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Abstract: Structural fault diagnosis is an important subject for ensuring the normal use of struc-
tures. More test data will help to improve the accuracy and reliability of structural fault diagnosis.
Therefore, a structural fault detection algorithm based on static–dynamic mixed sensitivity analysis
is proposed. The vibration parameters used were the vibration modes of some of the nodes in the
structure measured by the vibration test system. The static response parameter used was the vertical
displacement of the structure under the gravity load measured by the static test system. In particular,
the gravity load and the structure were connected rigidly to form a new added-mass system. The
vibration mode of the additional-mass system was measured again to obtain more equations for
fault evaluation. Based on the static and dynamic measurement data, the failure coefficients of all
components in the structure were calculated through the mixed sensitivity of the static displacement
and vibration-mode shape. According to the calculated value of the failure coefficient, the failure state
of all components in the structure could be finally evaluated. The main innovation of the proposed
method was the use of the static load as a part of the new added-mass system to obtain more vibration
parameters for the defect diagnosis. The implementation process and effect of this method were
verified using a numerical truss structure and an experimental steel beam structure. Moreover, the
defect diagnosis results of the proposed hybrid method were compared with those of a pure static
algorithm and a pure dynamic algorithm to illustrate the advantages of the hybrid method. The
research results showed that this method has the advantages of simple implementation and high
diagnosis accuracy. Especially for symmetric structures, the proposed method can successfully avoid
the possible missed diagnoses of the pure static algorithm and pure dynamic method. The algorithm
provides a simple and feasible method for structural defect identification.

Keywords: fault diagnosis; static–dynamic test; hybrid sensitivity; symmetric structures; steel roof
truss structure

1. Introduction

A structure will inevitably have faults due to the influence of environmental corrosion,
material fatigue, disaster load, and so on. A fault in a structure will lead to a change in
the structure’s response parameters under a static or dynamic load [1–3]. In practice, the
static displacement of a structure can be measured through an optical system, and the
vibration modal data of a structure can be tested by a vibration test system. Therefore,
the fault condition of a structure can be evaluated according to a change in the static
or dynamic parameters. In recent decades, a lot of research has been carried out on
structural fault diagnosis. These fault diagnosis methods can generally be divided into static
methods and dynamic methods. Static methods use the change in the static displacement
or strain of a structure to evaluate the state of the structural faults. Using flexibility
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disassembly perturbation, Yang and Sun [4–6] proposed a fast analysis method for the static
displacement for structural damage detection. Using the static strain change, Yang et al. [7]
developed a model-free method for damage localization for a grid structure. Bakhtiari-
Nejad et al. [8] developed non-linear equations that relate static response variations to
fault location and extent. Abdo [9] established a relationship between the structural
fault characteristics and displacement curvature variations. Tian et al. [10] carried out
fault diagnosis on a wind turbine blade using the static strain responses of the fiber
Bragg grating. Using static testing data, Santos et al. [11] detected faults in stay cables
using statistical and machine-learning methods. Viola and Bocchini [12] developed a
fault diagnosis technique for truss structures based on static load tests. Using structural
optimization concepts, Terlaje et al. [13] proposed a parameter identification method to
accurately assess the stiffness in linear elastic models of civil structures. Boumechra [14]
used a bridge’s deflection under a moving load to determine the possible faults in the
bridge’s structure. Based on static displacement, Peng et al. [15] developed a method for
determining the damage location in a beam’s structure by using the redistribution of static
shear energy. Chrysanidis [16] studied the main factors that affect the cracking of reinforced
concrete columns and walls, such as load, tensile strain, etc. Based on the experimental
results, the ranges, sizes, and locations of cracks in these components were summarized.
The above research has shown the potential of static methods in diagnosing faults in
beam-type structures. Dynamic methods use changes in structural vibration parameters,
especially modal data, to evaluate the state of structural faults. Lu and Law [17] studied
the sensitivity of dynamic parameters and proposed a sensitivity-based algorithm to detect
faults in a structure. Feng [18] reported the applications of computer visions in structural
modal parameter identification, model updating, fault diagnosis, and cable force estimation.
Gentile et al. [19] proposed a dynamic-based technique for the continuous health monitoring
of the tallest historic tower in Mantua, Italy. Almeida et al. [20] developed a fault diagnosis
approach by considering both the time and frequency responses of structural dynamic
responses. Yang et al. [21,22] studied a dynamic model reduction and carried out fault
diagnosis using modal sensitivity based on a reduced model. Peng et al. [23] developed
a dynamic flexibility method for fault diagnosis in steel truss structures. Weng et al. [24]
reviewed dynamic sub-structuring methods for model correction and fault diagnosis in
large-scale structures. Meixedo et al. [25] developed an unsupervised automatic data-
driven methodology for detecting damage in railway bridges based on traffic-induced
dynamic responses. These studies have shown the advantages of dynamic methods in
damage diagnosis, without affecting the normal use of a structure.

