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Abstract: In order to prepare cement concrete with high mechanical properties and durability, nano-
stainless steel powder reactive powder cement concrete (RPC) was manufactured. The dosage of
nano-stainless steel powder ranged from 0% to 1.2% by the total volume of the RPC. In this study, the
compressive and flexural strengths of the RPC with nano-stainless steel powder were determined,
the dry shrinkage rate of the RPC was tested and the electrical resistance and alternating current
(AC) impedance spectrum of the RPC were measured; moreover, the corresponding strain-sensing
properties were investigated, and the scanning electron microscope (SEM) was used for observing the
microstructures of the RPC. The results showed that the RPC with 1.0% nano-stainless steel powder
exhibited the threshold values of the mechanical strengths. The maximum flexural strength and
compressive strength were 16.1% and 14.2% higher than the minimum values. The addition of the
nano-stainless steel powders reduced the dry shrinkage rate by 12.1%–39.8%. The electrical resistance
of the RPC decreased in the form of the cubic function with the volume fraction of the stainless steel
powders. The 1.0% nano-stainless steel powder was the threshold value for the electrical resistance
and piezoresistive performance. The relationship between the electrical reactance and electrical
resistance fitted well with the quadratic function. As obtained from the SEM results, the addition of
the nano-stainless steel powder could effectively improve the compactness of the hydration products.

Keywords: nano-stainless steel powder; reactive powder cement concrete; electrical resistance;
AC impedance spectrum; strain-sensing properties

1. Introduction

Cement concrete is the most widely used construction building material, which has
been used for more than 200 years [1–3]. Cement concrete can be used for constructing
facilities such as bridges, buildings and pavement [4]. Cement concrete constructions have
been applied in various environments [5,6]. For these reasons, its mechanical properties
and durability are of the utmost importance [7,8]. Hence, high strength and durability
concrete needs to be developed [9,10]. Additionally, the performance decay needs to be
sensed promptly [11–13].

Reactive powder cement concrete (RPC) is a special cement concrete material with
high strength and durability [14–16]. This material was invented in the 1990s, and has
been applied in the laying of bridge decks and in the preparation of bridge and building
components [17,18]. For manufacturing RPC with excellent performance, the RPC matrix
should be made with high compactness. Moreover, the reinforced fibers are essential to im-
prove the mechanical strengths of the RPC. Steel fibers, polypropylene fibers, carbon fibers
and straw fibers have been confirmed to improve the mechanical strengths of RPC [19,20].
However, these fibers have some defects. Steel fibers rust easily. The polypropylene fibers,
carbon fibers and straw fibers have low plasticity [21,22]. Additionally, these fibers are
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difficult to evenly disperse in cement-based materials [23,24]. In order to solve these issues,
nanofibers have been proposed.

Piezoresistivity refers to the property of a material to undergo changes in its electrical
resistance in response to mechanical deformation or pressure. By incorporating conductive
fibers or particles within an insulating matrix, a conductive network can be formed, which
exhibits sensitivity to damage propagation in composites [25–27]. In order to increase the
self-sensing properties of cement concrete, the conductive fibers should be added in the
cement matrix [28]. Carbon fibers, nanofibers, carbon nanotubes, graphene and stainless
steel fibers have been shown to increase the electrical conduction and the corresponding
self-sensing performance [29–32]. However, they are difficult to disperse in the cement
matrix [33]. Therefore, in this study, the nano-stainless steel powders applied in the
RPC were proposed. The nano-stainless steel powders show the aspect ratio of higher
than 100, which is advantageous to its uniform dispersion [34]. Moreover, the nano-
stainless steel powders possess strong corrosion resistance. Furthermore, these nano-
stainless steel powders show high electric conduction. Additionally, stainless steel presents
excellent mechanical performance [35]. Based on these reasons, RPC with nano-stainless
steel powders may show high mechanical strength, perfect durability and self-sensing
performance. However, little attention has been paid to the development of this self-sensing
ultra-high performance concrete material.

