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Abstract: In order to further enhance the reinforcing effectiveness of polypropylene (PP) fibers
on pavement concrete, waterborne epoxy (WBE) was introduced in this research and its effect on
the flexural properties and freeze–thaw resistance of PP-fiber-reinforced concrete was evaluated.
Compressive-strength tests, flexural-strength tests, three-point bending tests, freeze–thaw cycling
tests and a scanning electron microscopic observation were carried out to analyze mainly the influence
of WBE on the flexural properties and freeze–thaw resistance of PP-fiber-reinforced concrete. WBE
contents of 0, 5%, 10%, 15% and 20% by weight of the cement were employed. The experimental
results indicated that WBE was beneficial to improving the flexural properties of PP-fiber-reinforced
concrete. With increasing content of WBE, the flexural strength and the peak load showed significant
increases. Although a slight degradation in the abovementioned flexural parameters was observed
when the WBE content was above 15%, the deflection at the peak, the fracture energy and the
fracture toughness still showed an upward trend. In addition, the freeze–thaw resistance of PP-
fiber-reinforced concrete was improved remarkably with the increasing addition of WBE content,
leading to smaller mass loss and higher residual flexural strength. Moreover, microstructural images
revealed that with the addition of WBE, the PP fiber/concrete interfacial bonding was effectively
improved, and the concrete matrix tended to be denser as well, which provided higher resistance for
crack initiation and propagation. In consideration of maximally improving the flexural properties of
PP-fiber-reinforced pavement concrete, and while ensuring the compressive strength and meeting
the freeze–thaw requirements, it was recommended that the content of WBE in PP-fiber-reinforced
concrete should be 15%.

Keywords: concrete pavement; polypropylene fibers; waterborne epoxy; flexural properties; freeze–thaw
resistance; microstructure

1. Introduction

Currently, improving the sustainability of construction and pavement projects is still
one of the major challenges confronting the construction and infrastructure industry. Ce-
mentitious materials, however, as the most widely used construction materials, intrinsically
possesses the well-known disadvantages of high brittleness, low tensile strength and low
fracture toughness, which weakens its long-term durability and lowers the service life
of construction projects, thereby hindering the achievement of sustainability. Concrete
pavement is often utilized for structures such as highways, airport runways and bridge
decks, which are directly subjected to repeated vehicle loads and environmental actions.
Under these repeated loads, concrete pavement will suffer from the gradual deterioration
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of pavement performance, leading to the occurrence of various diseases, such as surface
cracks, joint cracking and even fracture diseases during the service period and accordingly
a reduced driving comfort and safety [1,2]. To guarantee the performance of concrete
pavement and greatly postpone the occurrence of the diseases mentioned above, one of
the most effective measures is to improve the flexural properties of the pavement concrete
used.

As is well known, the incorporation of various kinds of fibers is deemed as a practical
method to largely enhance the engineer properties of cementitious materials, such as
flexural strength, ductility, fracture toughness and resistance to fatigue [3,4]. Polypropylene
(PP) fibers, as one of the commonly used synthetic fibers, have been widely applied in
cementitious materials in order to improve the toughness and deformability of them
and restrain the appearance of cracks and the subsequent crack propagation, so as to
prolong the service life of engineering projects due to their low cost, high tensile strength,
excellent toughness and good corrosion resistance to chemicals [5–7]. Qin et al. indicated
that compared to plain concrete, the compressive strength of PP-fiber-reinforced concrete
showed a slight increase, and the fracture process was significantly lower [8]. Akça et al.
and Das et al. discovered that the flexural tensile strength and splitting tensile strength of
concrete were both enhanced through the introduction of PP fibers [9,10]. Investigations
by Li et al. revealed that with the addition of 0.9 kg/m3 of PP fibers, the flexural strength
of concrete notably improved; thus, the formation and propagation of microcracks were
reduced [11]. Wang et al. performed a series of laboratory tests and found that with the PP
fibers, the flexural strength of concrete was remarkably enhanced [12]. Islam and Gupta
found that except for the increase in tensile strength, the crack width and propagation of
plastic shrinkage cracks could also be reduced by incorporating PP fibers into concrete [13].
In addition, Del Savio et al. investigated the relationship between toughness and PP
macrofiber volume and found that the toughness of the concrete was enhanced with
increases in the PP macrofiber volume [14]. To obtain these excellent performances of
PP-fiber-reinforced concrete (PFRC), the key factor is that the PP fibers should be tightly
bonded to their surrounding concrete matrix so as to ensure a consistent load transfer from
the concrete matrix to PP fibers [15,16].

However, owing to the hydrophobicity and surface smoothness of PP fibers, the fiber–
matrix connection zones may be weaker due to the generation of voids in these zones, which
may lead to a reduction in PFRC flexural performance. With an increasing PP fiber content, this
reduction can be even greater because of the formation of fiber balling to trap a considerable
amount of air. Various methods have been adopted to enhance the interfacial bonding and
reduce the porosity between PP fibers and the cementitious matrix; among those methods, it
is reported that the addition of polymers can be an effective method [15–18]. Our previous
studies also found that the interfacial bonding between PP fibers and their surrounding matrix
was improved through the addition of appropriate content of waterborne epoxy (WBE) [19].
Generally, the incorporation of polymers in PFRC is to ensure the toughening effect of PP
fibers, so as to effectively reduce cracking in the PFRC and further improve the fracture
toughness. Therefore, from the viewpoint of enhancing the actual engineering application,
it is essential to study the impact of the polymers on the flexural properties (mainly the
fracture properties) of PFRC to obtain an in-depth understanding of polymer-modified PFRC.
Presently, the study’s focus is mainly on the flexural properties of concrete containing PP
fibers, and it is certainly demonstrated that the addition of PP fibers plays an active role in
restricting the cracking in concrete [20,21]. However, there is limited research information
concerning the impact of polymers on the fracture properties of PFRC, which may impose
restrictions on the efficient application of polymers in PFRC.