Although significant progress has been made in fault diagnosis, there are still some
challenges that need to be further addressed. The disadvantage of pure static methods
is that some members in a structure may not be sensitive to vertical loading. Thus, it is
difficult to diagnose the defect condition of these members using a pure static method
since conventional static loading is carried out by gravity. For pure dynamic methods,
a similar limitation exists since the faults in some components of a structure may not
cause significant changes in the structural vibration parameters. Especially for symmetric
structures, pure dynamic methods may lead to the misjudgment of defects because the
damages in the symmetrical components may lead to similar changes in the vibration
parameters. In view of this, a fault diagnosis technique based on static and dynamic hybrid
measurements is more reliable in engineering applications since the missed diagnosis prob-
lem for symmetrical structures can be overcome by asymmetric gravity loading. For this
purpose, a combination of static displacement and mode-shape sensitivities are employed
in this work to calculate the damage parameters of all the components of a structure. The
fault state of each component in a structure can be subsequently evaluated according to
the calculation results. In addition, more test data will help to improve the accuracy and
reliability of structural fault diagnosis. As a by-product of static loading, the gravity load
and the structure can be connected rigidly to form a new added-mass system. The vibration
mode of the added-mass system can be measured again so that more equations can be
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obtained for the fault evaluation. Combined with all static and dynamic test data, the
proposed hybrid sensitivity method can obtain more accurate and reliable defect diagnosis
results. The greatest innovation of the proposed method its use of static loading as a new
added-mass system to obtain more vibration parameters for defect diagnosis. A steel roof
truss structure was used to illustrate the implementation process and feasibility of this
hybrid sensitivity method. It was shown that the proposed method can successfully avoid
the possible missed diagnoses of pure static algorithms and pure dynamic methods. The
results showed the potential application value of the proposed method in engineering
applications. The framework of this article is as follows: Section 2 provides a detailed
explanation of the calculation formula and operation process of the proposed hybrid sensi-
tivity method. In Section 3, the proposed method is validated using a numerical model of a
truss structure. In Section 4, an experimental beam is used to further verify the proposed
approach. Section 5 presents the main conclusions of this work.

2. The Hybrid Sensitivity Method for Structural Fault Diagnosis

As stated before, some component faults in a structure are only sensitive to gravity
loading and some component faults are only sensitive to structural vibration. Therefore,
using a hybrid algorithm based on static and dynamic measurements to diagnose faults in
a structure will be a more reliable method. To this end, a hybrid sensitivity method based
on static and dynamic test data was developed to evaluate the fault states in a structure.
The main formulas of this method were derived as follows.

2.1. Static Displacement Sensitivity

Static displacement is the most commonly used response parameter for structural
defect diagnosis. In practice, static displacement can be measured using devices such as
a dial gauge, a wire displacement gauge, or an optical system. The static displacement
sensitivity formulas were derived to establish the relationship between the structural defect
parameters and the static displacement changes. For a structure with and without faults,
the static displacement under the gravity load vector f can be obtained from the finite
element model (FEM) by:

Sudu = f , (1)

Sddd = f , (2)

Sd = Su − ∆S, and (3)

dd = du + ∆d, (4)

where Su is the stiffness matrix of the intact structure, du is the displacement vector under
the load f , Sd is the stiffness matrix of the structure with faults, dd is the corresponding
displacement vector, and ∆S and ∆d are the variations in the stiffness matrix and the
displacement due to the faults. From Equations (1)–(4), we can obtain

Sudu + Su∆d − ∆Sdu − ∆S∆d = f . (5)

Equation (5) can be approximately rewritten as

Su∆d = ∆Sdu. (6)

Using Equations (1) and (6), we can obtain

Su∆d = ∆SS−1
u f . (7)
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From Equation (7), the displacement variation ∆d can be expressed as

∆d = S−1
u ∆SS−1

u f . (8)

According to FEM theory, the variation ∆S in the stiffness matrix can be written as the
sum of the elementary stiffness matrix multiplied by a fault coefficient, that is:

∆S =
N

∑
i=1

εiSi, (εi ⊂ [0, 1]), (9)

where Si and εi are the i-th elementary stiffness matrix and the fault coefficient in the
structure and N is the number of elements in the structural FEM. Using Equation (9),
Equation (8) can be further expressed as

∆d =
N

∑
i=1

εiξi and (10)

ξi = S−1
u SiS−1

u f , (11)

where ξi is called as the displacement sensitivity vector of the i-th element.

