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Abstract: The plasma spray method is widely utilized for enhancing wear, surface fatigue, and
corrosion properties through coating. The mechanical and surface characteristics of the resulting
coating are contingent upon various spraying parameters, including arc current, working current,
spraying distance, and plasma gun traversing speed. This study investigates the impact of these
manufacturing parameters on the porosity, hardness, and bond strength of a coating produced from
an Al-Ni alloy applied to a Q235 steel substrate. An extensive experimental program was conducted
to analyze the influence of these parameters on the coating properties. Consequently, a preferred
combination of parameters, identified through a comprehensive evaluation method, yielded greater
performance benefits compared to the orthogonal experimental groups.

Keywords: plasma spray parameters; Al-Ni coatings; coating porosity; hardness; bond strength;
comprehensive evaluation method

1. Introduction

Various industries require structural component materials with an optimal strength-
to-weight ratio, as well as specific properties such as high temperature, fatigue, corrosion,
and wear resistance, depending on their intended function. For example, landing gear
dampers are designed to absorb and dissipate landing impact energy and reduce stresses
on the fuselage. Traditionally, many landing gear components have been plated with hard
chrome [1–3]. However, due to environmental regulations and concerns about the health
effects of hexavalent chromium, there is a need to find alternative coatings [4]. Plasma
spray coatings have emerged as a viable alternative, offering improved mechanical and
surface performance in comparison to conventional hard chrome coatings, particularly in
terms of wear and corrosion behavior [3,5,6]. In the aeronautical field, turbine blades are
critical components susceptible to fatigue and thermal creep failures [7–9]. Furthermore,
as a result of the increased oxidation at high temperatures [10], coatings are commonly
engineered to function as thermal barrier coatings (TBC) for components exposed to high-
temperature gases [11–13]. A frequently utilized TBC in the field of aeronautics is the
Al-Ni coating, which is typically acquired through plasma spraying technology. It is
employed for the purpose of safeguarding components exposed to high temperatures
and is primarily distinguished by its excellent adhesion to the substrate [14–16]. Al-Ni
coatings have been the subject of extensive research due to their good mechanical properties
as well as exceptional abilities to withstand corrosion and high-temperature oxidation,
as documented in numerous studies [17–20]. Bang et al. investigated the mechanical
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and surface characteristics of Al-Ni coatings with different aluminum contents on high-
strength low-alloy steel [17]. The research indicates that higher levels of aluminum content
led to the expansion of the FCC structure lattice in the coatings, thereby facilitating a
reduction in grain size and ultimately enhancing the hardness of the materials. Zhang et al.
investigated the correlation between porosity and micro-mechanical characteristics of Al-
Ni alloy coatings [18]. Their experimental findings revealed that the measured porosity,
Young’s modulus, and micro-hardness data of the coatings displayed significant variability
and conformed to the Weibull distribution. The statistical analysis indicated a decrease in
the micro-hardness and Young’s modulus of the coatings as the porosity of the coatings
increased. Ghanbari and Mahboubi utilized the sediment co-deposition method to deposit
Al-Ni coatings and observed an enhancement in the corrosion resistance in comparison to
pure Ni coatings [19]. This improvement was credited to the easy creation of aluminum
oxide on the active aluminum particles, allowing these inert particles to act as “physical
barriers” in corrosive environments. Al-Ni coatings also demonstrated enhanced resistance
to oxidation at high temperatures [20]. The study revealed that the coatings displayed
exceptional cyclic-oxidation resistance at 850 ◦C, even when containing low aluminum
content. Additionally, a thin and densely packed oxide film was observed to form on
the surfaces of the coatings. Despite the aforementioned studies, additional research is
necessary to investigate the mechanical and surface properties, including the porosity,
hardness, and bond strength of Al-Ni coatings.