Moreover, because concrete pavement is directly exposed to the changeable climate
environment, the effect of temperature change on the performance of pavement concrete
should be attached importance to as well, especially when the concrete pavement is built
in an area characterized by extreme low temperatures. Previous studies conducted by
other researchers have revealed that the durability properties of cementitious materials
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(not limited to the freeze–thaw resistance) were improved through the incorporation of
PP fibers. Chen et al. investigated the impact of PP fibers on the frost resistance of airport
pavement concrete and discovered that the addition of 0.1% PP fiber could significantly
increase the frost resistance grade of the concrete [22]. Nam et al. found that after the
freeze–thaw cycles, the mass loss of concrete was greatly reduced by adding 1.5% PP fiber
by volume [23]. Richardson et al. pointed out that PP fiber was capable of improving the
frost resistance of concrete and reducing the water absorption [24]. Zhang and Li found
that the durability properties of concrete composites were remarkably improved with the
inclusion of PP fibers, and the freeze–thaw resistance increased when the PP fiber volume
percentage was below 0.08% [25]. In addition, studies were also conducted to investigate
the influence of additive materials, mainly the supplementary cementitious materials, on
the frost resistance of PFRC. Karahan and Atiş investigated the durability of PFRC and
found that with the addition of fly ash, the frost resistance of PFRC was significantly
improved [26]. Similar research was carried out by Abadel and Alghamdi to investigate fly
ash and ground blast furnace slag on the freeze–thaw resistance of geopolymer mortar and
found that the two additives had positive effects [27]. However, studies about the impact
of polymers on the freeze–thaw resistance of PFRC are limited.

The utilization of polymers in PFRC should be a promising practice to improve its
performance. Currently, although the influence of different types of polymers on the
mechanical strength of PFRC have been reported in the literature, there is little research
available on fracture properties and freeze–thaw resistance of PFRC-containing polymers,
whereas this knowledge is of significant importance in promoting the rational application
of polymers in PFRC. In this research, WBE was employed to modify PFRC as it is a kind of
environmentally friendly polymer and has also been proved to be beneficial to improving
the mechanical and durability properties of PFRC [19]. Furthermore, the current research
regarding the effect of WBE on the fracture properties and freeze–thaw resistance of PFRC
is limited. Therefore, the primary purpose of this paper is to investigate the flexural and
fracture properties of PFRC containing different levels of WBE and to study the freeze–thaw
resistance of this kind of concrete composite as well to obtain a comprehensive understand-
ing of material behavior of PFRC containing WBE. In addition, microstructural analysis
was conducted using a scanning electron microscopy (SEM) to explain the enhancement
mechanism on the introduction of WBE into the PFRC. The results of this study can provide
a reference for the efficient utilization of WBE in PFRC, while laying the foundation for the
coupled application of PP fibers and WBE in concrete pavement.

2. Materials and Methods
2.1. Materials

In this study, raw materials involved are listed as follows: (1) ordinary Portland cement
42.5, produced by Yangchun cement Co., Ltd. in Shandong Province, Zhucheng, China.
The initial setting time and final setting time are 160 min and 240 min, respectively. Its
chemical composition is displayed in Table 1; (2) PP filament fiber produced by Ningxiang
building materials Co., Ltd. in Hunan Province, Changsha, China. It has a length of
19 mm, with a diameter of about 50 µm. The density of the PP fiber used in this study is
0.91 g/cm3, whereas its tensile strength and elastic modulus are more than 486 MPa and
4.8 GPa, respectively. Figure 1 presents the image of the PP fiber used; (3) waterborne
epoxy produced by Dongyang coating Co., Ltd. in Liaoning Province, Shenyang, China. Its
primary properties and its matched curing agent are shown in Table 2 (provided by the
manufactures); (4) natural river sand with a fineness modulus of 2.7; (5) crushed limestone
with a continuous size from 0.5 to 2 cm.

Table 1. Chemical composition of cement (wt%).

Oxides CaO SiO2 Al2O3 Fe2O3 MgO SO3 Na2O K2O LOI

Cement 58.34 20.87 5.83 3.64 1.06 3.61 1.36 0.94 4.35
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Figure 1. Polypropylene fibers.

Table 2. Properties of WBE and its matched hardener.

Items Exterior Solid Content (%) pH Viscosity (mPa·s) Epoxy Equivalent (g/eq)

WBE Milky white 50 ± 3 6–8 1218 192.3
Hardener Light yellow 50 ± 1 9.5–10.5 6000 -

2.2. Specimen Preparation

To satisfy the requirements of flexural strength and the workability, the mix propor-
tions of PFRCs in this study were designed according to the JTG/T F30-2014 technical
guidelines [28]. A total of five types of concrete specimens were fabricated with a constant
water cement ratio of 0.4, as present in Table 3. The PP fibers content for all specimens
was 0.1% by volume fraction of concrete, and this content was chosen according to JTG/T
F30-2014 technical guidelines [28] with an aim to significantly improve the early-age crack-
ing resistance of the concrete. Additionally, on the basis of our previous studies, PFRCs
containing 0.1% PP fibers by volume of concrete exhibited superior performance in terms of
workability and mechanical strength [19]. On the other hand, studies by other researchers
also showed that the addition of 0.1% PP fibers by volume of concrete provided the best
mechanical and durability properties [24]. Furthermore, five levels of WBE of 0, 5%, 10%,
15% and 20% by weight of cement were added to PFRC to investigate the impact of WBE
on its fracture and freeze–thaw properties. It should be mentioned that the content of WBE
was in solid content; thus, the water contained in WBE should be considered in the total
water.

Table 3. Mixture proportions (unit: kg/m3).

