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Abstract: The high chemical activity, low thermal conductivity, and high strength of titanium alloys
lead to severe tool wear during cutting. The coating applied to the tool surface insulates the effect
of heat and chemical reactions. TiAlSiN coating and AlCrN coating are two representative coat-
ings with excellent properties in TiN-based and CrN-based applications, respectively. Three types
of nanocoatings—TiAlSiN monolayer, AlCrN monolayer, and TiAlSiN/AlCrN multilayer—were
prepared, and the microstructure, mechanical properties, oxidation resistance, diffusion properties
with titanium alloy, and cutting performance of the coatings were investigated utilizing SEM, TEM,
XRD, TGA, GD-OES, nanoindentation, and scratching instruments. The hardness, elastic modulus,
and adhesion strength of TiAlSiN/AlCrN multilayer coatings are between TiAlSiN monolayer and
AlCrN monolayer coatings, which meet the “law of mixtures”. Adhesion strength is the primary
condition for cutting applications and should have a minimum threshold value. Ti and N elements
are the most significant in the diffusion between coatings and titanium alloys. The nitride coating
containing Cr aggravates the loss of N in contact with the titanium alloy. In addition, multilayer
structural coatings can lead to more severe diffusion than monolayer coatings due to their inherent
interlayer defects. Although diffusion between titanium alloys and coated tools is more severe than
with other workpiece materials, the main factor affecting tool cutting life is still the H3/E*2 value
determined by the hardness and modulus of elasticity together.

Keywords: TiAlSiN coating; AlCrN coating; TiAlSiN/AlCrN multilayer; cutting performance; wear;
Ti-6Al-4V

1. Introduction

There are problems of high stress, high cutting temperature, and severe tool wear
during the cutting of titanium alloy. Compared to other workpiece materials, tools used to
cut titanium alloys generally have significant adhesion and diffusion, which is related to the
chemical activity of titanium alloys, in addition to microchipping, notch, and uniform flank
wear. To deal with the high temperatures and chemical reactions with the tool substrate
that occur during the cutting of titanium alloys, applying a coating on the tool surface to
block the significant heat transfer and violent chemical reactions is still an effective method.

Transition metal nitride coatings are now the dominant strategy for cutting tool
coatings, with many successful applications in the range of workpiece materials other
than titanium alloys [1–3]. TiN and CrN are two types of binary nitride PVD coatings
studied early and applied successfully. Then, the various properties of the coatings can
be further improved by employing alloying methods. Al and Si are the most commonly
used and successful alloying elements for coatings. Al plays a solid-solution-strengthening
role in the above coatings, and the hardness of the coatings is increased by the influence
of lattice distortion and preferred orientation caused by the addition of Al atoms. It is
also found that the columnar crystal structure of TiN or CrN has become less pronounced,
which can effectively prevent oxygen intrusion. In addition, the dense and chemically
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stable Al2O3 generated on the surface after Al is oxidized is also one of the reasons for
the improved oxidation resistance of Al-containing coatings. AlTiN and AlCrN coatings
have been successfully applied in cutting tools based on the above principles. Originated
from the phase change of TiO2 at high temperature from dense α-TiO2 to loose r-TiO2,
while Cr2O3 has no such change, AlCrN has better oxidation resistance than AlTiN. Vinay
Varghese et al. [4] found that in milling MDN 250 maraging steel using AlCrN- and AlTiN-
coated milling cutters, the AlCrN-coated tools had better wear resistance, attributed to the
thin films of aluminum chromium oxide and chromium oxide on the surface. The flank
wear of the AlCrN was only 0.26–0.35 mm in 25 min of cutting in dry, wet, and cryogenic
environments, less than that of AlTiN.