Plasma spraying technology is widely employed in diverse industries, such as the
aerospace, steel, oil, marine, and military industries, for the purpose of surface strengthen-
ing and protection [21–23]. This technique entails the deposition of a coating material onto
a substrate by melting it in a heat source and subsequently spraying it onto the surface
using a high-velocity air jet [24,25]. The substantial kinetic energy of the particles results
in the formation of a compact and durable coating layer [12,26,27]. The swift spraying
speed enables the entire process to be completed within microseconds. The process of
plasma spray involves various parameters, such as argon flow, working current, arc current,
spraying distance, plasma gun traversing speed, powder feed rate, gas flow, gas pressure
for powder delivery, etc. [28–30]. In industrial applications, the plasma gas used is typically
composed of argon, which serves to stabilize the arc within the nozzle. In plasma guns, such
as F4, the typical flow rates of argon range between 40 and 50 standard liters per minute
(slpm) and may reach up to 80 slpm in certain facilities [31,32]. The spraying distance
from the plasma gun to the substrate varies between 16 and 28 mm, with the atmosphere
usually being air [33,34]. The plasma gun’s transverse velocity remains constant at a rate of
135–150 cm per minute [35]. The plasma spray process allows for extensive control over
the quality of coatings by carefully selecting appropriate spraying parameters. Therefore, it
is necessary to use a scientific approach to conduct experiments to identify the key factors
that affect plasma spray and determine the optimal process parameters.

In this study, we investigated the impact of altering plasma spray parameters on the
production of an Al-Ni metallic coating on a Q235 steel substrate. The correlation between
process parameters and coating properties was assessed through an orthogonal experiment.
Coating porosity, hardness, and bonding strength were employed as assessment criteria,
and a four-factor, four-level orthogonal experimental table was employed to identify the
most advantageous parameter combinations using a comprehensive evaluation approach.

2. Materials and Methods
2.1. Experimental Materials

The substrate material used for the plasma spray was Q235 steel, while the powder
consisted of Al-Ni composite powder. The surface morphology of the coatings was analyzed
via scanning electron microscopy using a ZEISS Sigma FE-SEM, Jena, Germany. The
microscopic morphology of the powder with different magnifications is depicted in Figure 1,
revealing a uniform spherical shape. The gray particles represent Al, while the white
particles represent Ni. The phase composition was determined via X-ray diffraction (XRD)
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using Bruker D8 equipment (Bruker, Hamburg, Germany) with CuKα (λ = 0.154059 nm)
radiation (2θ in the range from 0 to 70◦). The XRD spectrum of the powder, as shown
in Figure 2b, indicates the presence of primarily Al and Ni phases. The particle size
distribution of the powder is illustrated in Figure 2a, displaying two aggregation peaks.
Specifically, there is an aggregation peak between 0–10 µm, which corresponds to the outer
layer of larger particles with smaller-sized particles attached.
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2.2. Experimental Methods

Before the procedure, it was necessary to carry out pre-treatment on both the substrate
material and the powder. This involved chamfering the four edges of the original Q235
steel substrate by 0.5 mm to prevent the coating from detaching as a result of stress
concentration after spraying. The substrate then needed to be immersed in an ultrasonic
cleaner containing alcohol to ensure thorough cleaning and the elimination of any surface
dust, grease, and other impurities. After the cleaning process, the substrate was dried
using a drying machine. Subsequently, the substrate was placed in a sandblasting box for
sandblasting. The sandblasting pressure was adjusted to 0.8 MPa, and quartz sand with
a particle size ranging from 0.5 to 0.8 mm was utilized. The sandblasting procedure was
utilized to increase the texture of the substrate surface, thereby enhancing the adhesion of
particles during impact and activating the surface of the material being sandblasted. These
benefits ultimately strengthened the coating’s bonding strength by reversing the direction
of cooling stress brought on by particle impact.

