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Abstract: Materials with a disordered atomic structure, often termed glassy materials, are the focus
of extensive research due to the possibility of achieving remarkable mechanical, electrochemical,
and magnetic properties compared to crystalline materials. The glassy materials are observed to
have an improved elastic modulus combined with a higher strength and hardness. Moreover, better
corrosion resistance in different mediums is also observed for glassy solids, which is difficult to
attain using conventional crystalline materials. As a result, the potential applications of metallic-glass
systems are continually increasing. Amorphous materials are usually divided into two categories
based upon their size. Materials with a thickness and diameter larger than the millimeter (mm)
scale are termed as bulk metallic glass (BMG). However, the brittle nature of the bulk-sized samples
restricts the size of metallic-glass systems to the micron (µm) or nanometer (nm) range. Metallic
glasses with a specimen size in the scale of either µm or nm are defined as thin-film metallic glass
(TFMG). In this review, BMGs and TFMGs are termed as metallic glass or MG. A large number
of multi-component MGs and their compositional libraries reported by different research groups
are summarized in this review. The formation of a multicomponent metallic glass depends on the
constituent elements and the fabrication methods. To date, different unique fabrication routes have
been adopted to fabricate BMG and TFMGs systems. An overview of the formation principles and
fabrication methods as well as advantages and limitations of conventional MG fabrication techniques
is also presented. Furthermore, an in-depth analysis of MG inherent properties, such as glass forming
ability, and structural, mechanical, thermal, magnetic, and electrochemical properties, and a survey
of their potential applications are also described.

Keywords: metallic glass; glass forming ability; mechanical properties; corrosion

1. Introduction

Metallic glasses (MG) are disordered non-equilibrium solids that, unlike crystalline
alloys, lack long-range order. Metallic-glass systems are multicomponent with substantial
differences in atomic sizes selected to suppress the crystallization of the liquid melt; ex-
tremely high cooling rates are used for vitrification [1]. Although metallic glasses possess
high strength and a disordered structure like conventional glasses, high glass-transition
temperatures are required for MGs [1]. Early work on metallic-glass systems started in
the 1960s and 1970s [2–4]. The first disordered MG was a gold–silicon system developed
by Jun et al. [2] and was fabricated via the melt cooling technique. Later on, Pd-Si-based
metallic-glass systems (binary, ternary, and quaternary) with thicknesses of more than 1
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mm were produced via the splat quenching technique under different cooling rates at room
temperature by Chen et al. [3]. In 2000, metallic–glass systems (e.g., Fe-, Co- and Ni-based)
were produced with thicknesses in the micrometer scale using cooling rates of ∼105 K/s [5].

Early metallic-glass systems were usually fabricated via the rapid quenching method
to vitrify the liquid melt, thus requiring an extreme rate of cooling and introducing a
size limitation on the metallic-glass systems [6]. However, Pd40Ni40P20 [7,8] and Pd-Cu-
Si [4] glass systems are reported to have been fabricated with thicknesses of 10 mm using
low cooling rates (∼10 K/s). These systems were found to have better glass-forming
ability, but the high cost of palladium (Pd) hindered the practical implementation. The
Zr-based (Zr-Ni-Al) metallic-glass systems reported by Inoue et al. [9] are considered to
be the “earliest significant advancement” in glassy solids. Zr-based systems are observed
to display excellent mechanical strength with a wide supercooled region, which can be
useful for micro- or nano-fabrication [9,10]. The potential of Zr-based systems was further
explored by Peker et al. [11], who included beryllium (Be) in Zr-Cu-Ni-Al. It is noteworthy
that Be is the smallest atom in this metallic-glass system and its inclusion stabilizes the
liquid and glassy phase [11]. This Be-containing amorphous alloy is a good illustration
of the requirement for multiple species to form stable metallic glasses, chosen with a
significant atomic size ratio.

The formation of metallic glasses also depends on the fabrication route. Solidifica-
tion of the liquid melt through quenching is found to be helpful to maintain the glassy
state; however, the very high cooling rate suggests an alternative technique. Conventional
copper mold casting is found to be useful in this regard [6,12]. Lower quench rates of
the order of 0.067–0.133 K/s have been reported for the fabrication of several metallic-
glass systems [13], including Zr55Cu30Ni5Al10 [14], Pd40Cu30Ni10P20 [15], Ni50Pd30P20 [16],
Mg59.5Cu22.9Ag6.6Gd11 [17], Cu36Zr48Ag8Al8 [18], Fe48Cr15Mo14Er2C15B6 [19], and
Ti40Zr10Cu32Pd14Sn4 [20]. These systems are reported to have larger diameters
(∼1–2 cm), which are useful in different engineering applications [12]. Nevertheless,
the quench rates for the production of the amorphous solids still require optimization, and
vapor-quenching techniques are found useful in this regard. Thin metallic-glass systems
are produced using vapor-quenching techniques as reported in ref. [21–24]. The metallic
glasses formed through the vapor quenching method are less brittle. Furthermore, the
composition of the multicomponent systems also plays a vital part in glass formation. Deep
eutectic points are found to be useful for obtaining amorphous structures, and choosing a
composition near the eutectic point facilitates the formation of a metallic glass [25].

Metallic-glass systems are found to exhibit outstanding mechanical [26–28], elec-
trochemical [29,30], and magnetic properties [31,32] due to the absence of dislocations
and grain boundaries. In addition, using the glass-transition temperature of the metallic
glass systems, they can be formed into unique structures by simple molding or draw-
ing. [33,34]. Such outstanding features of the metallic-glass systems enable them to be used
in biomedical systems [35,36], micro-electro-mechanical systems (MEMS) [37,38], nano-
electro-mechanical systems [39,40], catalysis [41–43], and structural [44,45] applications. In
this review, different fabrication techniques of the metallic-glass systems are described in
combination with their unique properties and potential applications.

2. Glass Forming Ability

Glass forming ability (GFA) and its relationship with the atomic structure is crucial
to the properties of metallic glasses. While discussing GFA, the “Confusion Principle”
proposed by Lindsay Greer should be mentioned [46]. According to Greer, glass formation
is facilitated due to increasing “confusion” during crystallization. The principle is primarily
focused on the crystal structure and the atomic size of the components in multispecies
systems [46]. Thus, the use of an additional element in the composition, such as a small
beryllium atom, can facilitate metallic-glass formation [46]. The term “confusion” is further
defined by Perim et al. [47], who states that impeding the growth of critical-size nuclei
during synthesis can lead to the formation of an amorphous-state structure. According
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to this theory [47], the presence of multiple phases with different structures manifesting
similar energies should form a metallic glass.

The empirical rules of metallic glass formation are further explained by Inoue et al. [5],
who postulates three determining parameters for the possible formation of metallic glass: (i)
the presence of multiple species, (ii) atomic size mismatch (≥12%) among the species, and
(iii) the negative heat of mixing. The extensive classification of metallic-glass systems based
on these parameters has also been reported Takeuchi et al. [48]. Moreover, compositional
analyses of metallic-glass systems reveals that an optimum composition is required to
achieve the maximum supercooled region. On the other hand, only 32 elements have been
used from the periodic table for the analysis of metallic glass formation and a significant
number of these combinations are produced through trial and error by different research
groups [49]. For example, a study carried out by Zeman et al. [50] assessed the optimum
composition for Zr-Cu binary systems by varying the copper content from 18 to 88 at.%.
They found that a Cu content within the range 30–65 at.% facilitates glass transition; at
55 at.% of Cu the maximum supercooled region is achieved.

Deviation from the glass-forming rules of Inoue is often observed as the method of
fabrication also plays a vital role in the formation of metallic glass. The most commonly
reported metallic-glass formation techniques are liquid-to-solid transition methods, which
require a high range of critical cooling rates [51–53]. However, a high cooling rate hampers
the production of large-size metallic-glass systems and may contribute to partial crys-
tallinity in the material matrix [54]. For example, Calin et al. [54] fabricated Ti75Zr10Si15
and Ti60Nb15Zr10Si15 systems via arc melting. The first system possessed a positive heat
of mixing and a Ti-Zr atomic mismatch below 12%, and their results revealed a partially
crystalline metallic glass structure. For the quaternary system, the Ti-Nb bond exhibited a
positive heat of mixing, and the atomic mismatch also did not fulfil Inoue’s rule; in that case
as well, the synthesis led to the formation of a metallic glass with partial crystallinity. These
issues can be solved with a higher rate of vapor quenching [13]. Metallic-glass systems
produced via different techniques are listed in Table 1 and the systems are assessed with
respect to Inoue’s empirical rule.

Table 1. Metallic-glass systems and corresponding parameters associated with Inoue’s empirical
glass-forming rules [5,48]. The heat of mixing values was obtained from refs. [5,48] and the atomic
size mismatch was calculated by using the atomic radius [54]. The MG fabrication technique is
also listed.

Metallic Glass System
Atomic Size Mismatch

(%)
(rbase − rO)/rbase

Heat of Mixing
(kJ/mol) Fabrication Route Ref.

Zr41.2Ti13.8Cu12.5Ni10Be22.5

Zr:Ti = 9.6; Zr:Cu = 20
Zr:Ni = 22.3
Zr:Be = 29.6

Zr-Ti = 0; Zr-Cu = −23
Zr-Ni = −49; Zr-Be = −43
Ti-Cu = −9; Ti-Ni = −35
Ti-Be = −30; Cu-Ni = 4
Cu-Be = 0; Ni-Be = −4

Casting in copper molds [11]

Pt57.5Cu14.7Ni5.3P22.5

Pt:Cu = 7.8
Pt:Ni = 10.2
Pt:P = 23.5

Pt-Cu = −12; Pt-Ni = −5
Pt-P = −34.5; Cu-Ni = 4

Cu-P = −17.5; Ni-P = −34.5
Water quenching [55]

Zr-Ti-Nb-Cu-Be

Zr:Ti = 9.6
Zr:Nb = 10.7
Zr:Cu = 20

Zr:Be = 29.6

Zr-Ti = 0; Zr-Nb = 4
Zr-Cu = −23; Zr-Be = −43

Ti-Nb = 2; Ti-Cu = −9
Ti-Be = −30; Nb-Cu = 3
Nb-Be = −25; Cu-Be = 0

Arc-melting and heated via
induction [56]

Cu47.5Zr47.5Al5
Cu:Zr = 20

Cu:Al = 10.7
Zr:Al = 10.6

Cu-Zr = −23; Cu-Al = −1
Zr-Al = −44 Arc-melting [57]
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Table 1. Cont.