The main purpose of this article was to develop an ultra-high performance self-
sensing concrete material filled with nano-stainless steel powders. In this paper, the
mechanical strengths (flexural and compressive strengths) of RPC were investigated. The
flexural toughness was obtained. The electrical resistance and alternating current (AC)
impedance spectroscopy curves were measured. Additionally, the strain-sensing curves of
the RPC were acquired. The scanning electron microscope (SEM) was applied in observing
the microstructures of the RPC. By adjusting the dosages of nano-stainless steel fibers,
the optimal nano-stainless steel fiber RPC mix ratio could be determined based on the
mechanical properties, durability and piezoresistive properties. This research will provide
a basis for a special high-performance concrete material with a self-sensing property in
the future. Simultaneously, the nano-stainless steel powders show high cost, and the
economical production methods need to be further developed.

2. Experimental Methods
2.1. Raw Materials

The ordinary Portland cement (OPC) provided by Henan Bangbei Trading Co., Ltd.,
Zhengzhou, China was used in this experiment. The mineral admixture fine silica fume
with a specific surface area of 14.8 m2/g and 97.6% SiO2 was applied in this research.
The density of fine silica fume (SF) was 2.18 g/cm3. Blast furnace slag powder (BFS)
showing the density of 2.9 g/cm3 and the specific surface area of 428.3 m2/kg was used
as another mineral admixture. Quartz sand with the particle sizes of 0.95~0.73, 0.58~0.37
and 0.13~0.299 mm, showing the mass ratios of 1:1.5:1 was used as an aggregate for
manufacturing the RPC. The quartz sand contained 98.9% SiO2 and 1.1% Fe2O3. Nano-
stainless steel powder (NSP) provided by Yi’an Metal Materials Co., Ltd., Dongguan, China,
was manufactured by 316 L stainless steel and possessed the average aspect ratio of 256.
Tables 1 and 2 show the chemical compositions and particle sizes of the raw materials.

Table 1. The chemical compositions of raw materials (%).

Type
Compositions SiO2 Al2O3 FexOy MgO CaO SO3 K2O Na2O Ti2O Fe Ni Loss on Ignition

OPC 21.1 5.3 3.8 1.8 62.3 2.8 - - - - - 2.9
BFS 33.8 15.0 0.3 9.6 35.7 0.3 3.6 - - - - -

Sand 99.6 - 0.02 - - - - - - - - -
SF 97.6 0.2 0.2 0.2 0.4 0 1.4 - - - - -

NSP 0 0 0 0 0 0 0 0 0 99.95 0.05 -
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Table 2. Particle passing percentage of raw materials (%).

Types
Particle Size (%) 0.3 µm 0.6 µm 1 µm 4 µm 8 µm 64 µm 360 µm

OPC 0 0.5 3.1 14.5 33.2 92.1 100
BFS 0.05 0.13 3.3 18.6 34.3 97.2 100

Sand 0.02 0.03 0.04 0.05 0.06 19.8 100
SF 35.2 59.1 83.6 95.7 99.3 99.5 100

NSP 0 0.43 2.4 13.2 27.6 87.6 100

2.2. The Manufacturing Process of the RPC Specimens

The RPC specimens with the mixing proportions in Table 3 were prepared using the
following steps. All the powder raw materials were mixed in the UJZ-15 mortar mixer and
stirred with the mixing speed of 140 r/min for the first 1 min. Then, the solution with wa-
ter and the water-reducing agent was added and mixed with the same speed for another
3 min. After mixing, all the fresh samples were poured into the moulds with the sizes of
40 mm × 40 mm × 160 mm, 50 mm × 50 mm × 50 mm and 100 mm × 100 mm × 300 mm.
When the preparation of fresh RPC was finished, the fresh sample was applied in the
test of the slump flow by the jump table test method according to the Chinese standard
GB/T2419-2005 [36].

Table 3. Mixture design of RPC per one cubic meter (kg).