The specimens were of two different shapes and sizes, as shown in Figure 3: 1. square
samples measuring 100 mm × 100 mm × 5 mm; 2. cylindrical samples with a diameter
of 25.4 mm and a height of 10 mm. The specimens were embedded using a cold inlay
technique, where epoxy resin and a curing agent were mixed in a 2:1 ratio and stirred
for 3 min. The mixture was then poured into molds with a diameter of 30 mm, which
already contained the experimental samples. After curing for over 6 h, the inlaid samples
were removed from the molds and subjected to grinding and polishing. The grinding
and polishing process aimed to achieve a smooth and flat surface without any noticeable
scratches, resulting in a mirror-like effect. To prevent the oxidation of the Q235 steel surface
after polishing, the samples were promptly immersed in alcohol for ultrasonic cleaning
and subsequently dried.
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The relevant equipment of plasma spraying is shown in Figure 4. Through a series
of experimental investigations conducted in the preceding period, it was determined that
the plasma of Al-Ni coatings was primarily influenced by four process parameters: arc
current (A), working current (A), spraying distance (mm), and plasma gun traversing
speed (cm/min). The arc current is responsible for the formation of a non-transfer arc,
which primarily governs the heating of the particles. The working current, on the other
hand, is the current that occurs after the transfer arc is generated and primarily determines
the heating of the substrate. The spraying distance refers to the linear distance from the
front surface of the nozzle to the substrate surface, which affects both the heating time of
the particles during their flight and the heating of the substrate. Lastly, the plasma gun
traversing speed denotes the velocity at which the robotic arm carrying the plasma gun
moves, and it primarily impacts the heating of the substrate. Consequently, this study
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primarily focuses on examining the influence of these four factors on the evaluation of
coating properties, specifically porosity, hardness, and bonding strength. The factors and
levels of the orthogonal experimental table are shown in Table 1.

Coatings 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 4. Relevant equipment of plasma spraying. 

Table 1. Factors and levels of the orthogonal experimental table. 

Factors 
Levels  

1 2 3 4 
arc current (A) 130 140 150 160 

working current (A) 75 80 85 90 
spraying distance (mm) 16 20 24 28 

plasma gun traversing speed (cm/min) 135 140 145 150 

The square specimens were subjected to a wire-cutting process using an Electrical 
Discharge Machining (EDM), TIDE MACHINERY CO., Huzhou, China machine to obtain 
tensile specimens with a diameter of 25.4 mm. The resulting longitudinal microstructures 
of the specimens were examined using a FEI NoVa nano SEM 450, FEI, Hillsboro, OR, 
USA (as shown in Figure 5a). The plasma jet coating was analyzed through metallographic 
observation using an IMM5000, TIDE MACHINERY CO., Huzhou, China inverted metal-
lographic microscope (as shown in Figure 5b). The coatings were further evaluated using 
an ADVANCE X-ray diffractometer, Bruker, Hamburg, Germany (as shown in Figure 5c) 
with a Cu target and Kα rays. The scanning parameters included a speed of 4°/min, a 
range of 10–90°, and a step size of 0.02°. This analysis aimed to determine the physical 
phase associated with each peak observed. The tensile bond strength of the thermal spray 
coating was assessed using a WDW-100 universal tensile tester, TIDE MACHINERY CO., 
Huzhou, China (as shown in Figure 5d). The primary reference standard for conducting 
the determination of tensile bond strength in thermal spray coatings was GB/T 8642-2002. 
This standard is applicable for measuring the cohesive strength of coatings or the interfa-
cial tensile strength between the coating and the substrate. Additionally, the variation in 
the coating across the cross-section depth was examined using a DigiVicker 1000A, TIDE 
MACHINERY CO., Huzhou, China single-point automatic digital microhardness tester 
(as shown in Figure 5e). Finally, the friction and wear properties of the specimens were 
investigated using an Rtec MFT-5000, TIDE MACHINERY CO., Huzhou, China friction 
and wear tester (as shown in Figure 5f). 

Figure 4. Relevant equipment of plasma spraying.

Table 1. Factors and levels of the orthogonal experimental table.