Pd40Ni40P20

Pd:Ni = 9.4
Pd:P = 23

Ni:P = 14.8

Pd-Ni = 0; Pd-P = −36.5
Ni-P = −34.5 Fluxing [8]

Zr39Cu39Ag22
Zr:Cu = 20
Zr:Ag = 9.8

Zr-Cu = −23; Zr-Ag = −20;
Cu-Ag = 2

DC reactive magnetron
sputtering [58]

Zr59Ti22Ag19
Zr:Ti = 9.6
Zr:Ag = 9.8

Zr-Ti = 0; Zr-Ag = −69; Ti-Ag
= −2 Magnetron sputtering [59]

Zr-Ti-Fe
Zr:Ti = 9.6

Zr:Fe = 22.5
Ti:Fe = 8.8

Zr-Ti = 0; Zr-Fe = −25;
Ti-Fe = −17 Magnetron co-sputtering [60]

Zr-Ni-Al-Si
Zr:Ni = 22.3
Zr:Al = 10.6

Zr:Si = 28

Zr-Ni = −49; Zr-Al = −44;
Zr-Si = −84; Ni-Al = −22;
Ni-Si = −40; Al-Si = −19

RF and DC reactive
magnetron sputtering [61]

Zr-Cu-Al-Ag
Zr:Cu = 20

Zr:Al = 10.6
Zr:Ag = 9.8

Zr-Cu = −23; Zr-Al = −44
Zr-Ag = −69; Cu-Al = −1
Cu-Ag = 2; Al-Ag = −4

DC magnetron sputtering [62]

Cu48Zr42Ti4Al6
Cu:Zr = 20

Cu:Ti = 14.3
Cu:Al = 10.7

Cu-Zr = −23; Cu-Ti = −9
Cu-Al = −1; Zr-Ti = 0

Zr-Al = −44; Ti-Al = −30
RF magnetron sputtering [63]

Zr60.14Cu22.31Fe4.85Al9.7Ag3

Zr:Cu = 20
Zr:Fe = 22.5
Zr:Al = 10.6
Zr:Ag = 9.8

Zr-Cu = −23; Zr-Fe = −25
Zr-Al = −44; Zr-Ag = −69

Cu-Fe = 13; Cu-Al = −1
Cu-Ag = 2; Fe-Al = −11
Fe-Ag = 28; Al-Ag = −4

DC Magnetron sputtering [64]

Zr59Cu20Al10Ni8Ti3

Zr:Cu = 20
Zr:Al = 10.6
Zr:Ni = 22.3
Zr:Ti = 9.6

Zr-Cu = −23; Zr-Al = −44
Zr-Ni = −49; Zr-Ti = 0
Cu-Al = −1; Cu-Ni = 4

Cu-Ti = −9; Al-Ni = −22;
Ni-Ti = −35

Arc-melting [65]

Fe40Ni40P14B6

Fe:Ni = 0.3
Fe:P = 14.5
Fe:B = 34.1
Ni:P = 14.8
Ni:B = 34.1

Fe-Ni = −2; Fe-P = −39.5
Fe-B = −26; Ni-P = −34.5

Ni-B = −24; P-B = 0.5

Induction melting, fluxing,
re-melt, and quenching [66]

Fe50.26B2.62Si2.41Cr23.86Mo20.85

Fe:B = 34.1
Fe:Si = 7.1
Fe:Cr = 0.6
Fe:Mo = 9.8

Fe-B = −26; Fe-Si = −35
Fe-Cr = −1; Fe-Mo = −2
B-Si = −14; B-Cr = −31
B-Mo = −7; Si-Cr = −37
Si-Mo = −35; Cr-Mo = 0

Atmospherically
plasma-sprayed [67]

Ti–Ni–Cu–Sn,
Ti–Ni–Cu–Sn–Be and
Ti–Ni–Cu–Sn–Be–Zr

Ti:Ni = 14.8
Ti:Cu = 12.6
Ti-Sn = 8.1
Ti:Be = 22.8
Ti:Zr = 9.6

Ti-Ni = −35; Ti-Cu = −9
Ti-Sn = −21; Ti-Be = −30;

Ti-Zr = 0; Ni-Cu = 4
Ni-Sn = −4; Ni-Be = −4
Ni-Zr = −49; Cu-Sn = 7
Cu-Be = 0; Cu-Zr = −23
Sn-Be = 15; Sn-Zr = −43

Be-Zr = −43

Injection casting [68]

Cu47Ti34Zr11Ni8,
Cu47Ti33Zr11Ni8Fe1 and

Cu47Ti33Zr11Ni8Si1

Cu:Ti = 14.3
Cu:Zr = 25.4
Cu:Ni = 2.6
Cu:Fe = 2.9
Cu:Si = 9.8

Cu-Ti = −9; Cu-Zr = −23
Cu-Ni = 4; Cu-Fe = 13
Cu-Si = −19; Ti-Zr = 0

Ti-Ni = −35; Ti-Fe = −17
Ti-Si = −66; Zr-Ni = −49
Zr-Fe = −25; Zr-Si = −84
Ni-Fe = −2; Ni-Si = −40

Copper mold casting [69]
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3. Fabrication Techniques

Different fabrication routes can be adopted to provide randomness in the atomic
orientation of the multicomponent systems. Metallic glasses are formed primarily by
conventional casting or thermal-quenching techniques. Some novel fabrication techniques
with their distinctive features will also be discussed in the following sections.

3.1. Liquid-Quenching Method

A significant fraction of bulk metallic-glass systems are formed by the liquid-to-solid
transition technique [70–72]. To form a multicomponent metallic glass, metallic species
are converted to a liquid by heating above the melting/liquidus temperature and later
solidified by fast cooling. Thus, the liquid-quenching step requires a wide range of cooling
rates. Based on the required cooling rate, the solidification technique can be classified
into several groups, which are listed in Table 2. The extreme cooling rate in quenching
techniques is found to be reached by distributing a thin layer of liquid in contact with a
thermally conductive substrate (metal or sapphire) [25].

Table 2. Metallic-glass systems are fabricated by different solidification techniques and associated
cooling rates.

Solidification
Technique

Cooling Rate
(K/s) Fabricated System Ref.

Conventional die
casting 101–103

Zr46.75Ti8.25Cu7.5Ni10Be27.5,
Zr–Al–Cu,

La55Al25Ni20,
Mg80Cu10Y10,

[6,12,53,73]

Melt spinning 105–106
Fe57.2Co30.8Zr7−xHfxB4Cu1

(x = 3, 5, and 7),
Zr61Cu17.5Ni10Al7.5Si4

[74–76]

Liquid
splat-quenching ∼109–1010

Zr46.7Ti8.3Cu7.5Ni10Be27.5
Au-Si,

Au0.778Ge0.138Si0.084

[2,77–79]

Pulsed laser
quenching ∼1012–1013 Cu-Ti-Zr, Cu-Ti,

NixNb100−x
[80–83]

Nano calorimetry 104–106 Au–Cu–Si [84,85]

The quenching rate is defined with reference to the heat-transfer capacity between the
liquid and the substrate as well as on the thickness and thermal conductivity of the liquid
layer [25]. For example, to quench the liquid in a conventional die-casting method requires
a cooling rate within the range of 10 K/s to 103 K/s [53]. Two temperature transitions
occur in the formation of glass during quenching. The first transition of temperature is the
liquidous temperature and the other one is the glass-transition temperature. According to
Greer [74], decreasing the difference between these two temperatures favors the formation
of metallic glass. In addition, glass formation is more likely to occur with rapid cooling
of the liquid [74]. To extensively study the effect of the cooling rate, Kuball et al. [86]
investigated the crystallization behavior of the Al86Ni8Y6 system. As illustrated in Figure 1,
Kuball et al. [86] concluded that apart from the material composition, considerably high
cooling rates can limit the formation and growth of the intermetallic compound (Al23Ni6Y4)
and solid solution phase (α-Al) and form a monolithic metallic glass [86].
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Figure 1. The effect of temperature during the solidification of Al86Ni8Y6 is shown [86]. Adding Y2O3

particles into the liquid melt forms an Al23Ni6Y4 intermetallic. Finally, the fcc α-Al solid solidifies
at the interface of the Al23Ni6Y4 intermetallic. A time–temperature–transformation (TTT) diagram
shows the influence of heating and cooling rates on the crystallization behavior [86].

Although metallic-glass systems produced through rapid quenching techniques are
typically multicomponent, a monoatomic metallic-glass system can be fabricated using
extremely high cooling rates (1014 K/s) [87]. Zhong et al. brought two Ta nano-tips into
contact and melted them using short square-wave electric pulses (∼3.7 ns and 0.5–3 V) [87].
As shown in Figure 2, they showed that the liquid was vitrified with a very high cooling
rate to form a Ta metallic glass with a length and thickness on the nanometer scale [87].
However, the requirement of enormously high cooling rates to circumvent crystallization
sets a severe restriction on the dimensions and geometry of the fabricated samples reachable
using this process.

3.2. Welding of Metallic Glasses

The commercial production of metallic-glass systems is hampered by the requirement
of a high cooling rate to fabricate a large-sized sample via casting. To eliminate the size
constraint and fabricate bulk amorphous systems, a welding approach has been explored
to join pieces of metallic glasses without compromising their excellent physical properties.
The fabrication of a metallic glass composite (as shown in Figure 3) via this technique
extends the application range of metallic-glass systems [88].

Different liquid-state joining techniques, such as electron-beam welding [89], laser-
beam [88,90] welding, the pulse-current method [91], and gas tungsten arc welding [92]
have been studied for different multicomponent metallic glasses. Liquid-state joining pro-
cesses exhibit high energy density and deep weld penetration, which are helpful compared
to conventional welding techniques [93]. However, phase stabilization in the heat-affected
and weld-fusion zones to form a completely disordered solid remains a research chal-
lenge [94]. Among the liquid-state welding techniques, electron- and laser-beam welding
have been extensively investigated. For example, a study conducted by Wang et al. [94] on
the formation of Ti-based (Ti40Zr25Ni3Cu12Be20) metallic glass using laser welding showed
that the microstructure of both the weld fusion zone (WFZ) and heat-affected zone (HAZ)
are affected by the welding speed. In the WFZ, a high-speed welding of 10 m/min provides
a high cooling rate of 780 K/s, which results in an amorphous microstructure. In the WFZ,
the lower welding speed would cause a high temperature exposure for a longer period of
time, leading to crystallization in the microstructure. However, at higher welding speed,
the HAZ would experience a fast temperature drop below the crystallization temperature,
suppressing the crystallization [94]. The reason for this is attributed to the high heating
rate; decreasing the welding speed tends to suppress crystallization [94].
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Figure 2. (a–c) Schematic drawing of the experimental configuration of an ultrafast liquid-quenching
process [87]. (a) The process begins by bringing two protruded nano-tips in contact, which are
melted by the application of an electric pulse; (b) heat is dissipated through the bulk substrates, and
(c) the melting zone transforms into monatomic MGs due to liquid quenching. (d) High-resolution
transmission electron microscope (HRTEM) image showing two contacting Ta nano-tips before the
application of the electric pulse. The boundary of the two-contacting nano-tips are shown using the
dotted lines (e) HRTEM image showing vitrified Ta MG after the application of the electric pulse.
(f–h) Fast Fourier transformations confirming a fully vitrified region in the middle (g) bounded by
two crystalline substrates.