2.2. Vibration Mode Sensitivity

Vibration modes are the most commonly used dynamic parameters for structural
defect diagnosis. In practice, vibration modes can be measured using accelerometers and
spectrum analysis software. The vibration mode sensitivity formulas were derived to
establish the relationship between the structural defect parameters and the vibration mode
changes. It is known that the free vibration modes of an intact structure can be obtained by
solving the following generalized eigenvalue equations:

(Su − λr M)ϕr = 0 and (12)

ϕT
r Mϕr = 1, (13)

where λr and ϕr are the r-th eigenvalue and mode shape of structural free vibration, respec-
tively, and M is the mass matrix of the structural FEM. Generally, M remains unchanged
for a structure before and after damage. By taking the partial derivative of Equation (12)
with respect to εi, we can obtain

(Su − λr M)
∂ϕr

∂εi
= (

∂λr

∂εi
M − Si)ϕr, (14)

where ∂λr
∂εi

and ∂ϕr
∂εi

are the first-order eigenvalue and mode shape sensitivities, respectively.
According to the FEM theory, Su and M are both symmetric matrices. From Equation (12),
we can also obtain

ϕT
r (Su − λr M) = 0. (15)

Using Equations (14) and (15), the eigenvalue sensitivity can be obtained by multiply-
ing Equation (14) by ϕT

r , as follows:

∂λr

∂εi
= ϕT

r Si ϕr. (16)

The mode shape sensitivity ∂ϕr
∂εi

can be calculated using the formula proposed by
Yang et al. [26], as follows:

∂ϕr

∂εi
= Θ−1Ωϕr, (17)
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Ω =
∂λr

∂εi
M − Si, and (18)

Θ = Su − λr M + λr ϕr ϕT
r M. (19)

If we assume that ϕd,r is the measured mode shape of a damaged structure, due to the
faults in the structure, the mode shape variation ∆ϕr can be obtained using

∆ϕr = ϕd,r − ϕr. (20)

On the other hand, ∆ϕr can be approximated using Taylor’s series expansion, as follows:

∆ϕr =
N

∑
i=1

εi
∂ϕr

∂εi
(21)

2.3. The Hybrid Sensitivity

As stated before, more test data will help to improve the accuracy and reliability
of structural fault diagnosis. As a by-product of static loading, the gravity load and the
structure can be connected rigidly to form a new added-mass system. We can measure
the vibration mode of the added-mass system again so that more modal equations can be
obtained for the fault evaluation, if necessary. Similar to Equation (21), the mode shape
sensitivity equation of the additional-mass system with the gravity load is

∆ϕa
r =

N

∑
i=1

εi
∂ϕa

r
∂εi

, (22)

where ∆ϕa
r denotes the change of the r-th mode shape of the additional-mass system

with the gravity load. The mode shape sensitivity ∂ϕa
r

∂εi
of the added-mass system can be

calculated by
∂ϕa

r
∂εi

= Θ−1
a Ωa ϕa

r , (23)

Ωa =
∂λa

r
∂εi

Ma − Si, (24)

Θa = Su − λa
r Ma + λa

r ϕa
r (ϕa

r )
T Ma, (25)

∂λa
r

∂εi
= (ϕa

r )
TSi ϕ

a
r , and (26)

Ma = M + D( f ), (27)

where D( f ) represents a diagonal matrix whose diagonal element is the mass corresponding
to the load vector f . Finally, Equations (10), (21), and (22) can be combined to construct the
hybrid sensitivity system, as follows:

∆p = Π · α, (28)

∆p =


∆d

∆ϕr
∆ϕa

r

, (29)
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Π =

 ξ1 · · · ξN
∂ϕr
∂ε1

· · · ∂ϕr
∂εN

∂ϕa
r

∂ε1
· · · ∂ϕa

r
∂εN

, and (30)