Factors
Levels

1 2 3 4

arc current (A) 130 140 150 160
working current (A) 75 80 85 90

spraying distance (mm) 16 20 24 28
plasma gun traversing speed (cm/min) 135 140 145 150

The square specimens were subjected to a wire-cutting process using an Electrical
Discharge Machining (EDM), TIDE MACHINERY Co., Huzhou, China machine to obtain
tensile specimens with a diameter of 25.4 mm. The resulting longitudinal microstructures
of the specimens were examined using a FEI NoVa nano SEM 450, FEI, Hillsboro, OR, USA
(as shown in Figure 5a). The plasma jet coating was analyzed through metallographic
observation using an IMM5000, TIDE MACHINERY Co., Huzhou, China inverted metallo-
graphic microscope (as shown in Figure 5b). The coatings were further evaluated using
an ADVANCE X-ray diffractometer, Bruker, Hamburg, Germany (as shown in Figure 5c)
with a Cu target and Kα rays. The scanning parameters included a speed of 4◦/min, a
range of 10–90◦, and a step size of 0.02◦. This analysis aimed to determine the physical
phase associated with each peak observed. The tensile bond strength of the thermal spray
coating was assessed using a WDW-100 universal tensile tester, TIDE MACHINERY Co.,
Huzhou, China (as shown in Figure 5d). The primary reference standard for conducting
the determination of tensile bond strength in thermal spray coatings was GB/T 8642-2002.
This standard is applicable for measuring the cohesive strength of coatings or the interfa-
cial tensile strength between the coating and the substrate. Additionally, the variation in
the coating across the cross-section depth was examined using a DigiVicker 1000A, TIDE
MACHINERY Co., Huzhou, China single-point automatic digital microhardness tester
(as shown in Figure 5e). Finally, the friction and wear properties of the specimens were
investigated using an Rtec MFT-5000, TIDE MACHINERY Co., Huzhou, China friction and
wear tester (as shown in Figure 5f).
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3. Results and Discussion

The experimental results were analyzed using range analysis to determine the porosity,
hardness, and bonding strength of the plasma spray Al-Ni coatings. The impact of four
factors on these three indicators was systematically examined to identify the optimal
process parameters for the coatings. A macroscopic morphology image of the surface of the
Al-Ni coating and a microscopic morphology image of a cross-section of the Al-Ni coating
are shown in Figures 6 and 7, respectively.
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3.1. Effect of Process Parameters on Coating Porosity

The coating porosity of 16 specimens and the results of the range analysis of the
coating porosity are presented in Tables 2 and 3, respectively. Additionally, the relationship
between each factor and porosity is visually depicted in Figure 8. The method for testing
coating porosity involved analyzing metallographic images captured by a metallographic
microscope and utilizing the gray-scale image method to quantify the porosity of the
coating. To minimize potential errors, five metallographic photos of each group of coatings
were taken at the same magnification for the purpose of calculating the average porosity.

Table 2. The coating porosity of 16 specimens.

Factors
Porosity (%)Arc

Current
Working
Current

Spraying
Distance

Plasma Gun
Traversing Speed

1 130 75 16 135 4.86
2 130 80 20 140 3.14
3 130 85 24 145 2.58
4 130 90 28 150 5.15
5 140 75 20 145 5.24
6 140 80 16 150 4.63
7 140 85 28 135 3.13
8 140 90 24 140 2.63
9 150 75 24 150 5.98
10 150 80 28 145 2.52
11 150 85 16 140 4.69
12 150 90 20 135 5.13
13 160 75 28 140 5.21
14 160 80 24 135 3.27
15 160 85 20 150 4.58
16 160 90 16 145 5.28
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Table 3. The range analysis of the coating porosity.

