductivity
ks Nanoparticles’ thermal conductivity DB Brownian motion
ρ f Base fluid density ρn f Nanofluid density
L Characteristic length

(
ρcp
)

f Heating capacity of base fluid(
ρcp
)

n f Heating capacity of nanofluid
(
ρcp
)

s Heating capacity of nanoparticles
T Temperature T∞ Temperature at free stream
k∗ Absorption coefficient DT Thermo-coefficient
C Concentration C∞ Ambient concentration

Equation (7) identifies the components of velocity

u =
1
r

∂ψ(r, z)
∂r

, w = −1
r

∂ψ(r, z)
∂z

(7)

The nanofluid expressions are given by [25]:

µn f = µ f (1− φ)−2.5

ρn f = ρ f (1− φ) + φρs(
ρcp
)

n f =
(
ρcp
)

f (1− φ) + φ
(
ρcp
)

s

kn f = k f

[
ks+2k f−2φ(k f−ks)
ks+2k f +2φ(k f−ks)

]


(8)



Coatings 2022, 12, 749 5 of 15

The base fluid and nanofluid dynamic viscosity are denoted by µ f and µn f , respec-
tively, where φ signifies volume fraction.

The equation of incompressibility is fulfilled identically, whereas Equations (2)–(5) are
reduced to

(1 + 2ηγ)

(
1

(1−φ1)
2.5 + α

)
f
′′′ − λα(1 + 2ηγ)2 f ′′ 2 f

′′′
+ 2γ

(
1

(1−φ1)
2.5 + α

)
f ′′

− 4
3 αλγ(1 + 2ηγ) f ′′ 3 − β0

(1−φ1)
2.5 f ′ − Fr f ′2 +

(
(1− φ1) + φ1

ρs
ρ f

)(
f f ′′ − f ′2

)
= 0

(9)

kn f /k f
Pr ((1 + 2ηγ)θ′′ + γθ′) + Ec(1 + 2ηγ)

((
1

(1−φ1)
2.5 + α

)
f ′′ 2 − 1

3 λα(1 + 2ηγ) f ′′ 4
)

+

(
(1− φ1) + φ1

(ρcp)s
(ρcp) f

)(
Nt(1 + 2ηγ)θ′2 + Nb(1 + 2ηγ)θ′φ′ + f θ′

)
+ Rd

Prkn f /k f
(1 + 2ηγ)

(
(θ(θω − 1) + 1)3θ′′ + 3(θ(θω − 1) + 1)2(θω − 1)θ′2

)
= 0

(10)

Nt
Nb

1
Sc
(
(1 + 2ηγ)θ′′ + γθ′

)
+

1
Sc

((1 + 2ηγ)φ′′ + γφ′) + f φ′ = 0 (11)

f (0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1
f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0

(12)

where γ =

√
v f L

U0R2 represents the curvature parameter, α = 1
µ f βc and λ = U0

3z2

2L3c2v f
are

fluid parameters, β0 = Lv
ρ f U0K represents the porosity parameter, Fr =

cbz
ρ f
√

K
is the inertia

coefficient, Ec = uω
2

cp(Tω−T∞)
is the Eckert number, Rd = 16σ∗T∞

3

3k∗k f
denotes the radiation

parameter, Pr =
µcp
k f

denotes the Prandtl number, θω = Tω
T∞

is the temperature ratio,

Sc =
V f
DB

is the Schmidt number, Nt = τDB(Tω−T∞)
v f

and Nb = τDB(Cω−C∞)
v f

represent the
thermophoresis and Brownian diffusion parameters, respectively.

Skin Friction and Nusselt Number

The following are the definitions of the skin friction and the local Nusselt number:

c f =
τω

ρ f u2
ω

, Nu =
zqω

k f

(
Tf − T∞

) (13)

where τω and qω are the surface shear stress and heat flux, respectively. These are defined as:

τω =

[(
µn f +

1
βc

)(
∂u
∂r

)
− 1

6βc3

(
∂u
∂r

)3
]

r=R

, qω = −
(

kn f +
16σ∗T∞

3

3k∗

)(
∂T
∂r

)
r=R

(14)

In dimensionless form, the skin friction and Nusselt number are:

C f Rez
1/2 =

(
1

(1− φ1)
2.5 + α

)
f ′′ (0)− λ

3
α( f ′′ (0))3, NuRez

−1/2 = −
(

kn f

k f
+ Rd

)
θ′(0) (15)

3. Entropy Optimization and Bejan Number

There are three causes of entropy Optimization in the current problem. Heat transport,
viscous dissipation, and mass diffusion all generate entropy. The entropy equation is
written as follows [18,21]:

Sg =
kn f
T∞2

(
1 + 16σ∗T3

3k∗kn f

)(
∂T
∂r

)2
+ 1

T∞

(
µn f

(
∂u
∂r

)2
+ 1

βc

(
∂u
∂r

)2
− 1

6βc3

(
∂u
∂r

)4
)

+ RD
T∞

(
∂T
∂r

∂C
∂r

)
+ RD

C∞

(
∂C
∂r

)2 (16)
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By using the typical entropy generation rate to convert Equation (16) to dimensionless
form, we obtain:

NG =
( kn f

k f
+ Rd(θ(θω − 1) + 1)3

)
(1 + 2ηγ)α1θ′2 + L1(1 + 2ηγ)θ′φ′

+L1(1 + 2ηγ) α2
α1

φ′2 + Br(1 + 2ηγ)

((
1

(1−φ1)
2.5 + α

)
f ′′ 2 − 1

3 αλ f ′′ 4
) (17)

where NG =
Sg
S0

=
Sg

k f U0(Tω−T∞)/T∞µ f L denotes the total entropy production, α1 = Tω−T∞
T∞

and α2 = C ω−C∞
C∞

are the temperature ratio and concentration ratio variables, respec-

tively, and Br =
µ f U0

2z2

k f L2(Tω−T∞)
and L1 = RD(Cω−C∞)

k f
are Brinkman number and diffusion

parameter, respectively.
Equation (17) can be written using the pattern shown below:

NG = NH + N f + Nm (18)

Here, NH represents entropy production because of heat transmission, N f represents
entropy production because of fluid friction, and Nm represents entropy production. The
Bejan number is defined as:

Be =
NH + Nm

NG
(19)

Be =

( kn f
k f

+ R(θ(θω − 1) + 1)3
)
(1 + 2γη)θ′2α1 + L(1 + 2γη)θ′φ′ + L(1 + 2γη) α2

α1
φ′2( kn f

k f
+ Rd(θ(θω − 1) + 1)3

)
(1 + 2ηγ)α1θ′2 + Br(1 + 2ηγ)

((
1

(1−φ1)
2.5 + α

)
f ′′ 2 − 1

3 αλ f ′′ 4
)

+L1(1 + 2ηγ)θ′φ′ + L1(1 + 2ηγ) α2
α1

φ′2

 (20)

4. Numerical Method

The solution mechanism for the currently constructed model is computed in this part
manipulating the bvp4c technique (shooting scheme). The bvp4c technique (shooting
scheme) in the MATLAB tool is used to solve the ODEs (7)–(11) via (12) numerically. First,
we transform a higher-order system to a first-order system for this technique. To accomplish
this, we follow the steps below:

f = y1, f ′ = y2, f ′′ = y3, f
′′′
= y′3

θ = y4, θ′ = y5, θ′′ = y′5
φ = y6, φ′ = y7, φ′′ = y′7

(21)

y′3 =

 4
3 αλγ(1 + 2ηγ)y3

3 − 2γ

(
1

(1−φ1)
2.5 + α

)
y3

+ β0

(1−φ1)
2.5 y2 + Fry2

2 −
(
(1− φ1) + φ1

ρs
ρ f

)(
y1y3 − y2

2)


(
(1 + 2ηγ)

(
1

(1−φ1)
2.5 + α

)
− λα(1 + 2ηγ)2y32

) (22)

y′5 =


Ec(1 + 2ηγ)

(
1
3 λα(1 + 2ηγ)y3

4 −
(

1
(1−φ1)

2.5 + α

)
y3

2
)
− kn f /k f

Pr γy5

−
(
(1− φ1) + φ1

(ρcp)s
(ρcp) f

)(
Nt(1 + 2ηγ)y5

2 + Nb(1 + 2ηγ)y5y7 + y1y5
)