Water OPC SF GGBS Quartz Sand NSP Water-Reducer

244.4 740.7 370.3 111.1 977.9 0 16.3
244.4 740.7 277.7 111.1 977.9 15.7 16.3
244.4 740.7 185.2 111.1 977.9 31.4 16.3
244.4 740.7 92.6 111.1 977.9 47.1 16.3
244.4 740.7 0 111.1 977.9 62.8 16.3
244.4 740.7 0 111.1 977.9 78.5 16.3
244.4 740.7 0 111.1 977.9 94.2 16.3

2.3. The Measuring Process
2.3.1. The Mechanical Strengths

The mechanical strengths were determined by the TYE-300F flexural and compressive
testing machine, which was provided by Wuxi Jianyi Instrument Machinery Co., Ltd., Wuxi,
China. The loading speed for the flexural and compressive strengths were 0.1 kN/s and
2.4 kN/s, respectively. The measuring equipment and process are shown in Figure 1. The
mechanical strengths were obtained following the Chinese standard GB/T17671-1999 [37].
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2.3.2. The Dry Shrinkage Rate

The dry shrinkage of specimens were measured by the shrinkage rod. Before the
measurement, one end of the specimens was supported by the dial indicator. The value
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of the length change was read out by the dial indicator during the curing time. The dry
shrinkage rate (DSR) was calculated by Equation (1).

DSR =
L0 − L

L0
(1)

where L0 is the initial length of the specimen and L is the length of specimen during curing.
Through this method, the dry shrinkage rate was measured. The measurement of the DSR
is shown in Figure 2.
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Figure 2. The measurement of the dry shrinkage rate.

2.3.3. The Electrical Parameters

Specimens with the size of 50 mm× 50 mm× 50 mm were used for the measurements
of electrical resistance and the AC impedance spectrum. The two-electrode method was
used to determine the electrical parameters of the specimen. Two pieces of 304 stainless
steel mesh with the square hole diameter of 4.75 mm were used as the electrodes. The
stainless steel mesh electrode showed a length of 65 mm, a width of 48 mm and a thickness
of 0.8 mm. The Changzhou Tonghui TH2838H LCR digital meter with the testing voltage
of 2 V–5 V and testing frequencies of 20 Hz–1 MHz was used for testing the electrical
resistance. The measuring voltage and the voltage’s corresponding frequency in this study
were 3 V and 105 Hz, respectively. The sampling frequency in this experiment was 100 Hz.

The Zennium Pro Electrochemical Workstation provided by Beijing Huanyu Ruihui
Science and Trade Co., Ltd., Beijing, China was used for obtaining the AC impedance
spectrum. The measuring frequency ranged from 105 Hz to 1 Hz. The voltage in this
experiment was −10 mV–10 mV. In the measurement of electrical parameters, the distance
between two electrodes was 40 mm. The measuring process of electrical resistance and the
AC impedance spectrum is shown in Figure 3.
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2.4. The Strain-Sensing Performance

The 300 kN microcomputer-controlled electronic universal testing machine was used
for the research of compressive strain-sensing properties. The size of specimen was
50 mm × 50 mm × 50 mm. The loading speed of the strain-sensing properties was
0.5 mm/min. During the compressive loading, the compressive strain was obtained by the
YSV8316 static strain-testing system. The compressive strain and the electrical resistance
were collected simultaneously. The curves of compressive strain and the electrical resis-
tance were the strain-sensing curves. The variation rate of the electrical resistance (VRE)
was used to characterize the sensitivity of the strain-sensing property. The VRE can be
calculated by Equation (2).

VRE =
R− R0

R0
(2)

where R is the electrical resistance during loading and R0 is the initial electrical resistance
before loading. All the electrical parameters and the strain-sensing properties were carried
out by consulting [35,38].

2.5. Scanning Electron Microscope Photos

The samples removed from the inner core of the specimen were used for the measure-
ment of the SEM photos. The samples were sprayed with gold in the vacuum spraying
chamber and then moved to the ZEISS Sigma 300/500 Field Emission Scanning Electron Mi-
croscope (Wuxi Lingen Electromechanical Equipment Co., Ltd., Wuxi, China) for obtaining
SEM images.