Mean Value (%)
Factors

Arc
Current

Working
Current

Spraying
Distance

Plasma Gun Traversing
Speed

K1 3.93 5.32 4.86 4.09
K2 3.91 3.39 4.52 3.91
K3 4.58 3.74 3.61 3.90
K4 4.59 4.55 4.00 5.08

R = Kmax − Kmin 0.68 1.93 1.25 1.18
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All the samples had a normal porosity range [36], and, although sample 9 had the
maximum porosity percentage (5.98%), it was still within the normal range from 40 to
<1% [37]. The K1, K2, K3, and K4 values in Table 3 represent the mean values of coating
porosity in four levels (Table 1) and correspond, respectively, to the four factors according
to Table 2. The porosity exhibited a slight decrease as the arc current was raised from 130 A
to 140 A. However, a more pronounced increase in porosity was observed when the arc
current was further increased from 140 A to 150 A. The working current was found to
have a substantial impact on porosity, as its increase led to a significant initial decrease in
porosity. Additionally, the spraying distance was also found to exert a more pronounced
influence on porosity.

According to Figure 8, it is evident that the porosity diminished as the plasma gun’s
traversing speed increased. When the gun’s traversing speed was low, there was a higher
number of particles impacting the substrate simultaneously, resulting in an augmented
coating thickness. Consequently, the increased thickness of a single pass contributed to the
formation of additional pores and cracks within the coating.

3.2. Effect of Process Parameters on Coating Hardness

Hardness is a significant characteristic of coatings, as it directly influences their friction
and wear performance during usage. Consequently, a higher hardness value is desirable.
The results of an orthogonal test involving 16 parameter groups (as shown in Table 4) were
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analyzed to determine the range values in coating hardness. Table 5 presents the findings
of this analysis, while Figure 9 illustrates the relationship between the factors and the trend
of coating hardness.

Table 4. The hardness of 16 specimens.

Factors
Hardness (HV)Arc

Current
Working
Current

Spraying
Distance

Plasma Gun
Traversing Speed

1 130 75 16 135 207.4
2 130 80 20 140 236.0
3 130 85 24 145 221.6
4 130 90 28 150 210.1
5 140 75 20 145 238.6
6 140 80 16 150 216.5
7 140 85 28 135 241.3
8 140 90 24 140 223.2
9 150 75 24 150 244.7
10 150 80 28 145 220.6
11 150 85 16 140 213.9
12 150 90 20 135 232.5
13 160 75 28 140 219.8
14 160 80 24 135 229.5
15 160 85 20 150 215.2
16 160 90 16 145 227.6

Table 5. The range analysis of the coating hardness.

Mean Value (HV)
Factors

Arc
Current

Working
Current

Spraying
Distance

Plasma Gun Traversing
Speed

K1 218.8 227.6 216.3 227.7
K2 229.9 225.7 230.6 223.2
K3 227.9 223.0 229.8 227.1
K4 223.0 223.3 222.9 221.6

R = Kmax − Kmin 11.1 4.6 14.2 6.1
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The hardness values of the coatings varied by a very small amount, fluctuating in
a normal range [38] between 207.4 HV and 244.7 HV. The K1, K2, K3, and K4 values in
Table 5 represent the mean values of coating hardness and correspond, respectively, to the
four factors according to Table 4. As indicated in Table 5, the measured values of coating
hardness varied between 207.4 HV and 244.7 HV, with minimal differences observed among
the groups. Figure 9 illustrates that an increase in the arc current from 130 A to 140 A
resulted in a significant enhancement in coating hardness. Therefore, an arc current of
140 A was identified as one of the parameters for achieving maximum hardness. The
hardness of the coatings reached its peak at 140 A due to the minimized coating porosity
at this current level. Furthermore, the hardness of the coatings was also maximized
when the arc current was increased from 130 A to 140 A. When gradually increasing the
working current, the hardness of the coating exhibited a tendency to decrease initially,
followed by a slight increase, with the maximum value observed at a working current of
75 A. Similarly, an increase in the spraying distance initially led to an increase in coating
hardness, followed by a decrease, with the maximum value observed at a distance of 20 mm.
The relationship between plasma gun traversing speed and coating hardness differed from
the previous three factors. Specifically, as the plasma gun traversing speed increased, the
hardness value initially decreased, then increased, and ultimately reached a maximum.
Subsequently, it decreased again. This implies that, within the range of traversing speeds
between 135 cm/min and 150 cm/min, it is necessary to select an appropriate plasma gun
traversing speed.