α = (ε1, · · · , εN)
T . (31)

From Equation (28), the fault coefficient εi( i = 1 ∼ N) can be calculated by

α = Π+∆p. (32)

We note that the linear approximation was adopted in the above sensitivity analysis.
Reference [27] discusses the influence of the linear approximation on fault diagnosis results.
It was found that the fault coefficients calculated from the linear approximation equations
are always larger than the true values. When the degree of damage is severe, this error
caused by the linear approximation cannot be ignored. The research results of Reference [27]
found that 0.176 is the critical value for considering this error. For damage parameters with
a calculated value greater than 0.176, another correction operation must be performed. The
formula of the correction operation for those calculated fault coefficient values greater than
0.176 is

εa
i =

εi
1 + εi

. (33)

Thus far, the fault condition of all components in a structure can be evaluated based
on the calculation results εi and εa

i . Figure 1 shows the flow chart of the entire technique to
explain the process more clearly.
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3. Numerical Example

As presented in Figure 2, the hybrid sensitivity method is illustrated by a steel roof
truss structure with 25 bar elements. Note that the number in the circle in Figure 2 denotes
the bar number in the FEM. We note that the connections of the bar elements were pin-
jointed connections at all joints. The diagonal elements making an X-shape were not
connected or truncated at the intersection points. Obviously, this structure could basically
be regarded as a geometrically symmetric structure. The main physical parameters of the
structure were as follows: the elastic modulus was 200 GPa, the density was 7800 kg/m3,
and the cross-sectional area of each bar was 2.109 × 10−4 m2.
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As stated before, the asymmetric gravity loading can overcome the possible missed
diagnosis problem in the diagnosis of symmetrical structural defects. For this purpose, the
gravity loading, as shown in Figure 3, applied a concentrated force of 20 kN at node 4 in the
structure. The number in the circle in Figure 3 denotes the bar number in the FEM. As a by-
product of static loading, the gravity load and the structure were assumed to be connected
rigidly to form a new added-mass system. In the static test, the vertical displacements
of nodes 2–11 were observed through the optical measurement system. In the dynamic
test, the horizontal accelerations of nodes 2–11 were observed through the vibration test
system. We assumed that the accelerometers were arranged in the horizontal direction of
nodes 2–11 to extract the vibration mode data in the horizontal direction. Figure 3 also
provides the layout points marked in yellow for the acceleration sensors in the dynamic
test. In the next numerical experiment, the fault in the structure was simulated by reducing
the elastic modulus of some bar elements. The measured static and dynamic data were
simulated from the FEMs of the undamaged and damaged structure.
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The first defect case assumed that the elastic modulus of bar element 3 was reduced
by 20%. Figures 4–6 present the calculation results of the fault coefficients using a pure
static algorithm, a pure dynamic algorithm, and the proposed hybrid method, respectively.
We note that the pure static algorithm computed the fault coefficients using Equation (10)
with only static data. The pure dynamic algorithm computed the fault coefficients using
Equation (21) with only dynamic data. From Figures 4–6, one can find that the fault
coefficients obtained by the hybrid method more clearly indicated that the fault was located
in bar element 3. Specifically, the fault extents obtained by the pure static method, the
pure dynamic method, and the hybrid method were 7.5%, 18.4%, and 19.6%, respectively.
Obviously, the fault extent (19.6%) calculated by the hybrid method was the closest to the
assumed value (20%). It showed that the diagnosis result of the proposed method was the
most reliable and accurate.
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Figure 4. Fault coefficients obtained using a pure static algorithm (bar 3 is damaged).
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Figure 5. Fault coefficients obtained using a pure dynamic algorithm (bar 3 is damaged).

The second defect case assumed that the elastic modulus of bar element 8 was reduced
by 15%. Figures 7–9 present the calculation results of the fault coefficients using a pure
static algorithm, a pure dynamic algorithm, and the proposed hybrid method, respectively.
As seen in Figure 8, the pure dynamic method missed the diagnosis because it did not
indicate that the defect was located in bar element 8. By comparing Figure 7 to Figure 9, one
can find that the fault coefficients obtained by the hybrid method more clearly indicated
that the fault was located in bar element 8. Specifically, the fault extents obtained by the
pure static method, the pure dynamic method, and the hybrid method were 13.2%, 0%, and
15.2%, respectively. Clearly, the fault extent (15.2%) calculated by the hybrid method was
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the closest to the assumed value (15%). This showed again that the diagnosis result of the
proposed method was the most reliable and accurate.
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Figure 6. Fault coefficients obtained using the proposed hybrid algorithm (bar 3 is damaged).
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Figure 7. Fault coefficients obtained using a pure static algorithm (bar 8 is damaged).
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Figure 8. Fault coefficients obtained using a pure dynamic algorithm (bar 8 is damaged).
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Figure 9. Fault coefficients obtained using the proposed hybrid algorithm (bar 8 is damaged).