Veprek and other researchers [5–7] attributed the superhard effect in coatings caused
by Si addition to its unique nanocomposite structure. The general formula for this structure
is expressed as nc-MeN/a-Si3N4, where Me = Ti, Cr, W, TiAl, CrAl. The mechanism of
strengthening coating by nanocomposite structure has been studied. On the one hand,
even at 1000 ◦C, the 2 phases of TiN and Si3N4 are strongly separated and not mutually
soluble. The growth of TiN grains is inhibited by the surrounding Si3N4 phase, so that
the TiN grains are refined up to about 10 nm, and in such small grains, the dislocations
cannot move and proliferate, and the hardening effect is produced. On the other hand,
the interface between Si3N4 and TiN is well bonded, so that the nanograins cannot slip
along the grain boundary, which also has the effect of coating reinforcement. Due to its
excellent hardness [8], oxidation resistance [9], and high-temperature stability [10], TiAlSiN
coating is one of the most successful and widely used coatings among nanocomposite
structural coatings. Harish C. Barshilia et al. [11] drilled holes in 304 stainless steel plates
using a TiAlSiN nanocomposite-coated drill bit. The uncoated bit failed after drilling
50 holes, while the TiAlSiN-coated bit (Si = 5.5 at.%) drilled 714 holes before failure. S.
Rodríguez-Barrero et al. [12] used a TiAlSiN nanocomposite-coated bit to drill 100 m on
42CrMo4 steel with less than 0.07 mm of flank wear and a longer working life than AlCrN,
AlTiN, and AlCrSiN.

In the last decade, multilayering of coatings has become an inevitable trend to obtain
the comprehensive performance of coatings. For example, adding an Ion-nitriding layer
and an Intermetallic Ti-Al layer between the substrate and TiAlN coating can significantly
improve the adhesion strength and corrosion resistance of the coating [13]. Using PFPE
(perfluoropolyether) for the TiN surface layer to obtain a modified layer provides the tool
surface with excellent wear resistance [14]. In addition, nanomultilayer coatings formed by
alternating overlays of 2 different materials with thicknesses within 1–100 nm have been
prepared. For example, Cr/CrN [15], CrN/ZrN [16], TiN/CrAlSiN [17], TiAlSiN/CrN [18],
and AlTiCrN/TiSiN [19] have attracted attention for their excellent toughness, thermal
stability, and corrosion resistance properties over monolayer coatings [20]. Baijun Xiao [21]
found in an experiment on turning SKD11 that the AlCrN/AlTiSiN nanomultilayer-coated
tool had a significantly longer tool life of ~800 m, which could be attributed to its higher
hardness, adhesion strength, and oxidation resistance compared to the monolayer AlCrN
or AlTiSiN coatings.

Previous studies on TiAlSiN or AlCrN or their multilayers have focused on oxidation
resistance [21,22], microstructure [23], thermal stability [24], high-temperature friction [25],
and wear when cutting non-titanium alloys [26–28]. However, there are few comparative
studies on the performance and failure causes of all three coatings when cutting titanium
alloys. In particular, the effect of diffusion between the titanium alloy and the coating on
the cutting performance is an important issue.

In this work, TiAlSiN, a representative of TiN-based coatings, and AlCrN, a representa-
tive of CrN-based coatings, the former being a nanocomposite coating and the latter being
a polycrystalline nanocoating, were prepared. Then, the TiAlSiN/AlCrN nanomultilayer
coatings were prepared by alternately overlapping these two compositions. These three
coatings’ physical phases, mechanical properties, and oxidation resistance were compared.
In particular, the affinity of the coatings with titanium alloys was investigated in ther-
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mal diffusion experiments using a quantitative method. Finally, the coated tools’ cutting
performance and wear were investigated by dry-cutting Ti-6Al-4V.

2. Materials and Methods
2.1. Coating Deposition

The coating technology in this paper is arc ion plating, and the coating equipment is a
NH-10758 multifunctional PVD coater manufactured by Dongguan Nahu Crystal Materials
Co. The coated substrate is mounted on a rotating frame in the middle of the furnace
chamber and gets rotational motion in three dimensions, as shown in Figure 1. When
making a monolayer coating, the target is mounted on the left or right side only; when
making a multilayer coating, the targets of different compositions are mounted on the
opposite sides. Since the modulation period of the multilayer coating is determined by the
rotational speed of the rotating frame, the rotational speed of the rotating frame is set to
2 r/min for the 20 nm modulation period coating in this paper.
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Figure 1. Layout of target and substrate for coating.