3.3. Effect of Process Parameters on Coating Bond Strength

The bonding strength of coatings is a crucial parameter for assessing their performance,
as it directly influences their resistance to detachment. Consequently, a higher bonding
strength value indicates a superior coating. The coating bonding strength, which was
measured by testing 16 sets of parameters, is shown in Table 6. Table 7 presents the
outcomes of the range analysis conducted on the coating bonding strength. Additionally,
Figure 10 illustrates the graphical representation of the correlation between each factor and
the bonding strength of the coating.

Table 6. The bonding strength of the 16 specimens.

Factors
Bonding

Strength (MPa)Arc
Current

Working
Current

Spraying
Distance

Plasma Gun
Traversing Speed

1 130 75 16 135 45.6
2 130 80 20 140 53.5
3 130 85 24 145 58.3
4 130 90 28 150 46.9
5 140 75 20 145 60.3
6 140 80 16 150 63.7
7 140 85 28 135 72.6
8 140 90 24 140 65.4
9 150 75 24 150 70.4
10 150 80 28 145 53.7
11 150 85 16 140 46.4
12 150 90 20 135 51.6
13 160 75 28 140 52.3
14 160 80 24 135 58.7
15 160 85 20 150 62.4
16 160 90 16 145 56.1
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Table 7. The range analysis of the bonding strength.

Mean Value (MPa)
Factors

Arc
Current

Working
Current

Spraying
Distance

Plasma Gun
Traversing Speed

K1 51.07 57.15 52.95 57.13
K2 65.50 57.40 56.95 54.40
K3 55.52 59.92 63.20 57.10
K4 57.38 55.00 56.38 60.85

R = Kmax − Kmin 14.43 4.92 10.25 6.45
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The bonding strength of the coatings varied by a very small amount, fluctuating in
a normal range [39] between 45.6 MPa and 72.6 MPa. The K1, K2, K3, and K4 values in
Table 7 represent the mean values of bonding strength and correspond, respectively, to
the four factors according to Table 6. As indicated in Table 7, the measured bond strength
values varied between 45.6 and 72.6 MPa, with notable discrepancies observed among the
different groups. Figure 10 illustrates that an increase in the arc current from 130 A to 140 A
resulted in a significant enhancement in the bond strength of the coating. However, further
increases in the arc current led to a notable decrease in the bond strength. Consequently,
it can be inferred that an arc current of 140 A is a crucial parameter for achieving the
maximum bond strength. The primary factor influencing the coating’s bond strength is
the interaction between the first layer of particles and the substrate surface, as well as the
overlap between the particles. Increasing the arc current enhanced the speed and heat of
the particles when they collided with the substrate, consequently raising the pressure of
contact and facilitating a more pronounced flattening of the particles. Consequently, the
coatings exhibited higher bond strength. Conversely, excessively high arc currents resulted
in particle over-melting, leading to insufficient flattening and spreading upon impact with
the substrate, ultimately diminishing the bond strength.

The influence of the working current on the bond strength was found to be less
significant compared to that of the arc current. The growth of bond strength was observed
to be gradual as the working current increased, reaching its maximum value at 85 A.
This suggests that, at this level, the particles achieved the most optimal strength with the
substrate surface. Similarly, the effect of the spraying distance on bond strength followed
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a similar pattern to that of the arc current. As the spraying distance increased, the bond
strength of the coating initially increased and then decreased, with the highest bond
strength observed at a spraying distance of 24 mm. This particular spraying distance
allowed the particles to attain an adequate heating temperature and speed upon impact
with the substrate, facilitating particle impact and spreading, thereby enhancing bond
strength. By contrast, the effect of plasma gun traversing speed on bond strength differed
from the other three factors. As traversing speed increased, the bond strength of the coating
initially decreased and then increased. The higher traversing speed enabled the gun to
complete a scanning path more quickly and return to the initial origin at a faster rate. This
reduced the temperature fluctuations of the substrate, minimized the occurrence of cracks
due to thermal stresses, and ultimately improved the bond strength of the coating.