Solid-state joining techniques, including friction [95], explosion [96], thermoplastic
deforming [97], and ultrasonic welding [98] methods, are also being investigated. These
processes produce relatively low temperatures and are found to provide excellent join-
ing without crystallization [99]. Among the supercooled-liquid welding techniques, fric-
tion is widely used for joining metallic-glass systems and has been studied by several
groups [95,100]. The idea of joining metallic-glass systems using friction stir welding
originated from the metal-extrusion technique. In metal extrusion, the strong bond within
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powder particles is established during the consolidation of the powder, due to superplastic
deformation of the supercooled liquid [101]. Kamamura et al. [102] successfully joined
Pd40Ni40P20 BMG using friction, taking advantage of the superplasticity of its supercooled
liquid. The welded system was found to have properties similar to the parent system that
was fabricated through the quenching technique. In addition, Wang et al. [103] studied the
effect of friction time and rotational speed to maintain the glassy state within the interface
and concluded that there is a critical time for any rotational speed to keep the interface
below the crystallization temperature.
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(c) a magnified view of rectangular region A, and (d) a magnified view of rectangular region B. The
inset in (c) lists the electron probe microanalysis (EPMA) data of the white particle [88].

Using welding techniques to join disordered solids may allow the production of large
metallic-glass systems, which can solve the issue with the requirement of a very high
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cooling rate. However, more research on this field will determine the intrinsic mechanism
to join different metal-based MG systems. Different metallic-glass systems joined by liquid-
and solid-state techniques are listed in Table 3.

Table 3. Metallic-glass systems joined via different welding techniques.

Liquid-state
welding

Metallic Glass System Welded to
Welding

Technique

Parameters
Ref.Thickness

(mm) Power (kW) Scanning Speed
(mm/s)

Zr41Be23Ti14Cu12Ni10 Zr55Al10Ni5Cu30 Electron-beam 3.5 9 33 [104]

Zr41Ti14Cu12Ni10Be23
Polycrystalline

Zr metal Electron-beam 3 9 33 [105]

Zr41Be23Ti14Cu12Ni10 Ti metal Electron-beam 3 9 66 [106]

Zr41Be23Ti14Cu12Ni10 Stainless steel Electron-beam 2 9 66 [107]

Zr45Cu48Al7 Zr45Cu48Al7 Laser 1 1.2 33–133 [90]

Cu54Ni6Zr22Ti18 Cu54Ni6Zr22Ti18 Pulsed Nd:YAG 6 1.5 0.33 and 1 [108]

Zr55Al10Ni5Cu30
304 austenitic
stainless steel Fiber-laser 9 2–10 1.2 [109]

(Zr53Cu30Ni9Al8)Si0.5 (Zr53Cu30Ni9Al8)Si0.5 Pulsed Nd:YAG 1 1.3–1.7 1 [110]

Pd43Cu27Ni10P20 Pd43Cu27Ni10P20 Pulsed laser beam 1 0.750–1.125 0.33 [111]

Solid-state
welding

Metallic glass system Welded to Welding process
Parameters

Rotational
speed (rpm) Time (s)

Ti40Zr25Ni3Cu12Be20 Ti40Zr25Ni3Cu12Be20 Friction 1800–2200 5–7 [103]

Zr41.5Ti13.8Cu12.5Ni10Be22.5 Zr41.5Ti13.8Cu12.5Ni10Be22.5 Friction 2700 0–35 [112]

Zr55Al10Ni5Cu30 Zr55Al10Ni5Cu30 Friction 1800 0.4–1.0 [113]

Pd40Ni40P20 Pd40Cu30Ni10P20 Friction 6000 0.2 [114]

3.3. Additive Manufacturing

In recent year, additive manufacturing (AM) has drawn much attention from the
manufacturing industries and academia due its unique features that can significantly
affect the microstructure and properties of engineering materials. This emerging additive
manufacturing technology is also known as three-dimensional (3D) printing, in which a
layer-by-layer fabrication process is used to build a 3D object directly from a CAD file [115].
Through additive manufacturing, it is possible to produce geometrically intricate designs,
which would not be possible using conventional manufacturing techniques [115]. It is also
possible to improve and customize material properties according to desired applications via
the proper selection of process parameters during fabrication. Metallic-glass systems have
also been produced by different additive manufacturing techniques [116–119]. Selective
laser melting (SLM) is a branch of additive manufacturing, which is used for the formation
of disordered solids [120–122] and does not require precise molds for the fabrication of
complex and large-scale parts [123]. For example, SLM has been used to fabricate metallic-
glass systems, which has been found to be beneficial as a composite matrix for biomedical
applications [124,125].

In SLM, metal powder is placed on a metal plate and melted using a laser. The melt
freezes rapidly and bonds with the metal plate. Additional layers of powder are then
added as the melting and freezing steps are continued [123]. The overall process occurs in
a closed chamber, where argon or helium is used to create an inert atmosphere to minimize
contamination. The metal plate in the SLM process serves as the support for the final
part and is usually iron (Fe), titanium (Ti), aluminum (Al) or nickel (Ni) [122,126] due to
their outstanding mechanical stabilities and heat-dissipation characteristics [122]. Both the
heating and cooling rates during the SLM process require the careful selection of parameters
(laser power density, spot size, hatch spacing and scan speed) for the formation of a metallic
glass [127]. The energy input into the molten powder is controlled by changing the spot
size, the power of the laser, and the dwell time [128]. Optimizing these parameters can
minimize the melt puddle, which is found to facilitate the glass formation [128].
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The effects of scan speed and laser power to form a disordered structure have been
studied by Jung et al. [129] for Fe-based (Fe68.3C6.9Si2.5B6.7P8.7Cr2.3Mo2.5Al2.1) metallic glass.
Cross-section images of the resulting samples are shown in Figure 4. Jung’s study indicates
that optimal energy transfer and high relative energy densities are helpful for forming
metallic glass, which is achieved by using low scan speed and high laser power [129].
However, a study conducted by Li et al. indicates that using too high a laser energy
density can introduce some crystallization into a system [130]. The impressive part of the
layer-by-layer fabrication process of AM is that a refined microstructure and outstanding
mechanical features can be achieved using SLM [129] as compared to samples produced
via conventional fabrication techniques. However, crystallization is difficult to avoid due
to the thermal processes involved in the SLM technique [127]. Moreover, thermal stress
can induce cracks within the samples, which can effectively be mitigated by decreasing
the energy density during the fabrication process [131]. Different metallic-glass systems
fabricated using additive manufacturing process are listed in Table 4, along with some of
the associated fabrication process parameters.

Table 4. Metallic-glass systems produced via additive manufacturing process.

Materials Systems Laser Power (W) Scanning Speed
(mm/s)

Hatch Spacing
(µm) Ref.

Zr55Cu30Ni5Al10 240 1200 100 [120]

Al86Ni6Y4.5Co2La1.5 120 750 100 [132]

Al85N5Y6Co2Fe2 200 625 150 [131]

Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 60 2000 140 [133]

Zr52.5Cu17.9Ni14.6Al10Ti5 30–120 250–2000 100–200 [134]

Fe74Mo4P10C7.5B2.5Si2 320 3470 124 [123]

Zr52.5Ti5Cu17.9Ni14.6Al10 200 500 150 [130]

Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 150–350 200–1000 - [135]

Fe54.35Cr18.47Mn2.05Mo13.93W5.77B3.22C0.90Si1.32 220–380 2000 90 [136]

Zr50Ti5Cu27Ni10Al8 200 13.3 - [137]

3.4. Powder Densification Technique

Metallic glasses produced by quenching techniques have size limitations (mm to cm)
due to the requirement of very high cooling rates. A potential solution to avoid the issue of
the cooling rate is the use of a fabrication route that consolidates amorphous powder. In this
method, mechanical alloying [138,139] or high-pressure argon-gas atomization [140,141] is
usually adopted to produce amorphous powders. Mechanical alloying is a simple, room-
temperature method; however, it is a lengthy process. On the other hand, the high-pressure
gas atomization technique requires an extreme experimental condition [142].

The amorphous powders are densified using other processes, such as extrusion meth-
ods [143–145], cold or hot pressing [146,147], spark-plasma sintering [139,148], and injec-
tion [149]. These densification processes are classified based on their operating temperature
and time. For example, cold pressing [146] or equal channel angular extrusion [144] is
performed at room temperature, whereas warm extrusion [150], hot pressing [147], injec-
tion [149], and spark-plasma sintering [142] require high temperatures. Among all these
techniques, spark plasma sintering is popular due to densification capability within a short
span of time [127]. Moreover, the spark plasma sintering process combined with dynamic
pressing and fast heating is advantageous for the formation of a disordered solid, even for
the marginal glass formers [127,151]. However, there is a possibility of crystallization if
thermal stability is not controlled during the densification process [142].
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Cardinal et al. [142,152] extensively studied a Cu-based metallic glass (Cu50Zr45Al5)
fabricated via the spark plasma sintering method. In this study, planetary ball milling
is used to make crystalline Zr (as shown in Figure 5a) and amorphous CuZrAl powders
(Figure 5b). The obtained pure crystalline Zr (20% vol.) powder is homogeneously mixed
with the amorphous CuZrAl powder (Figure 5c). The mixed powders (crystalline Zr
and amorphous CuZrAl) are densified using the spark plasma sintering technique. As
illustrated in Figure 6, the sintering temperature was 420 ◦C with an imposed pressure of
600 MPa. The application of high pressure and a fast-heating rate help to create a stronger
bond between the powder grains and result in an amorphous solid [142].
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and (b) cylindrical sample produced from the powder after densification [152].