Mixture
Type Cement

PP
Fibers Sand

Coarse
Aggregate Water

WEB

Total Solid Water

PFRC(control)

400 0.91 690 1170

160 - - -
PFRC-E5 140 40 20 20

PFRC-E10 120 80 40 40
PFRC-E15 100 120 60 60
PFRC-E20 80 160 80 80

According to the mixture proportions, concrete specimens were prepared in the follow-
ing steps. First, cement, PP fibers, and fine and coarse aggregates were blended together in
the concrete mixer for 3 min. Then, the mixing water, in which the water-reducing agent
was dissolved in advance, was added to the dry mixtures and stirred for another 3 min
to ensure that the concrete mixtures evenly distributed. After that, WBE was blended
with its matched curing agent and then this epoxy mixture was subsequently added to
the concrete mixtures and stirred for 3 min. After the mixing process, the fresh mixtures
were immediately poured into plastic molds of different sizes and vibrated on a vibrating



Coatings 2023, 13, 1035 5 of 19

table to obtain a desirable compactness. The concrete specimens were cured at ambient
temperature and demolded after 24 h, then cured in the curing room at a temperature
of 20 ± 2 ◦C and a relative humidity of 95% until a specific age. Figure 2 presents the
preparation procedures of the concrete specimens.
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Figure 2. Preparation procedures of concrete specimens.

2.3. Experimental Methods

In this experiment, the mechanical and fracture properties, together with freeze–
thaw resistance of PFRC containing different dosages of WBE were investigated. Cube
specimens with a side length of 100 mm and beam specimens with a dimension of
100 × 100 × 400 mm3 were employed.

2.3.1. Mechanical Properties

A compressive-strength test, which conformed to the JTG E30-2005 standard test
method [29], was conducted on cube specimens after 28 day through the use of a WDW-300
universal testing machine manufactured by Shanghai Hualong Test instrument Co., Ltd.,
Shanghai, China. Three cube specimens were tested, and the average compressive strength
was determined for each type of concrete mixture.

A flexural-strength test was performed on beam specimens in accordance with the JTG
E30-2005 standard test method [29], and for each type of concrete, three beam specimens
were tested and the average value was recorded.

2.3.2. Fracture Properties

A three-point bending test was conducted according to the JCI-S-002-2003 stan-
dard [30] to evaluate the fracture properties of PFRC containing different levels of WBE.
The centrally notched beam specimens, with a 30 mm deep sawed notch at the midspan,
were used to investigate the fracture properties of concrete at 28 day of curing. The effective
span and the ligament length of the specimen were 300 mm and 70 mm, respectively. A
WDW-300 universal testing machine was employed, and the load was applied at a displace-
ment rate of 0.02 mm/min. During the test, two linear variable differential transformers
(LVDTs) were installed at both sides of the beam to measure the deflections. Meanwhile, at
the notch, a clip gauge was attached to the bottom of the beam to measure the crack width.
Figure 3 provides the schematic diagram of the test set-up for notched-beam specimens.
The fracture energy (Gf) and the critical stress intensity factor (KIC) were determined from
the three-point bending tests. Three notched-beam specimens were tested, and the average
value was recorded for each type of concrete mixture.
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2.3.3. Freeze–Thaw Resistance

The freeze–thaw resistance test was conducted on PFRC containing different dosages
of WBE according to JTG E30-2005 standard test method [29]. Beam specimens were used,
and after 28 day of curing, they were subjected to freeze–thaw cycles. Each freeze–thaw
cycle consisted of a 2 h freeze at −18 ± 2 ◦C and 2 h thaw at 5 ± 2 ◦C. After 0, 25, 50, 75
and 100 cycles, the mass loss and flexural strength of the concrete specimens were tested.
For each type of concrete, three beam specimens were examined and the average value was
recorded.

2.3.4. SEM

Microstructural images of the concrete mixtures were obtained using SEM (VEGA
II XMU, TESCAN CO., LTD., Brno, Czech Republic). The specimens used for SEM test
were obtained from fractured specimens after 28 day. The specimens were immersed in
anhydrous ethanol, and before the observation, they were dried and sprayed with gold to
make them conductive.

3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Compressive Strength

The compressive strength of PFRC containing different contents of WBE is presented
in Figure 4. It is well known that the compressive strength of concrete is strongly linked
to the porosity, as well as the quantity of the cement hydrates [31]. According to the
results, it can be found that the compressive strength was gradually improved with the
increase in WBE content up to 10%. This phenomenon can be attributed to the filling
effect of epoxy particles to fill the voids and defects in PFRC and decrease the porosity
of PFRC, thus the compressive strength showed an upward trend compared with the
control PFRC. This result is in harmony with findings of other researchers indicating that
superior compactability of the polymer-modified concrete was achieved to obtain a denser
microstructure and, accordingly, a higher compressive strength compared to plain concrete,
as the “ball bearing” effect of polymer particles enhances the workability of polymer-
modified concrete [32,33]. In addition, WBE may act as a binder to bind the concrete
components tightly together due to its high viscosity after polymerization [34]. In general,
with a lower quantity of added WBE, the components in PFRC may be bonded together to
obtain a denser structure, which improves the compressive strength of PFRC. However, the
compressive strength showed a decreased tendency when the content of WBE exceeded
10%. This tendency was mainly because the formation of polymer film is a gradual process
and the higher incorporation of polymers may result in the formation of a thicker polymer
film to adhere to the surfaces of cement particles, which could depress the diffusion of ions
and, accordingly, retard the hydration of cement, thus leading to a reduced quantity of
hydration products, whereas the quantity of hydration products is closely related to the
compressive strength of concrete [15,35]. On the other hand, with the large addition of
WBE content, polymer phases may be regarded as defects in concrete because epoxy film
has a lower mechanical capacity compared to concrete [34,36]. Therefore, the compressive
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strength of PFRC-E15 and PFRC-E20 exhibited a gradual decrease, leading to a rather lower
mean compressive strength of PFRC-E20 by about 2.6% compared with the control PFRC,
whereas the compressive strength of PFRC-E15 was still slightly higher compared to the
control PFRC.
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3.1.2. Flexural Strength