The third defect case assumed that the elastic moduli of bar elements 12 and 20 were
reduced by 15% and 20%, respectively. Figures 10–12 present the calculation results for
this fault case using a pure static algorithm, a pure dynamic algorithm, and the proposed
hybrid method, respectively. From Figures 10–12, one can find that only the fault coefficients
obtained using the hybrid method could clearly indicate that the faults were located in
bar elements 12 and 20. Both the pure static method and the pure dynamic method could
only indicate that there was defect in bar 20 and the fault in bar 12 was missed. Specifically,
the fault extents of element 12 obtained by the pure static method, the pure dynamic
method, and the hybrid method were 0%, 0.2%, and 14.8%, respectively. The fault extents of
element 20 obtained by the pure static method, the pure dynamic method, and the hybrid
method were 16.4%, 17.3%, and 19%, respectively. Clearly, the fault extents (14.8% and
19%) obtained by the proposed hybrid method were the closest to the assumed values (15%
and 20%). These results showed that the proposed method did not miss diagnosis and had
high calculation accuracy.
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Figure 10. Fault coefficients obtained using a pure static algorithm (bars 12 and 20 are damaged).
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Figure 11. Fault coefficients obtained using a pure dynamic algorithm (bars 12 and 20 are damaged).
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4. Experimental Verification

As presented in Figure 13a, the proposed hybrid sensitivity method was further
verified using an experimental steel beam with fixed ends. Obviously, this beam structure
could basically be regarded as a geometrically symmetric structure. The main physical
parameters of the structure were as follows: the elastic modulus was 193 GPa, the density
was 7850 kg/m3, the length of the beam was 0.8 m, and the width and height of the cross-
section were 15 mm and 3 mm, respectively. The geometric parameters of the beam and
the arrangement of measurement points are shown in Figure 13b. In the static test, the
vertical displacements of nodes 3–5 were observed through the dial indicators. The reason
for selecting these static measurement points was that they were all located in the mid-span
area, and the corresponding vertical displacements under the given gravity load were
relatively large and easy to measure. In the dynamic test, the accelerometers were arranged
in the vertical direction of nodes 1, 2, 6, and 7 to extract the first-order vibration mode using
the vibration test system. The purpose of selecting these dynamic measurement points was
to monitor the entire structure as they were located in the areas not measured during the
static testing.

As stated before, the asymmetric gravity loading could overcome the possible missed
diagnosis problem in the defect diagnosis of the symmetrical structure. For this purpose,
the gravity loading, as shown in Figure 14, applied a concentrated force of 10 N at node
3 of the structure, i.e., the location that was a distance of 300 mm from the left end. As
a by-product of static loading, the gravity load and the structure were connected using
strong adhesive to form a new added-mass system. Both the original structure and the
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added-mass structure underwent dynamic testing to obtain the first-order vibration modal
data, as shown in Figure 15. Figure 16 shows the damaged beam with a notch. As shown in
Figure 16, the cut width (approximately 3 + 3 = 6 mm) accounted for 40% of the entire cross-
sectional width of 15 mm. For the fault diagnosis, the undamaged FEM with eight elements,
as shown in Figure 17 for the beam, was established using MATLAB software of 7.0 version
to represent the undamaged beam. Note that the number in the circle in Figure 17 denotes
the element number in the FEM. Obviously, the damage location was related to the fifth
element in this FEM with eight elements, as shown in Figure 17. Figures 18–20 present the
calculation results of the fault coefficients using a pure static algorithm, a pure dynamic
algorithm, and the proposed hybrid method, respectively. From Figures 18–20, one can find
that the fault coefficients obtained using the hybrid method more clearly indicated that the
fault was located in element 5. Specifically, the fault coefficients of element 5 obtained using
the pure static method, the pure dynamic method, and the hybrid method were 6.55%,
13.6%, and 24.1%, respectively.
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Figure 13. (a) An experimental steel beam with fixed ends. (b) Geometric parameters and measure-
ment locations (unit: mm).
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Figure 14. Static testing.
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Figure 15. (a) Dynamic testing for the original system. (b) Dynamic testing for the added-mass system.
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Figure 16. (a) The damaged beam with a notch. (b) Size of the notch (unit: mm).
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Figure 17. FEM with eight elements (unit: mm).
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Figure 18. Fault coefficients of the FEM with eight elements obtained using the pure static algorithm
(element 5 is damaged).
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Figure 19. Fault coefficients of the FEM with eight elements obtained using the pure dynamic
algorithm (element 5 is damaged).
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Figure 20. Fault coefficients of the FEM with eight elements obtained using the proposed hybrid
algorithm (element 5 is damaged).