The capability of porous metallic-glass systems to achieve outstanding mechanical
properties (e.g., high strength, large elastic stains) and corrosion resistance has raised much
research interest [153]. Conventional casting is found to hinder the successful formation
of porous metallic glass structures due to the size constraints and the high contamination
tendency [154]. In addition, spark plasma sintering alongside densification techniques
are found to be a successful alternative to the methods that require very high cooling
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rates [155–157]. Different metallic-glass systems formed through the powder densification
techniques are listed in Table 5.

Table 5. Metallic-glass systems produced via powder metallurgy.

Name of the System Powder Production
Technique

Densification
Process Ref.

Ni59Zr20Ti16Si2Sn3
Argon gas

atomization Warm extrusion [143]

Cu50Ti32Zr12Ni5Si1
High-pressure

gas-atomization
Equal channel

angular extrusion [144]

Mg65Cu25Gd10 Mechanically milled Spark plasma
sintering [138]

Ni53Nb20Ti10Zr8Co6Ta3 Mechanical alloying Spark plasma
sintering [139]

Al82La10Ni4Fe4, Mechanical alloying Spark plasma
sintering [158]

Ni52.5Nb10Zr15Ti15Pt7.5
Argon gas

atomization
Spark plasma

sintering [159]

Zr55Cu30Al10Ni5
Argon gas

atomization
Spark plasma

sintering [155]

Ni59Zr15Ti13Si3Sn2Nb7Al1 Gas-atomization Spark plasma
sintering [160]

(Fe0.72B0.24Nb0.04)95.5Y4.5 Gas-atomization Spark plasma
sintering [161]

Fe73Si7B17Nb3
Argon gas

atomization
Spark plasma

sintering [162]

Fe48Cr15Mo14Y2C15B6
Argon gas

atomization
Spark plasma

sintering [163]

Fe67Co9.5Nd3Dy0.5B20
Mechanically
rotor-milled

Spark plasma
sintering [164]

Ti50Cu23Ni20Sn7 Mechanically milled Spark plasma
sintering [165]

3.5. Magnetron Co-Sputtering

Vapor quenching techniques, such as evaporation and magnetron co-sputtering, are
a non-equilibrium vapor-to-solid transition method, which is often used to produce mul-
ticomponent metallic-glass systems [13]. In magnetron co-sputtering, the growth of the
atoms on a substrate is governed by two competing factors, e.g., thermodynamics and
kinetics [13]. When the energies of the arriving atoms were compared, the sputtered atoms
were found to have average energy that is two orders of magnitude higher than that of
the atoms in the evaporation technique [13]. Thus, from a thermodynamics perspective,
the effective quench rate of the atoms is slower in sputtering than in evaporation [166].
However, from a kinetic point of view, the magnetron-sputtering process is specified in
terms of momentum [13], and the targets with heavy atoms possess a higher momentum
that facilitate the solidification of the atoms in a metallic glass system [167].

Sputtering systems are typically equipped with multiple guns, which are used to de-
posit materials on a substrate. Various fabrication parameters, such as the angle and power
of each gun, gaseous environment, compositions of the targets, angle and rotation of the
substrate, etc., can be carefully tuned to obtain optimized compositions of multicomponent
metallic-glass systems [127]. By changing the aforementioned parameters, a compositional
library of a metallic glass system can be synthesized for different engineering applications
(as shown in Figure 7) [168]. Moreover, the slower cooling rate of sputtering and lack
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of nucleation sites of crystallization lead to properties that often emerge simultaneously
in a single metallic-glass system. Bouala et al. [169] introduced Ag in Zr-Cu to form a
compositional library of a Zr-Cu-Ag metallic glass system and studied the glass-forming
ability, mechanical properties, electrochemical properties, and antibacterial activity of the
fabricated systems for potential bio-medical applications. Among all the compositions,
Zr73Cu16Ag11 metallic glass was found to exhibit optimum mechanical and electrochemical
properties with enhanced antibacterial activity [169]. Metallic-glass systems produced by
combinatorial development to achieve different properties are listed in Table 6.
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Table 6. Parameters associated with the magnetron-sputtering technique used to fabricate various
metallic-glass systems.

System Sputtering Type

Parameters

Ref.
DC Power (W) RF Power (W) Base Pressure

(Pa)
Working

Pressure (Pa)

Target-Substrate
Distance

(mm)

Sputtering Rates
(nm/min)

Thickness
(µm)

Zr–Ni–Al–Si Reactive magnetron
co-sputtering

Zr: 700
Ni: 120

Al: 240
Si: 300 2 × 10−4 0.4 250 2.1–6.1 - [61]

Zr61All7.5Ni10Cu17.5Si4
DC plus magnetron

sputtering 30 - 7.9 × 10−4 0.53 60 - 0.5 [170]

ZrCuAl RF magnetron
sputtering -

Zr: 225
Cu: 50
Al: 26

6.6 × 10−5 1.3 165 - 2 [171]

Zr55Cu31Ti14 DC co-sputtering 300 - 6.6 × 10−5 - - - 2–3 [172]

Zr-Pd RF magnetron
sputtering - 70 2–4 × 10−4 2 70 6.6 - [173]

ZrCuAlAg DC magnetron
sputtering 15–30 - - 0.4 60 7.6–14.5 0.2 [62]

Zr47Cu31Al13Ni9
RF magnetron

sputtering - 100 - 0.27 - - 0.2 [174]

Al48Ag37Ti15 Magnetron sputtering - - 6.6 × 10−5 0.4 - - 0.5 [59]

Ta-Ti-Zr-Si DC co-sputtering - - 6.6 × 10−5 - - - 0.6 [175]

Zr60.14Cu22.31Fe4.85Al9.7Ag3
DC magnetron

sputtering 120 - 2 × 10−4 0.65 - - 0.53 [64]

4. Distinctive Properties

Like conventional crystalline materials, the properties of metallic-glass systems also
originate from their microstructure, and the potential of metallic-glass systems as functional
materials is an area of active research. The following sections summarize the structural,
surface, mechanical, thermal, electrochemical, and magnetic characteristics of various
metallic-glass systems that would be essential to solidify our understanding of these
unique materials.

4.1. Structural and Surface Properties

Grain boundaries and secondary phase precipitates are the two common structural fea-
tures that are absent in metallic-glass systems [176,177]. The homogeneous microstructure
of metallic glass matrices contributes to their enhanced electrochemical and mechani-
cal properties [35,177,178]. Furthermore, a better surface condition and minimal surface
roughness are found to be useful in various engineering applications [58,179,180].

Various mathematical models have been proposed to explain the atomic structure of
metallic-glass systems [181,182]. Among these models, Bernal’s dense random packing
model is useful in describing the monoatomic amorphous structures of a short-range
order [183]. However, the model is unable to explain the structures of binary metallic
glasses [184]. In this regard, the model suggested by Gaskall [185] is rather useful but
lacks proper experimental evidence. The model proposed by Miracle [186] considered
a medium-range order (MRO) of metallic-glass systems with face-centered cubic (fcc)
atomic packing. Other studies also considered a short- to medium-range order (MRO) for
modeling different metallic-glass systems [187–191]. For example, the model suggested by
Lee et al. [181] considered both short- and medium-range orders of binary Cu-Zr metallic
glass. The short-range order of the Cu65Zr35 system exhibited a high packing density and a
low free volume, whereas for the medium-range order, the majority of the icosahedra were
found to exist in linked clusters. The icosahedra connected in the medium-range order
resulted in the lowest average potential and atomic volume, which were found to provide
more structural stability [192]. The structural modeling of metallic-glass systems postulates
efficient packing around the solute and solvent atoms, and lower densities of the amorphous
systems compared to their crystalline counterpart [193,194]. The hypothesis was later
verified experimentally by Battezzati and Baricco, who reported lower molar volumes of
different metallic-glass compositions [195]. Mukherjee et al. reported that the composed
icosahedral structures connected in an extensive network with higher atomic packing led
to a higher viscosity and lower atomic volume of metallic-glass systems [196]. Both of
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these two factors impact glass-forming ability and provide better structural properties of
metallic-glass systems [197].

Different diffraction patterns and nano-scale characterization techniques have been
carried out to analyze the disordered structure. The study conducted by Khan et al. [198]
showed the microstructural analysis of a Zr-based (Zr-Ti-Fe-Al) metallic glass system using
the HR-TEM technique. Figure 8 depicts the amorphous structure with embedded nano-
crystallites, which was affirmed through selected-area electron diffraction (SAED) combined
with fast Fourier transformation (FFT). The influence of inclusion on the properties of
disordered solids was extensively examined by Liu et al. [199] by introducing different
elements into the Cu-Ag system. It was found that the inclusion of Cr and Co in Cu-
Ag improves electrical conductivity, with a slight compromise in strength, whereas the
inclusion of Zr leads to a reverse trend. The relationship between the metallic glass
composition, microstructure, and properties of various Zr-(Cu,Ag)-Al compositions was
also reported by Jiang et al. and Chen et al. [62,197]. The synthesized metallic-glass
systems are found to exhibit different physical and chemical properties with the change in
sputtering power.

The composition of metallic glasses has been found to trigger different surface proper-
ties [197,199,200]. The increase in roughness with sputtering power indicates that under
certain conditions, the power level can provide a composition with a better surface finish,
whereas a higher deposition rate can be attributed to a higher surface roughness. Another
study on Zr-based metallic glass (Zr–Ni–Al–Si) examined a broad range of compositions
and nitrogen (0–17.7%) contents for improved physical and chemical features [61]. The
inclusion of nitrogen of more than 7.1% was found to induce a higher level of crystallinity
into the system, whereas the system without the inclusion of nitrogen was found to have a
minimal amount of roughness. Moreover, thermally annealed metallic glass with an atomic
composition of 60% Cu and 40% Zr exhibited an outstanding smooth surface, with fine
grains and a dense microstructure [201]. In this study, thermal annealing was stated to
impede the nucleation of nano-crystals due to the reduction in free volume in the atomic
structure [201]. A study conducted by Ishii et al. also assessed the effect of thermal anneal-
ing in the atomic structure of metallic glass, where the structural analysis of the metallic
glass system indicates the absence of pores with large open spaces, and it was predicted
that the atomic rearrangement near the free volume does not occur due to the thermal
treatment [202]. The study indicates that the metallic glasses may not consist of an absolute
random structure; rather, the disordered state is influenced by the chemical order of the
systems used for alloying [202]. Moreover, Zr-(Zr53Cu33Al9Ta5)- and Cu-(Cu48Zr42Ti4Al6)-
based metallic glasses are found to exhibit a better surface condition, as the wettability of
the surfaces indicates a significant reduction in the surface roughness from the crystalline
materials [63]. A study conducted by Liu et al. [168] synthesized the compositional library
for the Zr-based metallic-glass systems, and the disordered structural condition was found
to exhibit lower roughness values compared to the crystalline materials.