3. Results and Discussions
3.1. The Slump Flow of Fresh RPC

The slump flow of fresh RPC with different dosages of NSP is shown in Figure 4. It
can be seen that the slump flow of fresh RPC decreased with the addition of NSP. This was
ascribed to the fact that the NSP exhibited higher specific surface area than the cement,
which can absorb more free water, leading to a decrease in the slump flow of fresh RPC [39].
The values of the error bars were lower than 10% of the slump flow. Therefore, the results
of the slump flow was accurate.
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3.2. The Mechanical Strengths of RPC with NSP

Figure 5 shows the mechanical strengths of RPC with different dosages of NSP. The
mechanical strengths were tested after the specimens were cured for 28 days. As depicted
in Figure 5, the flexural and compressive strengths increased with the increasing volume
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ratios of the NSP. The maximum increasing rates of flexural and compressive strengths
by adding 1.2% NSP were 16.1% and 14.2%, respectively. When the volume ratio of NSP
increased from 0% to 1.0%, the increasing rates of flexural and compressive strengths were
14.9% and 13.9%. This was attributed to the fact that the NSP can fill the pores inside the
RPC; thus, increasing the mechanical strength [12,40]. Moreover, the NSP can restrict the
inner cracks in the RPC; thus, improving the mechanical strength. Finally, as shown in
Figure 5, the values of the error bars were lower than 0.5% of the mechanical strengths,
which ensured the accuracy of the mechanical strengths.
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3.3. The Drying Shrinkage Rate of RPC

The drying shrinkage rates of the RPC standard that were cured for 3 days, 7 days,
14 days and 28 days are shown in Figure 6. The drying shrinkage rates increased with the
increasing curing ages and decreased with the increasing volume ratio of the NSP. This
was due to the fact that the cement hydration increases with the increased curing age [41].
Therefore, the drying shrinkage rates showed an increasing trend with the increasing
curing age. Moreover, the addition of the NSP can fill the pores of the RPC and restrict the
RPC’s drying shrinkage rate, which results in a decrease in the drying shrinkage rates. The
relationship between the drying shrinkage rate and the volume ratio of the NSP conformed
to a cubic function. The drying shrinkage rates were decreased by 12.1%–39.8% by mixing
with the NSP. The fitting degree of the functions were higher than 0.98, indicating the
reasonability of fitting function.

3.4. The Electrical Resistance of RPC

The electrical resistance of RPC with different dosages of NSP is shown in Figure 7.
As observed from Figure 7, the electrical resistance of the RPC decreased with the volume
ratios of the NSP. The varying function between the electrical resistance and the volume
ratios accorded with the cubic function. This can be explained as follows. The conductive
path was quite isolated in the RPC with low dosages of NSP. When the volume ratio of
the NSP reached a certain level, the conductive network began to connect. Therefore, the
electrical resistance reduced significantly with the increasing volume ratio of the NSP. As
obtained from Figure 7, the electrical resistance decreased in the form of the cubic function
with the volume ratio. This can be ascribed to the fact that the electrical conductivity
of conductive cement-based material shows the cubic function with the volume ratio of
conductive fillers [42].
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3.5. AC Impedance Spectrum

The AC impedance spectrum curves of the RPC are illustrated in Figure 8. In Figure 8,
Zr(Ω) and Zi(Ω) represent the AC electrical resistance and electrical reactance of the RPC.
The horizontal coordinate values represent the electrical resistance, while the longitudinal
coordinates represent the electrical reactance of the RPC. Table 4 shows the fitting results of
the relationship between Zi(Ω) and Zr(Ω). In Table 4, a, b,c and R2 are the constant parts
and the fitting degree of the quadratic fitting equation. The electrical reactance shows the
quadratic function with the volume ratios of the NSP. Moreover, the addition of the NSP
was able to reduce the extreme points of the AC impedance spectrum curves, indicating
that the NSP could decrease the electrical resistance of the AC impedance spectrum curves.

The equivalent circuits of the RPC obtained by the AC impedance spectrum curves are
shown in Figure 9. The equivalent circuit of the RPC consisted of three parallel electrical
components, which were the parallel electrical resistance and reactance of pore solution,
the RPC matrix and the NSP. The last electrical component was the electrical resistance
of the interface electrical resistance between the electrode and the specimen. The Chi of
the equivalent circuits was lower than 0.017, showing the rationality of the equivalent
circuit diagrams.
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Table 4. The fitting results between the real and imaginary parts of the AC impedance spectrum.