The flexural strength of PFRC with different levels of WBE is displayed in Figure 5.
It can be observed from the results that with the increased addition of WBE, the flexural
strength of PFRC was improved obviously, and this result is in harmony with the investi-
gations of other researchers [36–38]. Compared to the control PFRC, the flexural strength
of PFRC with 5% WBE increased by about 16%. This improvement may probably be
attributed to the pore-filling effect of epoxy particles, which can effectively fill the internal
porosity in concrete and reduce the porosity between PP fibers and their surrounding
concrete matrix and thus improve the bond between PP fibers and concrete matrix and,
accordingly, enhance the reinforcing effect of PP fibers [37]. Well-bonded discrete fibers can
arrest microcracks in concrete; hence, the crack resistance of concrete can be enhanced, and
eventually the flexural strength can be improved. On the other hand, as the dosage of WBE
continued to increase, PFRC-E15 exhibited the highest flexural strength, with an increase
of approximately 40% compared to the control PFRC. This notable increase in flexural
strength could have resulted from the formation of a fully developed, coherent polymer
film, which could effectively dissipate part of the energy under the flexural loads [34,38].
Additionally, due to the active groups in epoxy chains, the epoxy film and hydrates may
connect with each other to form a strong organic–inorganic cross-linking structure to
withstand higher flexural loads, thereby postponing the appearance and propagation of
cracks [34,38]. However, a slight reduction in flexural strength was observed in PFRC-E20
compared to PFRC-E15. This may be due to the fact that the over-percolation of polymer
film may negatively affect the cement hydration and destroy the continuity of hydration
products, which is consistent with the findings of other researchers indicating that there is
a threshold polymer-to-cement ratio, beyond which the properties of concrete could not
be improved [36]. Moreover, with a higher content of WBE in concrete, epoxy phase is
likely to mutually reunite and form larger colloidal particles. These solidified particles are
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relatively soft compared to plain concrete and may be regarded as localized weak zones in
concrete to decrease the strength [34].
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3.1.3. Flexural Strength/Compressive Strength Ratio

To some extent, the ratio of flexural strength to compressive strength is a significant
index that represents the toughness of the concrete; the higher the strength ratio, the larger
the toughness of the concrete [36,39]. The flexural strength-to-compressive strength ratios
of PFRC containing different levels of WBE are shown in Table 4. According to Table 4,
the strength ratios of PFRCs increased with an increasing content of WBE until the WBE
content exceeded 15%, indicating that the toughness of PFRC-E15 was the highest. When
the WBE content was 20%, a subtle reduction was observed.

Table 4. Ratio of flexural strength to compressive strength.

Mixture Type PFRC PFRC-E5 PFRC-E10 PFRC-E15 PFRC-E20

Flexural strength/compressive strength 0.143 0.148 0.157 0.193 0.191

3.2. Fracture Properties
3.2.1. Load versus Deflection Response

The load versus deflection curves were obtained through the three-point bending test
for PFRC with different dosages of WBE, as shown in Figure 6. These curves were plotted
according to a method suggested by other researchers [40,41]. The deflection value was
assumed to increase in 0.002 mm increments, and the load data were calculated on the basis
of a linear interpolation of the measured data, which is to say that the load value was the
mean value at the same deflection value.

It has long been established that the flexural and fracture properties of PFRC are influ-
enced by three parameters, which are the properties of the matrix, the bonding properties of
the interfaces between the fibers and their surrounding matrix and the properties of fibers.
Among the three parameters, the properties of the matrix and the bonding properties of the
interfaces between the fibers and matrix play a significant part [42]. From Figure 6, it can be
observed that the load deflection curve of the control PFRC reached the peak load and then
dropped suddenly. This brittle behavior likely resulted from the poor adhesion between PP
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fibers and their surrounding matrix. On the other hand, as the addition of WBE increased
up to a 15% content, the peak loads, and deflections at the peak gradually increased. In
contrast, for a WBE content beyond 15%, no further increase in the peak load was observed.
Meanwhile, it is noteworthy that the slopes in the pre-peak region were increasingly smaller,
and the curves descended relatively gently in the post-peak region with the increase in WBE
content, which indicated that the deformability and ductility of PFRC with incorporated
WBE were higher compared to PFRC without WBE. In particular, it was evident that the
load-carrying capacity of PFRCs in the post-peak region showed an upward trend with the
increase in WBE. This is because with the addition of WBE, the total porosity of the PFRC
can be reduced, and the adhesion between PP fibers and their surrounding matrix can be
enhanced as well through the filling effect of WBE to fill in the voids in concrete. As a result,
the strength of matrix and the reinforcing effect of PP fibers can both be enhanced to obtain
a higher load-carrying capacity. In addition, the formation of highly viscous and ductile
epoxy films can reduce the defects and microcracks in concrete and improve the interfacial
bonding properties so as to improve the ability to withstand external loads. Therefore,
with the incorporation of WBE, the dense microstructure of the matrix and the improved
interfacial bonding between PP fibers and the matrix yield a higher matrix strength and
higher debonding resistance of PP fibers than for PFRC without WBE, eventually leading
to higher peak load and higher deflection at the peak. Furthermore, with high addition
of WBE, the fully developed epoxy film and hydrates may also interpenetrate to form a
strong reinforcement so as to withstand higher flexural loads, which is in agreement with
the findings of other researchers [34,38]. Ultimately, even if cracking occurs in the concrete
matrix during the test, both the PP fibers and the epoxy film across the crack surfaces
can still bear the loads and maintain a relatively higher postcracking strength. When the
incorporation of WBE reaches 20%, the reduction in the peak load may be because the
hydrates lose the continuity, but the deformability of PFRC-E20 was still the largest.
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3.2.2. Fracture Energy

Fracture energy represents the energy required to create a crack of unit area in the
material; thus, higher fracture energy indicates a higher capacity for cracking resistance.
Figure 7 presents the fracture energy of PFRC with different levels of WBE. The fracture
energy (Gf) was calculated according to the following equation [43,44]:

G f =
W0 + mgδ

A
(1)
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where W0, m, g, δ and A denote the area under the load versus deflection curve (N·m), the
mass of the concrete (kg), the gravity acceleration (N/kg), the deflection at the midspan of
the beam (m) and the ligament area (m2), respectively.