4.2. Thermal Stability

The formation of metallic glass requires a proper understanding of thermodynamics,
as the glass formation and observed material properties are interrelated. It is anticipated
that the addition of specific elements in metallic-glass systems may often decrease the
glass-forming ability [203]. A study conducted by Inoue et al. [204] indicated that the
presence of Co, Cr, Fe, Mo, and V diminished the supercooled region due to a decrease
in crystallization temperature (Tx), and, thus, reduced its glass-forming ability. The study
determined that Hf inclusion in the Zr-based metallic glass kept the supercooled region
unchanged, whereas the glass-phase area ratio extended with the inclusion of Ti, Nb, and
Pd. Another study conducted by He et al. [203] analyzed the effect of Ta addition in the
thermal stability of the supercooled region in a Zr-based system (Zr52.25Cu28.5Ni4.75Al9.5Ta5)
fabricated using an arc-melting process. The study indicated that the addition of 3.2%
Ta improved the thermal stability of the metallic glass matrix, although it did not signif-
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icantly improve its glass-forming ability. For the Zr57Nb5Al10Cu15.4Ni12.6 metallic-glass
system [205], the thermal stability of the system was tested by adding Mo, Nb, and Ta. It
was observed that the addition of these species did not alter its thermal stability. Inoue
and Zhang studied the thermal stability of Cu-Zr-Al metallic-glass systems [206] for a
wide range of compositions, and it was found that the inclusion of Al (3–10%) increased
the temperature difference (∆T) between the glass-transition temperature (Tg) and the
crystallization temperature (Tx), which further stabilized the systems thermodynamically.
For an Fe-based Fe43Cr16Mo16C15B10 metallic glass [207], negative heat-of-mixing values
were found within the range of 1–45 kJ mol−1, which is within the range of stabilization for
a supercooled liquid.
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Figure 8. X-ray diffraction (XRD) and high-resolution transmission electron (HR-TEM) microscopy
(a,f,k) images of Zr-Ti, Fe-Al and Zr-TI-Fe-Al systems, where the insets (b,g,l) show selected-area
electron diffractions (SAED). The corresponding fast Fourier transformation (FFT), (c,h,m), inverse
FFT (d,i,n), and filtered FFT (e,j,o) images of the white boxed region are also shown [198].

The empirical rules of Inoue [48] associated with the negative enthalpy between the
atomic pairs are also related to the thermal stability of metallic-glass systems [207]. It has
been observed that the systems that follow this particular rule usually form a denser and
long-range configuration (by suppressing the nucleation for crystallization) with a relatively
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lower atomic diffusivity and a higher viscosity [207,208]. For example, the formation of Fe-
based metallic glass (Fe43Cr16Mo16C15B10) with a higher ∆T is attributed to the low atomic
diffusivity, nucleation, and growth reactions among the species [207]. Apart from the
multicomponent systems, the glass-forming ability and thermal behavior of binary systems
were also studied. For example, Zr-Cu systems of an extensive compositional range [50]
were characterized using differential scanning calorimetry. The systems sputtered at a low-
density discharge condition exhibited an optimum range of the stable supercooled region
with the inclusion of 31–62 at% Cu, whereas the high-density discharge condition resulted
in an inconsistent supercooled region. Finally, the thermal stability of the supercooled
region, the atomic species, and the fabrication routes all govern the electrochemical [207],
mechanical [203,205] and structural [202] responses of metallic-glass systems. Among
different fabrication routes, the combinatorial method via sputtering has been reported to
yield thermodynamically stable metallic-glass systems and has been adopted for easy glass
formation [50,64,175,209].

4.3. Mechanical Properties

When metallic-glass systems are considered for structural, biomedical, defense, and
aerospace applications, the evaluation of mechanical properties is essential [35,36,45,210,211].
A higher yield strength and increased elastic limit are the two properties that make metallic-
glass systems distinct from commonly used crystalline materials [35,69]. Metallic-glass systems
have been reported to have significantly higher yield strength and hardness values compared
to 316 L stainless steel-, Ti-, and Zr-based alloys [35,75,212,213]. Moreover, a lower elastic
modulus and comparatively higher elastic strain have also been reported for different metallic-
glass systems, which are beneficial for applications where a reduction in stress concentration
is vital [214–217]. The yield strength is the ability of a material to resist plastic deformation,
and metallic-glass systems are found to have a higher yield strength [218]. Metallic-glass
systems also exhibit higher wear resistance compared to crystalline materials. Moreover, the
longer interatomic distance and other unique microstructural features often help to obtain a
lower elastic modulus and outstanding fracture strength [218–222]. Different characterization
techniques, such as nanoindentation, the micro-hardness test, and compressive and tensile
tests, are performed to extract the properties of metallic-glass systems. The mechanical
properties of various Zr-, Ti-, Fe-, Mg-, Cu-, Pd-, Al-, Ni-, Ca-based systems have been listed
in Table 7.

Table 7. Mechanical properties of various metallic-glass systems. U, C, Y, and F indicate ultimate,
compressive, yield and fracture strengths, respectively. For hardness values, V and C indicate Vicker’s
and compressive hardness, respectively.

Name of the Systems Strength
(GPa)

Elastic Modulus
(GPa)

Hardness
(GPa)

Measurement
Technique Ref.

Zr-based MGs

Zr41.25Ti13.75Cu12.5Ni10Be22.5 1.9 (U) 96 5.23 (V) Tensile and
compression test [223]

(Zr55Al10Ni5Cu30)98.5Si1.5 1.8 (U) 87 5.2 (V) Tensile and
compression test [224]

Zr61Cu17.5Ni10Al7.5Si4 1.8 (C) -- 5 (C)
Compressive
strength and

hardness
[75]

Zr46Cu37.6Ag8.4Al8 1.9 (Y) 92 5.4 (V) Vickers
microhardness [216]

Zr40Ti14Ni10Cu12Be24 2.3 (Y) 114 9.7 Nanoindentation [225]

ZrTiCuNiAl 1.96 (Y) -- 5.5 Nanoindentation [226]

Zr52.5Al10Ti5Cu17.9Ni14.6 0.82 (Y) 109 -- Nanoindentation [227]
Zr69.5Cu12Ni11Al7.5 -- 93.86 5.66 Nanoindentation [228]
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Table 7. Cont.

ZrTiAlFeCuAg
(Zr = 60%) 1.58 ± 0.03 (Y) 78 ± 1 4.5 ± 0.06 (V)

Compression,
notch-toughness

tests, and
ultrasound

spectroscopy

[214]

Ti-based MGs

(Ti40Zr10Cu38Pd12)100–
x Nbx

(x = 0, 2, 3, 4)
1.2–2 (F) 100–106 6–8 (V) Compression test [229]

Ti40Zr25Ni3Cu12Be20
(10nm/2.50mN/s) -- -- 8.29 ± 0.13 Nanoindentation [230]

Ti75Zr10Si15 2.6 (Y) -- 0.007 Microhardness [54]

Ti60Nb15Zr10Si15 2.2 (Y) -- 0.006 Microhardness [54]

Ti40Cu36Pd14Zr10 -- 110 7.7 Microscratch [231]

Ti50Cu25Ni15Sn3Be7 2.17 (C) -- 6.5 Uniaxial
compression [232]

Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 2.08 (C) 100.4 ± 0.1 5.7 ± 0.05 Compression [178]

Cu-based MGs

Cu60Zr30Ti10
1.78 (Y)

2 (F) 112 6.4 (V)
Tensile and

compression
deformation

[233]

Cu60Hf25Ti15
1.92 (Y)
2.13 (F) 120 6.6 (V)

Tensile and
compression
deformation

[233]

Cu60Zr30Ti10 -- 93.88 ± 1.7 7.61 ± 0.33 Nanoindentation [234]

(Cu0.6Hf0.25Ti0.15)90Nb10
2.073 (Y)
2.232 (F) 106 -- Compression test [235]

Cu47Ti33Zr12Ni8Si1 2.087 (F) 118.6 -- Compression test [236]

(Cu50Zr50)90Al10 -- 117.3 5.3 (V)
8.7

Microhardness
nanoindentation [237]

Cu49Hf42Al9
2.408 (Y)
2.620 (F) 102 -- Compression test [238]

(Cu0.50Hf0.35Ti0.10Ag0.05)97Ta3 2.510 (F) 151.2 6.04 Compression test
nanoindentation [239]

Fe-based MG

Fe59Cr6Mo14C15B6
3.8 (Y)
4.4 (F) 204 ∼11 Compression tests [222]

Fe41Co7Cr15Mo14Y2C15B6 3.5 (F) 265 12.3 (V)
Compression,
bending and

hardness tests
[240]

Fe36Co36B19.2Si4.8Nb4 >4 (Y) 201 ± 10
192 ± 0.5 14 Compression test

nanoindentation [241]

(Fe0.75B0.15Si0.1)96Nb 3.25 (Y) 175 10.4 (V) Compression Test [242]

[(Fe0.8Co0.2)0.75B0.2Si0.05]96Nb4
4.05 (Y)
4.17 (F) 205 12.01 (V) Vickers hardness

compression test [243]

Fe66Mo10P12C10B2
2.55 (Y)
3.25 (F) 176 8.83 (V)

Microhardness,
compression and

resonant ultrasound
spectroscopy test

[244]

Fe0.432Co0.288B0.192Si0.048
Nb0.04)98Cr2

∼4.0 (Y) -- 11.51–12.51 Nanoindentation [245]

Pd,Ni,Mg,Ca,Al-
Based
MGs

Pd40Ni40P20 1.78 (Y) 103–108 -- Nanoindentation [246]

Ni60Nb37Sn3 3.7 -- 8.83 (V) Vickers hardness
measurements [247]

Mg66Zn29Ca4Ag1 -- -- 2.35 ± 0.03 Microhardness [248]

Ca20Mg20Zn20Sr20Yb20 0.37 ± 0.025 (F) 19.4 ± 3.4 -- Uniaxial
compression test [249]

Al85Y10Ni5 0.92 62.8 3.7 Microhardness and
tensile [250]

Mg65Cu25Gd10 ∼0.8 (C) -- ∼2.5 Compression test [75]