Equation Types a b c R2

Zi = aZr
2 + bZr + c

1.0%NSP 1,720,182.95 −158.85 0.004 0.99

0% NSP 300,673.39 −75.02 0.00216 0.99

1.2% NSP −31,174.88 −23.26 6.47 × 10−4 0.99

0.2% NSP −25,499.32 −46.09 0.001 0.99

0.4% NSP 829,947.91 −87.27 0.001 0.99

0.6% NSP 1,937,829.91 −89.17 9.92 × 10−4 0.99

0.8% NSP 1,150,300.24 −53.71 5.84 × 10−4 0.99

The electrical resistance of the pore solution of the RPC with the NSP is shown in
Figure 10. The electrical resistance of the pore solution of the RPC increased with the
addition of the NSP. This signified that the NSP could decrease the pore volume and the
number of the RPC. Therefore, this result confirmed that NSP can enhance the mechanical
properties of RPC.
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Figure 10. The electrical resistance of pore solution inner RPC.

3.6. The Strain-Sensing Properties of RPC

The compressive strain-sensing curves of the RPC are shown in Figure 11. ε is the
compressive strain during the compressive loading, whose unit is 10−6. Table 5 is the
fitting results between the variation rate of the electrical resistance (4R/R) and the ε.
The sensitivity of the strain-sensing properties of the RPC increased with the dosages of
NSP increasing from 0% to 1.0%. However, when the volume ratio of NSP was 1.2%, the
sensitivity of the strain-sensing properties of the RPC was lower than that of the RPC with
1.0% NSP. The RPC showed obvious strain-sensing performance when the dosages of the
NSP reached 0.8% by volume ratio of the RPC. This was ascribed to the fact that when the
volume ratio of the NSP was lower than 0.8%, most of the NSP was isolated dispersed in
the RPC [43]. No obvious tunnel current was generated during loading. When the dosage
of NSP reached 0.8%, the conductive channels gradually formed and the tunnel current was
generated. Therefore, the RPC with NSP higher than or equal to 0.8% performed obvious
strain-sensing property. Finally, when the volume ratio of the NSP was higher than 1.0%,
the contact electrical conductivity was increased by the NSP, leading to a decrease in the
sensitivity of the strain-sensing performance.
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Table 5. The fitting results between the variation rate of electrical resistance (∆R/R) and the compres-
sive strain (ε).

Equation Types a b R2

∆R
R = aε + b

1.0%NSP −0.0013 0.23 0.91

0% NSP −0.0000011 −7.86 × 10−7 0.86

1.2% NSP −0.0014 0.20 0.88

0.2% NSP −0.028 −0.11 0.93

0.4% NSP −0.042 2.15 0.94

0.6% NSP −0.075 −6.98 0.92

0.8% NSP −0.043 1.22 0.89

3.7. The SEM of RPC

The SEM of the NSP and the RPC with NSP is shown in Figure 12. As illustrated in
Figure 12a, the spherical stainless steel powder was found. Stainless steel powder with
different particle sizes could be observed, which could fill the pores with various diameters.
Additionally, the flocculent hydration products were observed in the SEM photos. The strip
and block hydration products were discovered. As shown in Figure 12, the addition of NSP
could improve the compactness of the RPC, which confirmed the fact that the addition of
NSP could help increase the mechanical strength of the RPC.
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4. Conclusions

In this study, a high-performance and high-durability self-sensing reactive powder
concrete with nano-stainless steel powder was developed. The fluidity of fresh RPC, the
mechanical strength and the self-sensing performance were investigated. The conclusions
can be summarized as follows:

The addition of NSP was able to decrease the slump flow of the fresh RPC. Moreover,
the addition of NSP was able to increase the flexural strength from 0% to 14.2% and increase
the compressive strength from 0% to 16.1% with the NSP volume ratio ranging from 0%
to 1.2%.

The electrical resistance and the drying shrinkage rate of RPC decreased in the form of
the cubic function with the volume ratio of the NSP.

The AC impedance spectrum curves of RPC with NSP were obtained in this study.
The electrical resistance conformed to the quadratic function with the NSP volume ratio.
The addition of NSP was able to increase the electrical resistance of the pore solution, which
confirmed that the NSP could effectively improve the mechanical strength of the RPC by
decreasing the volume of the pores inner RPC.

The RPC with NSP showed no strain-sensing property when the NSP was less than
0.8%. The RPC with 1.0% NSP showed the optimal sensitivity of strain-sensing performance.
As obtained from the SEM results, the addition of NSP was able to improve the pore
structure and reduced porosity; thus, increasing the mechanical strength of the RPC.
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