−3 Rd
Prkn f /k f

(1 + 2ηγ)(y4(θω − 1) + 1)2(θω − 1)y5
2


kn f /k f

Pr (1 + 2ηγ) + Rd
Prkn f /k f

(1 + 2ηγ)(y4(θω − 1) + 1)3
(23)

y′7 =
− Nt

Nb ((1 + 2ηγ)y′5 + γy5)− (γy7)− Scy1y7

(1 + 2ηγ)
(24)
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with
y1(0) = 0, y2(0) = 1, y4(0) = 1, y6(0) = 1

y2(∞)→ 0, y4(∞)→ 0, y6(∞)→ 0
(25)

5. Results and Discussions

This section’s focus is on examining the effects of velocity, temperature, concentration
profile, entropy generation, and Bejan number. The influence of fluid parameter α, porosity
parameter β0, volume fraction φ1, curvature parameter γ, and inertia coefficient Fr on fluid
velocity is examined in Figure 2a–e. The effect of fluid parameter α on the velocity profile
is presented in Figure 2a. With the higher value of α, the fluid velocity and boundary layer
thickness increase. In reality, as α increases, the viscosity of the fluid declines, resulting
in an improvement in the velocity profile. The impression of the porosity factor β0 on
the velocity profile of Powell–Eyring nanofluid is shown in Figure 2b. The velocity of the
nanofluid declines when permeability of the fluid rises, which is in line with authenticity.
Moreover, the permeability of the border has no consequence on the fluid velocity as we
move away from it. The impact of volume fraction φ1 on velocity profile is plotted in
Figure 2c. By raising the volume fraction, the Powell–Eyring nanofluid velocity decreases.
The science here seems to be that when the volume fraction increases, the flow becomes
more vicious, resulting in friction forces that slow the nanofluid velocity. The feature of
the curvature parameter γ on the velocity profile is presented in Figure 2d. As γ goes up,
the fluid velocity shrinks at the surface and escalates further from the cylinder, according
to the results. In reality, as the curvature parameter is increased, the cylinder’s radius
decreases. As a result, the cylinder’s contact surface with the fluid lowers, providing less
confrontation to fluid motion. Consequently, the velocity profile rises. The impression of
inertia coefficient Fr on the velocity profile is shown in Figure 2e. The velocity profile drops
as the inertia coefficient rises.

The impact of temperature profile θ(η) against relevant flow parameters, such as
fluid parameter α, porosity parameter β0, curvature parameter γ, Prandtl number Pr,
temperature ratio θω, thermal radiation Rd, Eckert number Ec, thermophoresis constraint
Nt, and Brownian motion constraint Nb, are depicted in Figure 3a–j. Figure 3a signifies
the inspiration of the fluid constraint α on the temperature profile. Higher α values result
in a lower temperature profile, according to the findings. The viscosity of the thermal
boundary layer continues to shrink, as the higher value of fluid parameter α viscosity of
the fluid decreases.