Disordered-state solids have the limitations of a reduced plasticity at room tempera-
ture. Metallic glass systems are reported to deform catastrophically under localized shear
bands due to their limited number of active shear bands [69,251–254]. The combination of
the strength and ductility of disordered solids has been reported to have improved with the
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introduction of nano-crystallites [255,256] or nano-quasicrystals [256,257]. Calin et al. [69]
suggested that the inclusion of nano-crystalline may be helpful to improve their ductility. A
study conducted by Liu et al. [258] established a relationship between the strength and duc-
tility of CuZr-based metallic-glass composites, as shown in Figure 9a. The study indicated
that the combination of high strength and improved ductility can be achieved through
percolation by matching the length scales of particle size and inter-particle distance in the
amorphous microstructure [258]. The relationship between the tensile strength and ductility
among different metallic-glass systems is shown in Figure 9b. Furthermore, presence of
specific species in a multicomponent system is another crucial factor to consider in achiev-
ing strength and ductility in an alloy. Eckert et al. [259] fabricated a binary metallic glass
(Cu50Zr50) with nano-crystallites and compared its response with a ternary metallic-glass
system (Cu47.5Zr47.5Al5). It was reported that the inclusion of Al in the matrix extended the
nucleation of its shear bands [259]. In this study, the multiple homogenous nucleation of
shear bands in the ternary metallic glass system (Cu47.5Zr47.5Al5) was found to exhibit a
better compressive ductility alongside an increased strength [259]. However, to provide
a specific hypothesis on how to achieve strength and ductility in a metallic-glass system
requires rigorous study and is currently a research challenge.
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Coatings 2023, 13, 1689 21 of 44

4.4. Electrochemical Properties

Homogeneity and the absence of a long-range order in the microstructure have been
found to be advantageous to better electrochemical properties [264,265]. The dissolu-
tion rate of a multi-component system depends on the alloying element species, chemical
composition, electrolyte chemistry, experimental environment and thermodynamic metasta-
bility [35,266–268]. The effects of compositional and chemical homogeneity, as well as the
effects of a short- to medium-range order, on the electrochemical responses of disordered
solids have been studied by different research groups [29,269]. A study conducted by
Kou et al. [270] found a better corrosion resistance in Zr- and Ti-based metallic glasses
(Zr41.25Ti13.75Ni10Cu12.5Be22.5 and Ti40Zr25Ni8Cu9Be18) in NaCl and H2SO4 solutions com-
pared to a crystalline Zr41.25Ti13.75Ni10Cu12.5Be22.5 alloy. It was concluded that chemical
homogeneity and the absence of crystalline defects facilitate the passive behavior of metallic-
glass systems compared to the crystalline counterpart [270]. Furthermore, metallic glasses
were found to be thermodynamically metastable; thus, their structures tend to exhibit the
excessive release of free volume [35,271]. A study conducted by Jiang et al. [271] deter-
mined the electrochemical behavior of Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 metallic glass due to the
change in free volume. The study indicated that the reduction in free volume improves the
corrosion resistance of metallic-glass systems [271].

Metallic-glass systems were also found to have a higher resistance towards localized
or pitting corrosion compared to crystalline materials [220,272]. One of the primary reasons
behind pitting corrosion is the presence of physical irregularities in the protective oxide or
passive layer [266,273]. Different phases, scratches, grain boundaries, and crystal imper-
fections can cause damage in the passive layer and eventually trigger catastrophic failure
of the systems [274]. The absence of long-range-order and corrosion initiation sites in the
lattice structure were found to facilitate the electrochemical properties of metallic-glass
systems [275,276].

An assessment of the electrochemical properties of different metallic glasses has been
conducted in a simulated environment using different electrolytes for various engineer-
ing applications [177,277]. The commonly used electrolytes are phosphate buffer solu-
tion (PBS) [266,278,279], Hank’s solution [154,229,280], sodium sulfate (Na2SO4) [58,281],
Ringer’s solution [275,282], aqueous NaCl solution [209,283], etc. Among the aforemen-
tioned electrolytes, PBS (pH = 7.4), Hank’s (pH = 7.4) and Ringer’s (pH = 6.5) solutions
are commonly used to explore the electrochemical behavior of metallic-glass systems for
bio-implant applications, whereas 0.05 M Na2SO4 and 0.6 M NaCl mimic humid air and
simulate seawater environments, respectively [154,177,229,278]. Among various glass-
forming materials, Zr-, Ti-, and Fe- based metallic-glass systems have been extensively
studied [272,284–290]. The enthusiasm behind the selection of these metallic-glass systems
has been attributed to their higher glass-forming abilities [20,291,292], lower ion dissolution
rates, and stronger and faster oxide-forming capabilities within a wide pH range [293–295].
In addition, the presence of oxide-forming and noble species can also influence the rate
of corrosion. The presence of Nb [296], Ag [169], Cu [297], Co [298], Cr [290,299], Ni [300],
Mo [277], Be [301], Al [302], W [283], and Pd [229] in metallic-glass systems have been
found to improve their electrochemical properties. A study conducted by Zhang et al. [303]
explored the effect of Ti, Cr, Mn, Fe, Co, Ni and Cu inclusion in an Al-based metallic-glass
system. Its polarization curves (as shown in Figure 10) indicate excellent corrosion resis-
tance, a higher pitting potential, and a comparable or lower corrosion current density in
the metallic-glass systems compared to pure Al [303]. The study concluded that engineered
metallic-glass systems with quasi- or nano-crystalline phases are electrochemically superior
to conventional crystalline materials [303].
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4.5. Magnetic Properties

Excellent soft magnetic properties make metallic-glass systems ideal candidate materi-
als for sensors, actuators, and magneto-optic storage applications [304–306]. The magnetic
properties of metallic-glass systems were found to be improved by thermal annealing [307].
The significance of thermal annealing is the formation of nano-crystallites within the amor-
phous system [307]; thus, the amorphous–crystalline composite microstructure shows
enhanced softness compared to a completely disordered microstructure [308]. The size
and distribution of the nano-crystals also influence the overall magnetic properties [309].
A mathematical model by Jin et al. [309] explained that the grain orientation changes the
coercivity and remanence, and thus, modifies the magnetic properties of a system.

Fe- [310,311] and Co-based [312] metallic-glass systems are commonly investigated
due to their outstanding magnetic features, such as their low coercivity, high electrical
resistivity, and saturation magnetization [304]. These inherent magnetic properties are also
dependent on the chemical composition and atomic configuration of the species of the
amorphous systems [129]. A study conducted by Zhu et al. [313] showed a relationship
between the coercivity and saturation magnetization of Fe-based metallic-glass systems
due to the inclusion of various amounts of Mo (as shown in Figure 11). A higher saturation
magnetization is attributed to the modification of the local moment due to the inclusion
of Mo. In addition, the elimination of pinning spots creating domain walls was found
to be useful in achieving a lower coercivity, which yields soft magnetic properties to
the system [313]. Furthermore, Shen et al. [314] explored the magnetic properties of Fe-
based Fe–Ga–P–C–B–Si metallic-glass systems in detail. The study indicated that Fe-based
metallic glasses exhibit an improved Currie temperature, saturated magnetization, and
coercive force [314], which are indicative of good soft magnetic properties. Another study
conducted by Lin et al. [315] considered the influence of Yttrium (Y), Dysprosium (Dy),
Holmium (Ho), Erbium (Er), and Scandium (Sc) inclusion in an Fe-B-based alloy. The study
reported that the species with 130% atomic size mismatched with Fe, and a eutectic point
with both Fe and B may impart high saturation magnetization and electrical resistivity,
and low coercivity to the amorphous Fe-based solids [315]. Furthermore, a Co-based
metallic-glass system (Co–Fe–Ta–B) studied by Inoue et al. [316] exhibited low coercive
force (0.25 A/m) and high permeability (550,000). The promising soft magnetic properties
of the Co-based metallic glass were attributed to the homogenous atomic structure of the
system [317]. The magnetic properties of different Fe- and Co-based metallic-glass systems
are listed in Table 8.

Coatings 2023, 13, x FOR PEER REVIEW 23 of 45 
 

 

[309]. A mathematical model by Jin et al. [309] explained that the grain orientation changes 
the coercivity and remanence, and thus, modifies the magnetic properties of a system. 

Fe- [310,311] and Co-based [312] metallic-glass systems are commonly investigated 
due to their outstanding magnetic features, such as their low coercivity, high electrical 
resistivity, and saturation magnetization [304]. These inherent magnetic properties are 
also dependent on the chemical composition and atomic configuration of the species of 
the amorphous systems [129]. A study conducted by Zhu et al. [313] showed a relationship 
between the coercivity and saturation magnetization of Fe-based metallic-glass systems 
due to the inclusion of various amounts of Mo (as shown in Figure 11). A higher saturation 
magnetization is attributed to the modification of the local moment due to the inclusion 
of Mo. In addition, the elimination of pinning spots creating domain walls was found to 
be useful in achieving a lower coercivity, which yields soft magnetic properties to the sys-
tem [313]. Furthermore, Shen et al. [314] explored the magnetic properties of Fe-based Fe–
Ga–P–C–B–Si metallic-glass systems in detail. The study indicated that Fe-based metallic 
glasses exhibit an improved Currie temperature, saturated magnetization, and coercive 
force [314], which are indicative of good soft magnetic properties. Another study con-
ducted by Lin et al. [315] considered the influence of Yttrium (Y), Dysprosium (Dy), Hol-
mium (Ho), Erbium (Er), and Scandium (Sc) inclusion in an Fe-B-based alloy. The study 
reported that the species with 130% atomic size mismatched with Fe, and a eutectic point 
with both Fe and B may impart high saturation magnetization and electrical resistivity, 
and low coercivity to the amorphous Fe-based solids [315]. Furthermore, a Co-based me-
tallic-glass system (Co–Fe–Ta–B) studied by Inoue et al. [316] exhibited low coercive force 
(0.25 A/m) and high permeability (550,000). The promising soft magnetic properties of the 
Co-based metallic glass were attributed to the homogenous atomic structure of the system 
[317]. The magnetic properties of different Fe- and Co-based metallic-glass systems are 
listed in Table 8. 

 
Figure 11. Soft magnetic features of Fe-based (Fe80(Nb1−xMox)5B15; where, x = 0, 0.15, 0.30, 0.45, 0.60, 
0.75) metallic glass. (a) M-H hysteresis loops indicating the relationship between saturation mag-
netization (Ms) and coercivity (Hc), and (b) the variation in Ms and Hc with the Mo content [313]. 