Next, a more refined FEM with sixteen elements, as shown in Figure 21, was estab-
lished to discuss the impact of FEM mesh density on the damage diagnosis results. Note
that the number in the circle in Figure 21 denotes the element number in the refined FEM.
Obviously, the damage location was related to the tenth element in this refined FEM with
sixteen elements, as shown in Figure 22. Compared with the FEM of eight elements, the
number of unknown fault coefficients in the FEM with sixteen elements that needed to be
solved had doubled from 8 to 16. Based on this refined FEM, Figures 23–25 present the
calculation results of the fault coefficients using a pure static algorithm, a pure dynamic
algorithm, and the proposed hybrid method, respectively. One can find that the fault
coefficients obtained using the hybrid method more clearly indicated that the fault was
located in element 10. Specifically, the fault coefficients of element 10 obtained using the
pure static method, the pure dynamic method, and the hybrid method were 7.7%, 9.3%,
and 33.2%, respectively. Obviously, the calculated fault coefficient (33.2%) obtained using
the hybrid method was the closest to the true value (approximately 40%). It showed that
the diagnosis result of the proposed method was the most reliable and accurate. The above
results indicated that a more refined FEM would contribute to a more accurate damage
localization result. However, the meshing of the FEM was not necessarily as dense as
possible since an FEM with more elements clearly increased the number of unknown fault
coefficients. This meant that an FEM with more elements may have required more test data
to successfully compute the fault coefficients for the damage identification. It should also
be noted that the damage extents calculated by these two FEMs were different because the
lengths of the elements changed. As shown in Figure 22, the fault coefficient corresponding
to the same notch changed for the different element grids. The fault coefficients calculated
by an FEM with sparse grid partitioning are usually smaller than those obtained by an
FEM with dense grid partitioning.
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Figure 24. Fault coefficients of the FEM with sixteen elements obtained using the pure dynamic
algorithm (element 10 is damaged).
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Figure 25. Fault coefficients of the FEM with sixteen elements obtained using the proposed hybrid
algorithm (element 10 is damaged).

5. Conclusions

In this article, a hybrid sensitivity method was developed by combining the static
displacement and the dynamic mode shape to find a fault’s location and extent in a structure.
The greatest innovation of the proposed method was its use of static loading as a new
added-mass system to obtain more vibration parameters for defect diagnosis. The proposed
method can avoid the shortcoming of the possible missed diagnosis, which is seen when
using pure static and pure dynamic methods, and it obtained more reliable and accurate
fault diagnosis results. A steel roof truss structure with 25 bar elements was used as a
numerical example to illustrate the feasibility and advantages of the proposed method. An
experimental steel beam was further used to verify the proposed method. By comparing
the pure static algorithm, the pure dynamic algorithm, and the hybrid algorithm, the
following main conclusions could be obtained: (1) The symmetry of a structure may lead to
a missed diagnosis when using pure static or pure dynamic methods. The adverse effect
of structural symmetry on defect diagnosis can be overcome by using asymmetric gravity
loading. Among the three methods, the diagnosis result of the proposed hybrid method
was the most reliable and accurate. (2) For a single defect condition, the three methods may
be able to indicate the location of the defect, but the accuracy of the damage extent obtained
by the proposed method was the highest. (3) For multiple defect conditions, only the
proposed hybrid method could accurately indicate the locations of all the defects while the
pure static method and the pure dynamic method missed diagnoses. The proposed method
can provide a reference for structural defect diagnosis in engineering practice, especially
for symmetric structures. We note that this work mainly elaborated on the application of
this hybrid method in diagnosing structural on-site faults. The proposed method may also
be used for desk research during design, and further research in this area can be carried
out in the future.
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