According to Equation (1), the fracture energy depends on the area under the load
versus deflection curve to a large extent. It can be found from Figure 7 that the inclusion
of WBE had a pronounced effect on the fracture energy of PFRC, and increasing the WBE
content significantly increased the fracture energy of PFRC until the WBE content reached
15%, beyond which the improvement in fracture energy was subtle. Compared to the
control PFRC, the improvements in fracture energy in PFRC-E5, PFRC-E10, PFRC-E15
and PFRC-E20 were 20.5%, 64.3%, 88.9% and 91.5%, respectively. The reason may be that
with the addition of WBE, the interfacial bonding between PP fibers and their surrounding
matrix can be strongly enhanced because the porosity of the interfaces can be reduced due
to the pore-filling effect of WBE; therefore, more energy will be consumed for cracks to
propagate and, accordingly, the propagation rate of the cracks will be reduced because
fibers may cross the fracture surfaces to carry and transfer the load to the matrix [44]. In
addition, the concrete matrix can be strengthened due to the addition of WBE to reduce
the porosity in concrete, which also increases the energy consumption for the formation of
cracks and crack propagation. Moreover, with a high dosage of WBE, the three-dimensional
interpenetrating structure of epoxy film and cement hydrates could act as strong macro-
reinforcements, and much more energy will be consumed for crack propagation because
this interpenetrating organic–inorganic structure can retard the extension of tiny cracks
and decrease the rigidity of concrete. Both the improved bonding between PP fibers
and the concrete matrix and the interpenetrating organic–inorganic structure benefit from
increasing the energy consumption for crack propagation because cracks in concrete can be
bridged with PP fibers and the interpenetrating structure; thus, the coalescence of cracks
will be postponed. As a result, PFRC-E20 exhibited the highest fracture energy among the
five concretes. As presented in Figure 8, a regression analysis was performed to visually
illustrate the relationship between fracture energy (Gf) and WBE content by weight of
cement (Wf), and the fitting degree was 0.913 in the proposed relation.

Coatings 2023, 13, x FOR PEER REVIEW 10 of 20 

3.2.2. Fracture Energy 

Fracture energy represents the energy required to create a crack of unit area in the 

material; thus, higher fracture energy indicates a higher capacity for cracking resistance. 

Figure 7 presents the fracture energy of PFRC with different levels of WBE. The fracture 

energy (Gf) was calculated according to the following equation [43,44]: 

𝐺𝑓 =
𝑊0 +𝑚𝑔𝛿

𝐴
(1) 

where W0, m, g, δ and A denote the area under the load versus deflection curve (N·m), 

the mass of the concrete (kg), the gravity acceleration (N/kg), the deflection at the mid-

span of the beam (m) and the ligament area (m2), respectively. 

Figure 7. Gf of PFRC with different contents of WBE. 

According to Equation (1), the fracture energy depends on the area under the load 

versus deflection curve to a large extent. It can be found from Figure 7 that the inclusion 

of WBE had a pronounced effect on the fracture energy of PFRC, and increasing the 

WBE content significantly increased the fracture energy of PFRC until the WBE content 

reached 15%, beyond which the improvement in fracture energy was subtle. Compared 

to the control PFRC, the improvements in fracture energy in PFRC-E5, PFRC-E10, 

PFRC-E15 and PFRC-E20 were 20.5%, 64.3%, 88.9% and 91.5%, respectively. The reason 

may be that with the addition of WBE, the interfacial bonding between PP fibers and 

their surrounding matrix can be strongly enhanced because the porosity of the interfaces 

can be reduced due to the pore-filling effect of WBE; therefore, more energy will be 

consumed for cracks to propagate and, accordingly, the propagation rate of the cracks 

will be reduced because fibers may cross the fracture surfaces to carry and transfer the 

load to the matrix [44]. In addition, the concrete matrix can be strengthened due to the 

addition of WBE to reduce the porosity in concrete, which also increases the energy 

consumption for the formation of cracks and crack propagation. Moreover, with a high 

dosage of WBE, the three-dimensional interpenetrating structure of epoxy film and ce-

ment hydrates could act as strong macro-reinforcements, and much more energy will be 

consumed for crack propagation because this interpenetrating organic–inorganic struc-

ture can retard the extension of tiny cracks and decrease the rigidity of concrete. Both the 

improved bonding between PP fibers and the concrete matrix and the interpenetrating 

organic–inorganic structure benefit from increasing the energy consumption for crack 

propagation because cracks in concrete can be bridged with PP fibers and the interpene-

trating structure; thus, the coalescence of cracks will be postponed. As a result, 

PFRC-E20 exhibited the highest fracture energy among the five concretes. As presented 

in Figure 8, a regression analysis was performed to visually illustrate the relationship 

Figure 7. Gf of PFRC with different contents of WBE.



Coatings 2023, 13, 1035 11 of 19

Coatings 2023, 13, x FOR PEER REVIEW 11 of 20 
 

 

between fracture energy (Gf) and WBE content by weight of cement (Wf), and the fitting 

degree was 0.913 in the proposed relation.  

 

Figure 8. Proposed relation between Gf and Wf. 