Accordingly, the temperature profile declines. The variation in temperature profile
with η. over a range of the porous parameter β0 is shown in Figure 3b. This illustration
clearly demonstrates that the heat distribution is a weak function of β0 and that it changes
little when it passes through the thermal boundary layer. Therefore, increasing β0 causes
a modest thickening of the thermal boundary layer. The outcome of volume fraction
parameter φ1 on the temperature profile is depicted in Figure 3c. It is observed that the
increasing volume fraction raises the temperature profile. The science behind this mounting
temperature pattern is because the temperature rises as the smash flanked by the molecules
of the Powell–Eyring nanofluid rises. Figure 3d exhibits the impressions of the curvature
constraint on the temperature profile, with temperature showing an increasing trend via
γ. As γ increases, the surface contact area exposed to fluid particles decreases, resulting
in less resistance for particles and an increase in their average velocity. The temperature
rises because the Kelvin temperature is expressed by an average kinetic energy. The
characteristics of the Prandtl number Pr on the temperature distribution are exposed in
Figure 3e. The temperature profile and thickness of the thermal boundary layer are found
to diminish as the Prandtl number rises. It connects thermal diffusivity to momentum
diffusivity. Accordingly, a higher Prandtl number correlates to a reduced thermal diffusivity;
consequently, temperature distribution rises up before dropping down. Figure 3f depicts
the effects of temperature ratio θω on the temperature distribution. It has been realized that
advanced temperature ratio enhances the temperature distribution. Figure 3g depicts the
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behavior of the radiation parameter Rd on a temperature profile. For bulky levels of the
radiation parameter, temperature and the accompanying boundary layer thickness rise.
Higher values of the radiation parameter reduce the mean absorption coefficient, resulting
in an upturn in the temperature distribution. Figure 3h depicts the difference in fluid
temperature caused by the change in Eckert number Ec. The figure depicts how the fluid
temperature rises as the value of Ec rises. This happens since frictional heating produces
heat in the fluid as the value of Ec rises. Physically, the Eckert number is explained as the
ratio of kinetic energy to the difference in specific enthalpy flanked by the wall and the
fluid. As a result of the effort exerted against the viscous fluid pressures, an upsurge in
Eckert number converts kinetic energy into internal energy. As a result, as Ec rises, the
fluid’s temperature rises. As shown in Figure 3i, the thermophoresis parameter Nt has
an outcome on the temperature. The graph shows that as the number of thermophoresis
parameters Nt increases, so does the temperature. The temperature of the fluid rises as
the temperature variance amid the surface and ambient heat grows. The stimulus of the
Brownian motion Nb on the temperature is revealed in Figure 3j. This graph shows that
augmented Nb raises the temperature.
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The consequence of significant flow parameters such as the fluid parameter α, curva-
ture parameter γ, the Schmidt number Sc, and volume fraction φ1 on the concentration
profile α are exposed in Figure 4a–d. Figure 4a demonstrates the influence of fluid parame-
ter α on concentration distribution φ(η). It is detected that the concentration profile declines
by rising the value of α. The inspiration of curvature constraint γ on the concentration
profile φ(η) is shown in Figure 4b. Proof is provided through γ rising along with the fluid
concentration and the thickness of the resulting boundary layer. The impacts of Schmidt
number Sc and volume fraction φ1 on the distribution of concentrations are depicted in
Figure 4c,d, respectively. As can be observed in both of these diagrams, the concentration
distribution diminishes for substantial values of Sc and φ1. The reason for this phenomenon
is that viscous forces increase as the concentration slows down. Sc is the ratio of mass
diffusion to viscous forces at each end of the scale. As Sc increases, viscous forces grow
and mass diffusion declines, causing the concentration distribution to decrease.
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The behavior of entropy optimization and Bejan number is shown in Figures 5 and 6,
respectively, for various parameters such as porosity parameter β0, volume fraction φ1,
curvature parameter γ, and Brinkman number Br. Figures 5a and 6a show the nature of
entropy formation and Bejan number for the rising porosity parameter β0. As the values of
porosity parameter β0 upsurge, the values of entropy generation escalations near the wall
slightly decrease; the Bejan number, on the other hand, exhibits the opposite pattern. As
the porosity parameter tends to oppose the fluid flow, as a result, it increases the rate of
total entropy formation. The influence of nanoparticles’ volume fraction parameter φ1 on
entropy production and Bejan number is exposed in Figures 5b and 6b. These figures show
that entropy production increases, while Bejan number drops with an escalation in volume
fraction parameter φ1. The increase in thermal conductivity and temperature of nanofluid
caused by nanoparticles is directly related to this phenomenon. Figures 5c and 6c show the
stimuli of the curvature parameter on entropy formation and Bejan number, respectively.
As γ upturns, the value of Bejan number and entropy generation increases, because less
resisting force is offered when the contact surface of a cylinder with particles is reduced.
This allows for more nanoparticle movement, increasing the rate of entropy formation. As
a result, more curved bodies produce more entropy. Figures 5d and 6d show the nature of
entropy formation and Bejan number for the rising Brinkman number Br. The outcomes of
entropy formation and Bejan number are utterly opposite when Brinkman number Br is
changed. Entropy production increases as the Brinkman number increases, as shown in
Figure 5d. The ratio of heat creation via viscous heating transition for conduction is known
as the Brinkman number. More heat is created in the system to reimburse for increasing
Brinkman number. As a result, the overall system’s level of disturbance grows. For a high
Brinkman number Br, Figure 6d shows the exact opposite characteristics.
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Table 2 indicates how the numerous constraints affect the skin friction. It is determined
that skin friction coefficient decreases for large values of the volume fraction, fluid param-
eter, porosity parameter, curvature parameter, and inertia coefficient. Table 3 indicates
the numeric data of the Nusselt number for a variety of constraints. It is determined that
Nusselt number decreases for large values of the volume fraction, fluid parameter, porosity
parameter, and temperature ratio, whereas it upsurges for superior values of the curvature
parameter. Table 4 compares the numeric values of skin fraction with the pervious result.
Both outcomes are noticed to be highly congruent.