Table 8. Magnetic properties of various Fe- and Co-based metallic-glass systems. 

Name of the Systems 
Coercivity 

(A/m) 
Saturation Mag-

netization (T) 
Permeability 

Currie Temperature 
(K) 

Ref. 

Fe
-b

as
ed

 Fe70Al5Ga2P9.65C5.75B4.6Si3 2.2 1.2 110,000 620 [318] 
[(Fe1−xCox)75B20Si5]93Nb4Y3 Ribbon (x = 

0, 0.2, 0.4, 0.6) 
2–15 ~0.4–0.6 -- -- [319] 

Fe72Al5Ga2P11C6B4 5.1 1.07 9000 596–605 [320] 

Figure 11. Soft magnetic features of Fe-based (Fe80(Nb1−xMox)5B15 ; where, x = 0, 0.15, 0.30, 0.45,
0.60, 0.75) metallic glass. (a) M-H hysteresis loops indicating the relationship between saturation
magnetization (Ms) and coercivity (Hc), and (b) the variation in Ms and Hc with the Mo content [313].
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Table 8. Magnetic properties of various Fe- and Co-based metallic-glass systems.

Name of the Systems Coercivity
(A/m)

Saturation
Magnetization (T) Permeability Currie Temperature

(K) Ref.

Fe-based

Fe70Al5Ga2P9.65C5.75B4.6Si3 2.2 1.2 110,000 620 [318]

[(Fe1−xCox)75B20Si5]93Nb4Y3
Ribbon (x = 0, 0.2, 0.4, 0.6) 2–15 ∼0.4–0.6 -- -- [319]

Fe72Al5Ga2P11C6B4 5.1 1.07 9000 596–605 [320]

[(Fe1−xCox)0.75B0.2Si0.05]96Nb4 1.5–2.7 0.84–1.13 >1.2 × 104 600–690 [321]

Fe76Si9B10P5 0.8 1.51 -- -- [322]

Fe76−xC7.0-Si3.3B5.0P8.7Cux
(x = 0, 0.3, 0.7, 1.0 at.%) 11 1.79 -- -- [323]

Fe66Co10Mo3.5P10C4B4Si2.5 1.0 1.23 450,000 -- [324]

Fe82.75Si4B8P4Cu1.25 2.1 1.83 31,600 -- [325]

Fe-Si-B-M
(M = Cu, Nb, Mo, W, Ta) 6.9 1.41 6000 631 [326]

Fe55Co30Cu1Nb7Si1B8 5.9 1.71 1150 -- [327]

Co-based

Co66Fe4Mo2Si16B1 -- -- ∼109,000 -- [328]

CobalFe4Ni2Si15B14 <1–2 -- 24,000 490 [329]

Co33.9Fe33.9B22.5Si5.7Nb4 4.9 0.98 -- -- [330]

Co40Fe27Zr3Ti3Mo1.5Si1.5B24
(Cylinder) 8 1.2 -- -- [331]

Co42Fe20Hf3Mo3Ti3B29 2 0.6 -- -- [332]

Co67Fe4Mo2Si17B11
(annealed at 360◦) ∼0.1 ∼1.2 -- -- [333]

Co68.15Fe4.35Si12.5B15 210 0.81 -- -- [334]

Co43Fe20Ta5.5B31.5 0.25 0.49 550,000 -- [335]

5. Applications of Metallic Glasses
5.1. Biomedical Applications

Metallic glasses can be a perfect alternative to conventional crystalline biomaterials
(such as 316L stainless steel, Ti or Ti-based alloys, Zr or Zr-based alloys, Co-Cr alloys,
etc.) when used as coatings for surgical devices and implants inside the human body. The
following two sections (Sections 5.1.1 and 5.1.2) highlight some applications of metallic
glasses in biomedical sectors.

5.1.1. Antibacterial Application

Nosocomial infections are often escalated due to bacterial infections from medical
instruments or devices. Commonly known biomaterials have been found to be ineffec-
tive at preventing bacterial infections [58,336–338], whereas metallic-glass systems exhibit
excellent antibacterial properties. This unique characteristic is attributed to the compo-
sition of their multicomponent amorphous systems, their lower surface roughness, and
the presence of antibacterial species in the matrices [63,168,265]. Liu et al. studied the
antibacterial capabilities of Zr-Cu-Al-Ag systems, and the observed antibacterial responses
are shown in Figure 12 [168]. The Zr38Cu36Al18Ag8 system, which had a lower surface
roughness, was found to have the highest antibacterial activity in this study [168]. Hy-
drophobic surfaces are well known for their better antibacterial response, and metallic-glass
systems have been found to exhibit better wettability compared to crystalline materials
due to their disordered microstructure [339]. The presence of certain species, such as silver
(Ag) and copper (Cu), in a multicomponent system provides excellent resistance towards
bacterial attack [59,169,340]. For example, a Zr39Cu39Ag22 metallic glass was found to
be very efficient against S. aureus [58], whereas Zr61Al7.5Ni10Cu17.5Si4 was found to be
efficient against S. aureus, E. coli, A. baumannii, P. aeruginosa, and C. albicans bacteria [341].
Another study conducted by Chu et al. [63] compared the antibacterial activity of Zr-based
(Zr53Cu33Al9Ta5) and Cu-based (Cu48Zr42Ti4Al6) metallic-glass systems. The result showed
that the adhesions of E. coli and S. aureus bacteria were greatly hindered on metallic glasses



Coatings 2023, 13, 1689 25 of 44

than those on a bare Si wafer [63]. For E. coli, both metallic-glass systems showed a 100%
antibacterial activity, whereas the Zr-based metallic glass was more antibacterial towards
the S. aureus than the E. Coli bacteria [63].
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Figure 12. Antibacterial activity of Zr−Cu−Al−Ag metallic-glass systems at 9 h. (a) Contour plots
of optical density (OD) of all the metallic-glass systems. (b,c) OD vs. time curves representing the
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systems, respectively [168].

Commercially used surgical blades are usually made of stainless steel that contains
micron-scale roughness on the edge tips and surfaces. The roughness hinders the smooth
cut of the soft tissues, and the resulting wear and tear are often difficult to recover. Such
limitations of surgical blades and scissors can be resolved by using metallic-glass systems,
which exhibit exceptional surface characteristics [179]. A study conducted by Tsai et al. [179]
reported lower roughness values, a higher blade sharpness index, and a lower depth of
indentation when using a Zr-based metallic-glass system (Zr48Cu35.3Al8Ag8Si0.7). All
of these characteristics make metallic-glass systems an optimum solution for surgical
instruments without a compromise in their performance [179].

5.1.2. Bio-Implants

Durability and biosafety are two characteristics that are extremely desirable for im-
plantable materials. Elastic modulus mismatch between an implant and a bone, and a
lack of resistance towards localized corrosion have hindered the growth of conventional
crystalline materials (such as 316L stainless steel, Co-Cr alloys, and Ti-based alloys) as
premium choices for implantable materials. The lower corrosion resistance of crystalline
materials is often attributed to the presence of grain boundaries and phase precipitates,
which act as preferred regions for adverse electrochemical reactions [35,54,336,342,343].
Furthermore, the short interatomic distances of crystalline materials result in higher elas-
tic modulus values, which may lead to failure of the implants due to a stress shielding
effect [218]. Metallic-glass systems have the potential to mitigate this problem due to their
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homogenous microstructures, with longer interatomic distances and the absence of grain
boundaries [35].

Due to their excellent electrochemical and mechanical properties, metallic-glass sys-
tems are being used as vascular stents, and dental and orthopedic implants.
Zr- [212,273,273,284,344,345], Fe- [275,290,346], and Ti- based [347–349] metallic-glass sys-
tems have been widely explored in in vitro conditions for permanent implants. The biolog-
ical responses of pre-osteoblast cells (MC3T3-E1) [180,350–353], fibroblast cells (L929 and
NIH3T3) [302,344,346,354], human-osteoblast-like cells (SaOS2 and MG63) [348,355,356],
and endothelial cells [297] reveal the outstanding bio-compatible characteristics of different
multicomponent metallic-glass systems. Qiu et al. reported excellent mechanical (improved
strength and plasticity), electrochemical (a low passive current density and high pitting
potential), and biocompatible responses of a Zr-based system (Zr60Cu22.5Pd5Al7.5Nb5) in an
embryonic-mouse-fibroblast cell line (NIH3T3 cell) [285]. The better biocompatibility of the
metallic-glass system was attributed to the short/medium-range order and oxide-forming
capability of the amorphous structure [285]. Fe-based metallic-glass systems, studied by
Li et al. [290], exhibited better biocompatibility towards NIH3T3 cells and better electro-
chemical responses in artificial saliva compared to conventional biomaterials. Furthermore,
Zr-based metallic glasses have been considered for cardiovascular stents, and studied for
endothelial and muscle cells [297]. A cell-morphology and cell-metabolic-activity assess-
ment, as shown in Figure 13, revealed the faster growth of endothelial (HAECs) cells on
the Zr-based metallic glasses than on 316 L stainless steel, whereas the growth of smooth
muscle (HASCMs) cells was relatively slower [297]. That study reported higher endothelial
cell-adhesion capabilities on the Zr-based metallic glasses compared to their conventional
crystalline counterpart [297].

Research on biodegradable metallic glass is also gaining a lot of enthusiasm. The
biocompatibility, mechanical properties, and electrochemical responses of Mg- [357–361],
Ca- [362,363], Sr- [364], and Zn-based [365] degradable alloys have been studied extensively
by several research groups. However, researchers investigating biodegradable metallic-
glass systems used as fully functional bio-implants still face significant research challenges
in their obtaining optimum mechanical and electrochemical properties. For example,
bio-implants typically require a higher strength; however, degradation due to pitting
corrosion creates surface defects that lead to a gradual loss of strength [35]. In addition,
there is a possibility of tissue damage due to hydrogen evolution under a body-fluid
environment [35]. Therefore, a proper understanding of this degradation mechanism and
the relationship between its strength and degradation rate are required.