3.2.3. Fracture Toughness 

The fracture toughness is determined using the critical stress intensity factor (KIC) 

by using the following equation [45,46]:  

𝐾𝐼𝐶 =
𝑃𝐿

𝑏ℎ1.5
𝐹 (

𝑎

ℎ
) (2) 

𝐹 (
𝑎

ℎ
) = [2.9 (

𝑎

ℎ
)
0.5

− 4.6 (
𝑎

ℎ
)
1.5

+ 21.8 (
𝑎

ℎ
)
2.5

− 37.6 (
𝑎

ℎ
)
3.5

+ 38.7 (
𝑎

ℎ
)
4.5

], (3) 

where P, L, b, h and a stand for the peak load (N), the clear span of the specimen (mm), 

the width of the specimen (mm), the height of the specimen (mm) and the effective crack 

length (mm), respectively.  

As is well known, the critical stress intensity factor is a material property index at 

which the crack in the concrete begins to propagate; therefore, if the concrete material 

has a large critical stress intensity factor, it may present ductile fracture, and its ability to 

resist brittle fracture will be high [40,44]. The values of the critical stress intensity factors 

for PFRC with different dosages of WBE are presented in Figure 9, and it can be evi-

dently observed from the results that with an increasing WBE content, the critical stress 

intensity factor showed an upward tendency compared to PFRC. The critical stress in-

tensity factors of PFRC-E5, PFRC-E10, PFRC-E15 and PFRC-E20 were 22.3%, 43.5%, 62% 

and 71.7%, respectively, which were higher than that of the control PFRC, indicating that 

the ductility of PFRC was enhanced through the addition of WBE. This was because the 

inclusion of PP fibers probably creates some defects in the concrete, mainly in the inter-

faces of the PP fibers and their surrounding matrix, leading to a lower load-carrying ca-

pacity of the matrix, as well as a limited improvement in ductility via the PP fibers. 

However, with the addition of WBE, these defects may be improved through the physi-

cal filling of WBE; therefore, the reinforcing effect of the PP fibers was enhanced, and the 

ductility of PFRC was improved accordingly. In addition, the ductility of PFRC can be 

further improved when a high quantity of WBE is incorporated because the polymer 

film can be interlinked with hydrates to make the concrete much more ductile and to 

reduce the rigidity of the concrete [34,38]. Compared with the control PFRC, the higher 

capacity of PFRCs with WBE for resisting the initiation of cracks may be attributed to the 

dense microstructure of the concrete matrix, the effective toughening effect brought 

Figure 8. Proposed relation between Gf and Wf.

3.2.3. Fracture Toughness

The fracture toughness is determined using the critical stress intensity factor (KIC) by
using the following equation [45,46]:

KIC =
PL
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where P, L, b, h and a stand for the peak load (N), the clear span of the specimen (mm),
the width of the specimen (mm), the height of the specimen (mm) and the effective crack
length (mm), respectively.

As is well known, the critical stress intensity factor is a material property index at
which the crack in the concrete begins to propagate; therefore, if the concrete material has a
large critical stress intensity factor, it may present ductile fracture, and its ability to resist
brittle fracture will be high [40,44]. The values of the critical stress intensity factors for
PFRC with different dosages of WBE are presented in Figure 9, and it can be evidently
observed from the results that with an increasing WBE content, the critical stress intensity
factor showed an upward tendency compared to PFRC. The critical stress intensity factors
of PFRC-E5, PFRC-E10, PFRC-E15 and PFRC-E20 were 22.3%, 43.5%, 62% and 71.7%,
respectively, which were higher than that of the control PFRC, indicating that the ductility
of PFRC was enhanced through the addition of WBE. This was because the inclusion of PP
fibers probably creates some defects in the concrete, mainly in the interfaces of the PP fibers
and their surrounding matrix, leading to a lower load-carrying capacity of the matrix, as
well as a limited improvement in ductility via the PP fibers. However, with the addition of
WBE, these defects may be improved through the physical filling of WBE; therefore, the
reinforcing effect of the PP fibers was enhanced, and the ductility of PFRC was improved
accordingly. In addition, the ductility of PFRC can be further improved when a high
quantity of WBE is incorporated because the polymer film can be interlinked with hydrates
to make the concrete much more ductile and to reduce the rigidity of the concrete [34,38].
Compared with the control PFRC, the higher capacity of PFRCs with WBE for resisting the
initiation of cracks may be attributed to the dense microstructure of the concrete matrix,
the effective toughening effect brought about by PP fibers and the interpenetrating organic–
inorganic structure, all of which had the beneficial effect of inhibiting the appearance of
cracks. In the present study, the relationship between the critical stress intensity factor and
the WBE content was obtained. The relationship proposed in Figure 10 had a fitting degree
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of 0.976, showing that there was a strong correlation between the critical stress intensity
factor (KIC) and WBE content by weight of cement (Wf).
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3.3. Freeze–Thaw Resistance

In order to promote the application of PFRC with WBE in concrete pavement, the
freeze–thaw resistance of PFRC with different dosages of WBE was evaluated in terms of
mass loss rate and residual flexural strength.

