
Citation: Meier-Haack, J. Special

Issue: New Challenges in Thin-Film

Nanocomposite Membranes. Coatings

2022, 12, 1169. https://doi.org/

10.3390/coatings12081169

Received: 1 August 2022

Accepted: 10 August 2022

Published: 12 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Editorial

Special Issue: New Challenges in Thin-Film
Nanocomposite Membranes
Jochen Meier-Haack *

Department Processing Technology, Leibniz-Institut für Polymerforschung Dresden e. V.,
01069 Dresden, Germany

Rapid population growth and the associated rise in industrialization and food pro-
duction have resulted in a tremendously increased demand for clean water. Thin-film
composite (TFC) membranes have become an important technique in producing and supply-
ing clean water from different resources, such as sea water, brackish water or contaminated
fresh water, by reverse osmosis (RO) or nanofiltration (NF). Additionally, forward osmosis
(FO) is an emerging technology for water and food processing wherein TFC membranes
are used. While RO and NF are pressure-driven separation processes, a salinity gradient is
the driving force for water flux in forward osmosis. FO has great potential as a pretreat-
ment step in RO by diluting the feed water and thus reducing the osmotic pressure and
consequently the energy demand of the whole process. The active separation layer of these
types of membranes, which typically consists of a highly cross-linked polyamide prepared
via interfacial polymerization, is susceptible to fouling and degradation by chlorine [1].
The latter is periodically used for cleaning purposes. Furthermore, TFC membranes show a
relatively low productivity and trade-off between water permeability and selectivity. To
overcome these drawbacks, the special properties of nanomaterials (NMs)/nanoparticles
(NPs) have stimulated significant research on membrane modification in recent decades. A
broad variety of NMs/NPs, either inorganic, e.g., carbon-based carbon nanotubes (CNTs),
graphene oxide (GO), metal–organic frameworks (MOFs) and metal oxides, metallic (e.g.,
Ag, Cu) or organic NMs/NPs, such as cellulose or covalent organic frameworks (COFs),
have been extensively employed and are the focus of several review articles in the liter-
ature [2–5]. These nanomaterials can be incorporated into TFC membranes via several
modes, such as (a) incorporation of NMs into the PA layer during the interfacial polymer-
ization step, (b) coating of the PA layer with NMs, (c) modifying the substrate with NMs
and (d) preparation of an interlayer from NMs between the substrate and the PA layer [2].

The incorporation of nanoparticles or nanomaterials into the surface of TFC mem-
branes aims to enhance permeate (water) flux, increase the rejection of solutes and mitigate
fouling. In particular, CNTs [6] and graphene oxide [7,8] confer higher hydrophilicity
on the membrane surface, therefore lowering the fouling tendency accompanied by an
increase in water permeability [9]. A similar effect is observed when nanoparticles with a
defined pore size, such as silica [10], zeolites [11], MOFs [12], COFs [13], titanate nanotubes
(TNTs) [14] or halloysite nanotubes (HNTs) [15], a naturally occurring mineral clay, are
used for membrane modification.

While the nanomaterials mentioned above can be considered passive in terms of
bactericidal properties, the bactericidal activity of metals such as silver or metal oxides,
including TiO2 [16], CuO [17] and ZnO [18], arises from the formation of reactive oxygen
species upon irradiation with light (TiO2), the application of mechanical disruptive stress
to the cell walls of bacteria or by releasing metal ions (Ag, Cu) [19,20]. In addition, the
incorporation of nanomaterials into the active separation layer may affect the polymeriza-
tion process and the polymer network arrangement, thus impacting the permeate flux and
solute rejection [21].
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To achieve high efficacy, on the one hand, the right nanoparticles must be chosen. On
the other hand, such nanoparticles must be properly incorporated into the active layer or
on the surface of the active separation layer. In addition, the stability of the composites and
environmental aspects such as toxicity must be considered when preparing new thin-film
nanocomposite membranes [22–24].

Although remarkable progress in the development of thin-film nanocomposite mem-
branes has been achieved in the past, as outlined by a huge number of publications, there
are still open questions and new developments in this field of research. This Special Issue
on “New Challenges in Thin-Film Nanocomposite Membranes” offers researchers the
opportunity to publish their latest research results as well as reviews. Topics covered by
this Special Issue include, but are not limited to:

• The preparation of stable nanocomposite TFC membranes.
• The effect of nanoparticles on membrane properties such as water permeability, selec-

tivity and fouling behavior.
• The description of the mechanism of action of nanoparticles in view of transport,

selectivity and antifouling properties.
• Theoretical aspects and simulation of water–salt transport in nanoparticle-modified

TFC membranes.
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