Table 2. The skin friction coefficient variation for numerous values of φ1, α, β0, γ, and Fr.

φ1 α β0 γ Fr CfRez
1/2

0.1 - - - - −2.463269
0.2 - - - - −2.919301
0.3 - - - - −3.6675
0.1 0.1 - - - −2.002416
- 0.3 - - - −2.223522
- 0.5 - - - −2.463269
- - 0.1 - - −2.272982
- - 0.3 - - −2.368182
- - 0.5 - - −2.463269
- - - 0.1 - −1.893775
- - - 0.3 - −2.045572
- - - 0.5 - −2.186751
- - - - 0.1 −1.948242
- - - - 0.5 −2.045572
- - - - 0.9 −2.138431
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Table 3. The variation in Nusselt number for numerous values of φ1, α, β0, γ, and θω .

φ1 α β0 γ θω NuRez
−1/2

0.1 - - - - 0.416374
0.2 - - - - 0.413638
0.3 - - - - 0.3887
- 0.1 - - - 0.449055
- 0.3 - - - 0.43289
- 0.5 - - - 0.416374
- - 0.1 - - 0.441787
- - - - 0.428625
- - - - 0.416374
- - - 0.1 - 0.330731
- - - 0.3 - 0.357808
- - - 0.5 - 0.380167
- - - - 0.1 0.419923
- - - - 0.3 0.418526
- - - - 0.5 0.409504
- - - - - -
- - - - - -

Table 4. Comparison of f ′′ (0) skin friction values for several fluid parameter α values.

α Present Result Hayat et al. [12]

0.2 −0.7749406 −0.91287
0.4 −0.7282394 −0.84516
0.6 −0.6891753 −0.79057
0.8 −0.6558923 −0.74536
1.0 −0.6270961 −0.70711

6. Conclusions

In this research, an entropy generation interpretation for axisymmetric flow of Powell–
Eyring nanofluid via a horizontal porous stretching cylinder was performed. By using
a similarity variable transformation system, the nonlinear equation describing the flow
problem is changed to nonlinear ODEs, which are then solved using bvp4c. The impacts
of several factors in the model problem on velocity, temperature, concentration, entropy
optimization, Bejan number, drag force, and Nusselt number are analyzed. The following
conclusions were derived from the study’s findings:

• It is indicated that with growing value of fluid parameter α, velocity increased, while
with rising values of porosity parameter β0, the volume fraction φ1, curvature parame-
ter γ, and inertia coefficient Fr velocity profile declined.

• The temperature declined with the mounting value of fluid parameter α, whereas it
increased with increasing values of the porosity parameter β0, volume fraction φ1,
curvature parameter γ, temperature ratio θω, thermal radiation Rd, Eckert number
Ec, thermophoresis parameter Nt, and Brownian motion Nb. It is noted that the
temperature of the fluid rose up and then dropped down when we increased the
Prandtl number.

• The concentration profile declined with rising values of fluid parameter α, curvature
parameter γ, the Schmidt number Sc, and volume fraction φ1.

• Entropy optimization rose up for the values of volume fraction φ1, curvature parameter
γ, and Brinkman number Br, whereas for the rising value of porosity parameter β0,
entropy optimization first increased and then decreased.

• Bejan number decayed down for greater φ1 and Brinkman number, while for a higher
value of curvature parameter, Bejan number rose up. It is indicated that if we increased
the porosity parameter β0, Bejan number decayed down first and then rose up.
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• It is concluded that skin friction decreased for a large number of volume fraction,
fluid parameter, porosity parameter, curvature parameter, and inertia coefficient,
whereas Nusselt number decreased for a cumulative number of volume fraction, fluid
parameter, porosity parameter, and temperature ratio, whereas it rose for a cumulative
number of curvature parameter.
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