3.3.1. Mass Loss Rate

Figure 11 exhibits the mass loss rate of PFRC with different contents of WBE subjected
to 0, 25, 50, 75 and 100 freeze–thaw cycles. As shown in Figure 11, the mass loss rate of all
the concrete mixtures exhibited an increase with the increase in freeze–thaw cycles. This
is because the repeated freezing and thawing causes the internal water in the concrete to
continuously freeze and melt. During this process, static pressure and penetration pressure
are created in the surrounding concrete when the volume of water expands due to freezing.
As a consequence, cracks may be induced when these pressures finally exceed the tensile
strength of the concrete. With increasing freezing and thawing cycles, this damage will
be more severe, and the concrete stripping off will arise [45]. Therefore, the freeze–thaw
resistance of concrete could be improved by reducing the ingress of water.
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It can be found that among the five PFRCs, the control PFRC had the largest mass
loss rate of approximately 1.2% after 100 cycles. The reason why the control PFRC had the
largest mass loss rate may lie in the fact that, with the addition of PP fibers, the defects
in PFRC might increase because the adhesion between PP fibers and their surrounding
concrete matrix may be weak, leading to a relatively higher porosity in the PP fiber/matrix
interfaces. Additionally, the inclusion of PP fibers may negatively affect the workability of
concrete and result in a reduction in compactness. Therefore, stripping off of the control
PFRC will be larger under the repeated freeze–thaw cycles. After the addition of WBE, the
mass loss rate showed a decreased tendency. The mass loss rates of PFRC-E5, PFRC-E10,
PFRC-E15 and PFRC-E20 after 100 cycles were 15.3%, 22.6%, 27.4% and 29.8% lower than
that of the control PFRC, respectively. This phenomenon may be attributed to the fact
that epoxy particles are capable of filling the voids and blocking the capillaries in PFRC to
lower the porosity of PFRC and make PFRC denser; thus, water ingress can be reduced to
improve the freeze–thaw resistance [26]. In addition, as the adhesion between PP fibers
and their surrounding concrete matrix is improved, the PP fibers can assist in reducing the
freeze–thaw damage because a large amount of discrete fibers may intertwine together to
maintain the integrity of the concrete and effectively restrain cracking, bridging the cracks
so as to reduce the peeling off of the concrete. Furthermore, due to the low modulus of the
PP fibers compared to the surrounding concrete, PP fibers may yield before concrete under
the hydrostatic pressure, thereby relieving the pressure and improving the freeze–thaw
resistance [26]. Furthermore, the workability of PFRC can be improved through the “ball-
bearing” effect of WBE to increase the compactness of PFRC, which also contributes to its
freeze–thaw resistance [33,46]. On the other side, the impermeability and integrity of PFRC
can be strengthened through the formation of the continuously interpenetrating structure
of epoxy film and hydrates; therefore, the damage to freeze–thaw cycles can be reduced as
well.

3.3.2. Residual Flexural Strength

The residual flexural strength of PFRC with different contents of WBE after 0, 25, 50,
75 and 100 freeze–thaw cycles is exhibited in Figure 12, and the residual flexural strength is
determined as the ratio of flexural strength subjected to the specific freeze–thaw cycles to
the flexural strength without freeze–thaw cycles.

As shown in Figure 12, with the increasing freeze–thaw cycles, the residual flexural
strength of all the PFRCs exhibited a gradual decline. This is because that with the increase
in freeze–thaw cycles, the damage in PFRC mixtures will be much more severe since
more cracks will be formed, the width of cracks will be bigger and the stripping off of
the concrete will be larger, leading to a loosely distributed microstructure and a smaller
load bearing area to withstand lower flexural loads. For the control PFRC, the flexural
strength was reduced by about 37.8% after 100 cycles, whereas for PFRCs with 5%, 10%,
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15% and 20% WBE, the reductions in flexural strength were 32.5%, 29.2%, 26.1% and 24.9%,
respectively. It can be obviously observed that the control PFRC had the lowest residual
flexural strength after 100 freeze–thaw cycles, and this phenomenon is probably due to
the relatively higher porosity in the PP fiber/matrix interfaces. Furthermore, under the
freeze–thaw actions, damages may initiate from these interfaces. Moreover, the repeated
freeze–thaw cycles may further impair the bonding in these interfaces, leading to rather
higher porosity in these interfaces and even the debonding of PP fibers; therefore, the
flexural strength of the control PFRC showed a notable decline. On the other hand, the
incorporation of WBE can fill the pores in PFRC to make it denser, so as to improve the
adhesion between PP fibers and matrix, inhibiting the ingress of water as well, thereby
improving the freeze–thaw resistance of PFRC and increasing the residual flexural strength
compared to the control PFRC. Furthermore, the interpenetrating structure of epoxy film
and hydrates can significantly improve the flexural strength of PFRC and hold the integrity
of PFRC under the action of freeze–thaw cycles, because the epoxy film can hinder the
penetration of water.
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3.4. SEM Analysis

According to the results of above experiments, it could be concluded that the addition
of WBE improved the mechanical properties and freeze–thaw resistance of PFRC and
the improvement was more significant with the increase in WBE content. However, the
incorporation of 20% WBE decreased the compressive strength and the flexural property
of PFRC. Therefore, from the viewpoint of engineering application, PFRC with 15% WBE
was suggested as the optimum content, which synthetically considered the requirements
of strength, toughness and durability. Figures 13 and 14 present the SEM images of the
control PFRC and PFRC-E15 to reveal the reinforcing mechanism of the WBE in PFRC.

It can be seen from Figure 13a that PP fibers were scattered in the fractured surface
of the control PFRC. In addition, there were some holes where PP fibers were pulled out
under the external loads. Figure 13b,c show the intact surface of a PP fiber that remained
smooth after fracture and the loose bonding between the PP fiber and the matrix. The
three images indicated that the adhesion between PP fibers and the surrounding matrix
was relatively weak, and some fibers were easily pulled out from the matrix under the
loads; therefore, the bridging effect provided by PP fibers was not effective. This was
consistent with our previous study in which the interfacial bonding between PP fibers
and their surrounding matrix was relatively weak [19]. Meanwhile, Figure 13d presents
the microstructural image of a concrete matrix in the control PFRC. It can be seen from
Figure 13d that the cement hydrates, such as calcium silicate hydrate, calcium hydroxide
and ettringite, were distributed in the concrete, while the structure was not very dense and
there were some pores and cracks in the concrete. Therefore, the formation of the cracks
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and crack propagation may easily occur in the control PFRC due to the poor adhesion
between PP fibers/concrete matrix and the less-dense microstructure of the matrix.