3.4. Process Parameter Optimization and Coating Quality Verification

In this paper, the evaluation of coating quality was conducted using coating porosity,
hardness, and bond strength as evaluation indexes. It is generally accepted that lower
coating porosity, higher hardness, and higher bond strength indicate better coating quality.
However, when multiple evaluation indexes are considered simultaneously, the relative
influence of each factor on the evaluation indexes may vary. Therefore, determining the
optimal combination of process parameters that take into account each evaluation index is
a complex task. Two commonly used methods for achieving this are the comprehensive
balance analysis method and the weighted comprehensive evaluation method [40–42].
In this study, the weighted comprehensive evaluation method was employed to compre-
hensively evaluate coating evaluation indexes. Based on the comprehensive evaluation
results, the optimal combination of process parameters for coating preparation was de-
termined. The weights assigned to each evaluation index were determined based on
practical experience and analysis. Specifically, the weight for porosity was set to 0.3,
the weight for hardness was set to 0.2, and the weight for bonding strength was set to
0.5. The sum of the weights for the three evaluation indexes was 1. The weighted inte-
grated scoring results for each set of process parameters were calculated using the formula
0.3 × porosity + 0.2 × hardness + 0.5 × bond strength. The weighted integrated scoring
table is presented in Table 8.

Table 8. The range analysis of comprehensive scoring.

Comprehensive Scoring
Factors

Arc
Current

Working
Current

Spraying
Distance

Plasma Gun
Traversing Speed

K1 70.47 75.70 71.20 75.33
K2 79.90 74.85 75.95 73.02
K3 74.72 75.69 78.63 75.14
K4 74.67 73.53 73.98 76.28

R = Kmax − Kmin 9.43 2.16 7.43 3.26

The K1, K2, K3, and K4 values in Table 8 represent the mean values of comprehensive
scoring and correspond, respectively, to the four factors. Based on the findings presented
in Table 8, it is evident that the factors influencing the comprehensive score can be ranked
in the following order: arc current, spraying distance, plasma gun traversing speed, and
working current. According to the highest mean comprehensive scoring Kmax of the four
factors in Table 8, the optimal combination of process parameters can be determined from
Table 1. This combination consists of an arc current of 140 A, a working current of 75 A, a
spraying distance of 24 mm, and a plasma gun traversing speed of 150 cm/min.

The process parameters that yielded the best results were evaluated based on a com-
prehensive scoring system. The performance of these parameters was then tested and com-
pared to the results obtained from 16 previous sets of test parameters. The coating porosity,
hardness, and bond strength were measured and are presented in Figures 11–13, respectively.
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As depicted in Figure 11, the group with the lowest porosity among groups 1–16 was
group 10, with a porosity of 2.52%. The optimized group exhibited a porosity of 2.14%,
representing a decrease of approximately 15.1%. This reduction in porosity suggests that
optimizing the parameters improved the melting state of the particles and the flight process.
Consequently, the molten droplets were able to spread more effectively upon impact with
the matrix, resulting in reduced porosity and improved densification. Figure 12 reveals that
the highest hardness value in the orthogonal group was observed in group 9, measuring
244.7 HV. The optimized group exhibited a hardness value of 256.7 HV, representing a slight
increase of approximately 4.9% compared to group 9. Regarding bond strength, the highest
value in the orthogonal group was found in group 7, measuring 72.6 MPa. In the optimized
group, the bond strength increased to 75.8 MPa, representing an increase of approximately
4.4%. This increase in bond strength can be attributed to the improved spreading of molten
droplets on the substrate surface and the interloping of molten droplets. Therefore, the
enhancement of the melting state of the particles also contributed to the increase in bond
strength.