5.2. Electrochemical Devices

The lower efficiency and durability of catalysts are two primary obstacles that hinder
the growth of electrochemical devices to meet the rising energy demand. Owing to their
outstanding electrocatalytic activity and durability, metallic glasses can be considered
prominent candidates for energy-storage and -conversion devices, such as fuel and electrol-
ysis cells, and batteries. Nevertheless, some key components of electrochemical devices,
such as the membrane, catalyst, and separator, still require further development to resolve
issues associated with weight and cost [366]. For example, proton-exchange membrane
(PEM) fuel cells are suitable candidates for power-generation applications [367–369]. PEM
fuel cells consist of bipolar plates that are electrically conductive and essential to isolating
the fuel and oxidant gases. Bipolar plates are conventionally made of carbon graphite;
however, its brittleness and high production cost limit its use. To overcome this limitation,
Kim et al. [367] investigated Ni65Cr15P16B4-metallic-glass-coated plates fabricated using
HVOF spray coating and a subsequent hot-pressing technique. Enhanced corrosion resis-
tance and durability suggest the potential of a multicomponent metallic-glass system to
be used as bipolar plates in fuel cells [367]. Another prerequisite of a fuel cell is efficiency,
and ultra-high-purity hydrogen was found to be crucial to enhancing its efficiency [370].
Crystalline materials are currently being used for hydrogen-storage applications [371].
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But the embrittlement of crystalline materials limits its applications. A novel multicom-
ponent metallic glass could be an alternate choice, as the glassy matrix of metallic glass
possesses numerous sites for hydrogen absorption [371] and requires no modification to
its microstructure [372]. A study conducted by Jayalakshmi et al. [370] explored Ni-Nb
metallic-glass systems for hydrogen-related energy applications. The study determined the
higher absorption-capacity and embrittlement-resistance characteristics of metallic-glass
systems, which induce the better interaction of hydrogen with the metals [370]. Moreover,
high permeability and a lower dissolution of metallic glasses make them ideal choices for
hydrogen-permeable membranes and separators of fuel cells, respectively [370].
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5.3. Optoelectronic Devices

Metallic-glass systems are gaining substantial momentum in the micro- and nano-
imprinting of optoelectronic devices [373]. Smooth surface conditions and the negative
enthalpy of mixing of metallic-glass systems facilitate optical transmittance and reflectivity,
which are essential for different optoelectronic devices [304]. In the optoelectronic indus-
try, indium-tin-oxide (ITO) is a prominent choice due to its excellent transparency and
conductivity [374]. ITO films are also often used in solar cells and collectors, automobile
windows, camera lenses, and lamps [374,375]. However, the cost of using ITO films is
very high and the use of a metallic glass structure can be a prominent alternative [304].
Huang et al. studied a bi-layer ITO/ZrCu structure, which achieved good conductivity and
transparency [376]. The study discovered that the lower resistivity and negative enthalpy
between the atoms of the metallic-glass system can be beneficial by forming a continuous
layer for transparent conductor design [376]. Wang et al. [377] investigated a Ag40Mg18Al42
metallic glass system and found that the lower surface roughness, atomic defects, free
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volumes, and electric resistivity improved its optical reflectivity. It is important to note that
some of these features, such as surface morphology, atomic structure, and chemical compo-
sition, depend on fabrication routes and can be improved further by post-heat-treatment
processes [376,378].

Chalcogenide glasses have found numerous applications in optical devices as well.
These unique glasses are based on chalcogen elements such as S, Se, and Te, and are formed
by the addition of Ge, As, Sb, and Ga and doped by rare-earth elements. A review article
by Seddon [379] discusses their fabrication in bulk, fiber, and film form, their optical and
thermal properties, and their applications.

5.4. Aerospace Application

The use of disordered-state solids in aerospace applications is gaining interest, al-
though no concrete study has been conducted on any multi-component system until
recently. Their high strength and lightweight attributes extend the demand of metallic-glass
systems into lighter, smaller, and cost-effective aerospace applications [210]. Research
conducted by Axinte [210] indicated that the aircraft and spacecraft fasteners can be pro-
duced from metallic glass. Another study by Burgess et al. [380] indicated that the higher
strength and hardness of metallic-glass systems may be useful for coatings in aerospace
applications. Aluminum alloys (Al-6061 and Al-7075) are widely used in automotive and
aerospace industries due to their lighter weight and enhanced thermal conductivity [381].
Telford studied the possibility of using Al in a metallic-glass combination [211]. However,
its limited glass-forming ability (GFA), higher affinity of oxide formation, and the need
for an extreme experimental condition imposed a research challenge on the development
of Al-based metallic-glass systems [381]. Vitreloy-1 (Zr41.2Ti13.8Cu12.5Ni10.0Be22.5) [11] is
the only commercially available metallic glass that is being studied by the US Department
of Energy and NASA for aerospace applications [211]. The primary limitation of using
metallic-glass systems in industrial applications is their low plasticity, i.e., minimal plastic
deformation before catastrophic failure. However, the combination of higher strength and
better corrosion resistance may offset this limitation to foster industrial applications.

5.5. Memory Storage Devices

Non-volatile memory (NVM) is being used in computers, smartphones, flash mem-
ory devices, and other electronic devices. However, the requirement for a higher den-
sity and voltage hinders the writing capacity of NVM [382]. To find a suitable alterna-
tive, metal-oxide thin films are being used as storage devices or resistive random-access
memory [383–385]. Tulu et al. investigated and optimized a thin-film metallic-glass oxide
(TFMGO) for resistive switching and as a multicomponent oxide memory device [386].
A 15 nm thick oxide film of (ZrCuAlNi)Ox was fabricated on a Pt/Ti/Si substrate using
magnetron sputtering in the presence of oxygen. The RS I-V curve, as shown in Figure 14a
shows the current–voltage formation of a Pt/TFMGO/Pt device with a unipolar behav-
ior of switching. Moreover, its endurance features, as shown in Figure 14b, indicate no
reduction in resistance up to 1250 switching cycles [386]. The outstanding features are
further confirmed by its retention characteristics, as shown in Figure 14c, which exhibit
a good resistance ratio and the regeneration of resistive switching without the need of
thermal forming [386]. These excellent behaviors are attributed to the amorphosity of
the metallic-glass matrix, which has been confirmed through nano-scale characterization.
These findings create an opportunity to use thin-sized metallic-glass systems for storage
device applications.



Coatings 2023, 13, 1689 29 of 44Coatings 2023, 13, x FOR PEER REVIEW 29 of 45 
 

 

 
Figure 14. (a) Unipolar current (I)−voltage (V) curve of a Pt/TFMGO/Pt memory device. (b) Endur-
ance and (c) retention features measured at a reading voltage of 0.1 V for the Pt/TFMGO/Pt memory 
cell and for a resistance with respect to the switching cycle and time, respectively [386]. 

6. Conclusions 
This article presents a comprehensive review of the history, current state, and pro-

spect of various metallic-glass systems for various engineering applications. The for-
mation of metallic glasses has been discussed in light of the ‘confusion principle’ of Greer 
and the empirical rules of Inoue. As postulated by Inoue, three different parameters, i.e., 
the number of atomic species, atomic size ratio, and negative heat of mixing affect glass 
formation, and have been discussed in detail; however, metallic-glass formation often de-
viates from these empirical rules. Different conventional and novel fabrication routes, 
their prospects, and limitations have also been highlighted. The requirement of a very 
high critical cooling rate of conventional arc-melting or die casting hinders the commercial 
production of disordered structures. The issues of the critical cooling rate and limited 
glass-forming ability can be overcome through combinatorial development. However, the 
limitation of size restricts the potential industrial applications of metallic-glass systems. 
The ongoing research is focused on mitigating the size constraints of metallic-glass sys-
tems via different welding techniques. Nonetheless, metallic-glass systems have been 
termed the next-generation materials due to their outstanding mechanical, electrochemi-
cal, thermal, magnetic, and optical properties. These properties are attributed to the 

(a) (b) 

(c) 

Figure 14. (a) Unipolar current (I)—voltage (V) curve of a Pt/TFMGO/Pt memory device. (b) Endurance
and (c) retention features measured at a reading voltage of 0.1 V for the Pt/TFMGO/Pt memory cell
and for a resistance with respect to the switching cycle and time, respectively [386].

6. Conclusions

This article presents a comprehensive review of the history, current state, and prospect
of various metallic-glass systems for various engineering applications. The formation of
metallic glasses has been discussed in light of the ‘confusion principle’ of Greer and the em-
pirical rules of Inoue. As postulated by Inoue, three different parameters, i.e., the number
of atomic species, atomic size ratio, and negative heat of mixing affect glass formation, and
have been discussed in detail; however, metallic-glass formation often deviates from these
empirical rules. Different conventional and novel fabrication routes, their prospects, and
limitations have also been highlighted. The requirement of a very high critical cooling rate
of conventional arc-melting or die casting hinders the commercial production of disordered
structures. The issues of the critical cooling rate and limited glass-forming ability can be
overcome through combinatorial development. However, the limitation of size restricts
the potential industrial applications of metallic-glass systems. The ongoing research is
focused on mitigating the size constraints of metallic-glass systems via different welding
techniques. Nonetheless, metallic-glass systems have been termed the next-generation
materials due to their outstanding mechanical, electrochemical, thermal, magnetic, and
optical properties. These properties are attributed to the random atomic arrangements
of amorphous solids compared to conventional crystalline materials. Furthermore, the
absence of dislocations and grain boundaries in a metallic-glass matrix provides better
corrosion resistance in different aggressive mediums. Different features of metallic-glass
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systems, their limitations, and their applications are summarized in Figure 15. However,
limited plasticity and the possibility of catastrophic failure restrict metallic-glass high-
load-bearing structural applications. Therefore, there are ample research opportunities to
improve the mechanical properties of amorphous solids. For example, adding minor ele-
ments such as; Al and La on the matrix of the multicomponent systems has been observed
to enhance the ductility and plasticity of high-entropy alloys [387]. Recently, metallic glass
systems by adding La or Ce is fabricated successfully [388], however, the effects of such
addition on the physical properties requires further investigation. Similarly, composite
structures embedded with nano-particles are also well known for excellent mechanical
and microstructural properties [389]. Hence, such use of nano-particles in metallic-glass
structures can also be explored. Furthermore, metallic glasses in thin film forms have been
gaining popularity due to their unique mechanical and electrochemical properties and
make such structures suitable for surgical devices, implants, medical devices, supercapac-
itors, and battery applications [265,273]. However, the toxicity of certain glass-forming
elements poses challenges on their use in biological environments. A higher-saturation
magnetization and Currie temperature have also been reported for the metallic-glass sys-
tems, which enables them to be used as magnetic materials for different applications. In
addition, metallic-glass systems have been found to have wide super-cooled regions with
a high glass-transition temperature. These outstanding features make metallic-glass sys-
tems distinct alternatives to crystalline materials for different engineering applications,
including biological implants, surgical tools, electrochemical, optoelectronic, and memory
storage applications.
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