Figure 14 displays the microstructural images of PFRC-E15. In Figure 14a,b, it can
be observed that the PP fibers were distorted, and some scratch marks were found on
their surfaces. This degradation of PP fibers, which could have resulted from the friction
during the loading process, confirmed the improved bonding between PP fibers and their
surrounding matrix. In addition, some materials, probably hydrates and epoxy films still
attached to the surfaces of PP fibers after fracture, which might be attributed to the cement–
epoxy reaction to form the interpenetrating organic–inorganic structure [34], can also be
observed in Figure 14a,c. The existence of the attachments also indicated the improved
bonding between PP fibers and their surrounding matrix. This strong bonding could be
attributed to the physical effect of WBE, filling the holes and cracks in concrete, and the
chemical effect of WBE, absorbing calcium ions to form strong cross-linking structures [34].
With higher interfacial bonding, better flexural properties for PFRC can be achieved. The
reason may be that when the fibers are tightly bonded with the surrounding concrete matrix,
fibers can consume partial energy owing to the increased pull-out resistance; therefore, more
energy will be required for the formation of cracks and the subsequent crack propagation.
Moreover, Figure 14d presents the microstructural image of the matrix, from which it can
be seen that the microstructure was dense, and the epoxy film wrapped on the surfaces
of hydrates and bonded tightly with the hydrates. Therefore, additional energy will be
needed for crack initiation and propagation in this matrix, because epoxy film has the
larger deformability in contrast to concrete. This phenomenon also implied that with
the combination of concrete and WBE as the matrix, PFRC had the superior performance
compared to the only concrete as the matrix.
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4. Cost Analysis

Compared to ordinary concrete, the material cost of PFRCs has increased due to the
existence of admixtures such as PP fibers and WBE. Therefore, the material cost per cubic
meter of PFRC can be determined by:

C = C0 + Cpp × Ipp + CWBE × IWBE, (4)

where C and C0 stand for the cost of PFRCs and the ordinary concrete per cubic meter,
respectively; Cpp and CWBE stand for the cost of PP fibers and WBE per unit kg, respectively;
and Ipp and IWBE stand for the content of PP fibers and WBE in PFRCs (kg), respectively.

According to the market survey, the price of PP fibers and WBE is 8.2 CNY/kg and
48 CNY/kg, respectively. Thus, compared to ordinary concrete, the material-cost increases
per cubic meter for PFRC, PFRC-E5, PFRC-E10, PFRC-E15 and PFRC-E20 are CNY 7, CNY
1927, CNY 3847, CNY 5767 and CNY 7687, respectively. Considering that the thickness
of the concrete slab is often around 25 cm, the material-cost increases per square meter
for those five concretes are approximately CNY 1.8, CNY 482, CNY 962, CNY 1442 and
CNY 1922, respectively. Although the material cost increases, it cannot reflect the total cost
throughout the pavement life because the proportion of the construction, the management
and the maintenance costs account for the larger part of the total cost. In addition, test
results have indicated that the mechanical and durability properties were significantly
enhanced by incorporating WBE; therefore, it can be reasonably expected that the service
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life of PFRCs can be extended, and the total cost can be lowered, which still needs to be
carefully evaluated in a future study.

5. Conclusions and Future Work

According to the results obtained in this study, the following conclusions can be
drawn:

1. The compressive strength of PFRC exhibited a steady increase with the content of
WBE, reaching up to 10%, and then decreased gradually. The addition of 20% WBE
even resulted in an inferior compressive strength compared to the control PFRC.

2. With an increasing content of WBE, the flexural strength of PFRC showed significant
improvement until the WBE was beyond 15%, at which point a slight reduction in
flexural strength was observed.

3. The dosage of WBE had a pronounced effect on the load versus deflection responses
of PFRC. The deformability of PFRC was remarkably enhanced as the content of WBE
increased, and the largest deformation was achieved in PFRC-E20, whereas the load-
carrying capacity of PFRC-E20 decreased. Moreover, as the content of WBE increased,
the fracture energy and fracture toughness of PFRC were increasingly improved.

4. The freeze–thaw resistance of PFRCs was notably enhanced through the addition
of WBE. With the increasing content of WBE, the mass loss rate decreased, and the
residual flexural strength showed a significant increase compared to the control PFRC.
When the WBE content exceeded 15%, the improvement in the freeze–thaw resistance
slowed down.

5. In practical pavement engineering, it is necessary to maximize the flexural properties
of the concrete and ensure the stiffness and the durability of the concrete. Meanwhile,
the cost effectiveness should be considered. Therefore, in this research, the WBE
content of 15% was recommended.

6. The distorted PP fibers after fracture and the scratch marks on the surfaces of the PP
fibers indicated that the bonding between PP fibers and their surrounding concrete
matrix was effectively strengthened, and PP fibers effectively consumed part of the
energy during the pull-out process. The dense microstructure and the attachments
on the PP fiber surfaces also represented a stronger matrix to resist the initiation and
propagation of cracks.

The present study mainly investigated the fracture properties and the freeze–thaw
resistance of PFRCs. However, the tests were limited to one type of micro-PP fibers, while
the combined use of different sizes of PP fibers may have better impact on the characteristics
of concrete. In addition, the curing method can affect the polymerization process of polymer-
modified concrete as well. Therefore, more experiments should be performed to obtain
an in-depth understanding of the characteristics of PFRCs. In this regard, the influence of
the combined use of micro-PP fibers and macro-PP fibers on the characteristics of WBE-
modified concrete, and the effect of curing method on the characteristics of PFRCs, should
be further researched concerning mechanical and durability properties. Furthermore, the
anti-impact and fatigue properties of PFRCs should also be studied to better evaluate the
performance of PFRCs.
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