4. Conclusions

An experimental study was conducted to determine the most effective parameter
combination for the plasma spray coating process of an Al-Ni coating on a Q235 steel sub-
strate. In this context, a comprehensive evaluation method was proposed as an alternative
approach to assess the impact of different spraying parameters on the mechanical and
surface characteristics. As a result, the study yielded the following conclusions:

(1) In the chosen range of parameters for the experiment, the porosity of the coating was
influenced by several factors. Specifically, as the arc current increased, the porosity
initially decreased and then increased. Similarly, the working current, spraying
distance, and plasma gun traversing speed also had a similar effect on the coating
porosity as the arc current. The order of influence of these factors on the porosity is
as follows: working current had the greatest impact, followed by spraying distance,
plasma gun traversing speed, and arc current. In reference [18], various coatings
with varying levels of porosity were produced by adjusting the spraying parameters,
including the flow rate of hydrogen gas, spraying power, and powder feed rate. The



Coatings 2023, 13, 2063 15 of 17

parameters in this study varied from those in reference [18]; however, the porosities
all fall within the range of 1% to 8%, which is considered reasonable.

(2) The hardness of the coating was influenced by several factors. Firstly, an increase
in the arc current initially led to an increase in hardness, followed by a decrease.
Similarly, the spraying distance also affected the hardness of the arc current. Sec-
ondly, an increase in the working current resulted in a decrease in hardness initially,
followed by an increase. Lastly, an increase in plasma gun traversing speed led to a
decrease in hardness initially, followed by an increase. The order of influence of each
factor on the hardness of the coating is as follows: spraying distance had the greatest
impact, followed by arc current, plasma gun traversing speed, and working current.
Experimental results in reference [18] showed that the measured data of the hard-
ness of the coating exhibited high scattering and followed the Weibull distribution,
which was not observed here due to variations in microstructural characteristics and
chemical compositions. Within the assessed parameters, appropriately modifying the
spraying distance led to the generation of coatings with enhanced hardness, which
was consistent with the conclusions in reference [28].

(3) The bond strength of a coating was affected by various factors. The influence of these
factors can be summarized as follows: an increase in arc current initially led to an
increase in bond strength, followed by a decrease. Similarly, the working current and
spraying distance exhibited a similar pattern of influence on bond strength as the
arc current. On the other hand, an increase in plasma gun traversing speed initially
resulted in a decrease in bond strength, followed by an increase. In terms of the order
of influence, the arc current had the greatest impact on bond strength, followed by
the spraying distance, plasma gun traversing speed, and, finally, the working current.

(4) The weighted comprehensive evaluation method yielded the optimal parameter
combinations for the arc current, working current, spraying distance, and plasma
gun traversing speed as 140 A, 75 A, 24 mm, and 150 cm/min, respectively. Sub-
sequent testing using these preferred parameters and comparing the results with
those obtained from the orthogonal group demonstrated a reduction in coating poros-
ity by 15.1%, an increase in hardness by 4.9%, and an increase in bond strength
by 4.4%. These improvements indicated a certain enhancement in the performance
of the coating.

Based on extensive experimentation, this comprehensive evaluation method facilitated
the convenient and rational determination of an optimal parameter combination, resulting
in superior performance advantages when compared to orthogonal experimental groups.
Optimized plasma spray parameters can assist in the development of improved TBC
processes within the aeronautics industry.

It is important to acknowledge that the statistical significance has been relatively
limited. Therefore, it is inferred that the narrow range of parameters studied may have
hindered the identification of substantial variations in mechanical properties. Subsequent
research endeavors will encompass a wider range of plasma spray parameters for compre-
hensive evaluation. Additionally, other plasma spray parameters and a wider variety of
materials will also be investigated.
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