According to the deposition rates of different targets, the deposition time is calculated,
and finally, the thickness of all types of coatings is guaranteed to be uniform at 3.5 ± 0.4 µm.
The coated substrates are a cemented carbide WC-6 wt.% Co block of 18 × 18 × 5 mm
for mechanical property testing and cross-sectional morphology observation, a Ti-6Al-4V
block of 15 mm × 15 mm × 5 mm for the thermal diffusion test between the titanium alloy
and coating, single-crystal alumina with a 51 mm outer diameter and 0.5 mm thickness for
coating high-temperature oxidation, polycrystalline alumina of 23 mm × 10 mm × 0.5 mm
for TGA, AISI 304 stainless steel of 60 mm × 10 mm × 0.8 mm for the residual stress test,
and a carbide WC-6 wt.% Co 120408 standard turning insert for turning experiments. To
improve the adhesion strength between the coating and substrate, all the substrates were
polished by diamond grinding discs, and then the polished substrates were ultrasonically
cleaned and loaded into the furnace chamber, which was evacuated to 5.0 × 10−3 Pa
and heated to 500 ◦C. The total time for heating and holding was not less than 120 min.
Next, argon was introduced and maintained at a pressure of 0.6 Pa; the substrate was
glow cleaned at a bias voltage of 800 V for 9.5 min. The bias voltage was then reduced to
300 V, and the substrate was anodically etched for another 20 min to clean and activate
the substrate surface. Then, nitrogen was introduced and applied in 3 steps according to
2–3–3 Pa. Corresponding to the 3-step nitrogen pressure, the bias voltage was applied
according to 30–40–60 V, and the target current was applied according to 145–160–160 A.
The purpose of the above steps is to form a gradient layer, reduce the residual stress, and
enhance the adhesion between the film and the substrate. Finally, after the temperature
was reduced to room temperature, the samples were taken out.

2.2. Coating Characterisation

The coatings’ surface and cross-sectional morphology and composition were tested
using Nova NanoSEM 430 (FEI, Eindhoven, The Netherland). The physical phase analysis
of the coatings was performed using a BRUKER D8 ADVANCE X-ray diffractometer
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(Bruker Corp, Billerica, MA, USA) with Cu Kα radiation (λ = 1.5406 Å). For grazing
incidence XRD (GIXRD), the parameters were set to 2θ angle 25◦~85◦, step size 0.02◦, dwell
time 0.5 s per step, and incidence angle 1◦. For conventional XRD, the dwell time per
step was changed to 0.3 s. The microstructure of the multilayer coating was observed by
transmission electron microscopy (FEI Talo F200S, ThermoFisher, Waltham, MA, USA), and
the coating on the alumina substrate was thinned to 60 nm using the FIB technique before
observation.

The hardness (H) and elastic modulus (E) of the coatings were obtained by nano-
indentation tests using the TTX-NHT2 Nano-indenter (Anton Paar, Graz, Austria). The
test parameters were set to a load of 10 mN, a loading rate of 15 mN/min, a maximum
load maintenance time of 5 s, and an indentation depth of 120 nm. The indentation depth
was limited to 10% of the film thickness to eliminate the effect of the substrate on the
coating’s hardness. The adhesion strength between the coating and the carbide substrate
was obtained by the scratching method using the Anton Paar RST3 (Anton Paar, Graz,
Austria). The parameters were set to a scratch length of 3 mm, a load of 1–100 N, a loading
rate of 200 N/min, and a diameter of 200 µm for the diamond tip. The coating residual
stresses were tested using the FST-1000 film stress meter from Supro Instruments and then
calculated based on the Stoney equation [29].

TGA testing of the coatings was performed using the thermogravimetric analyzer
STA449F5 (NETZSCH Group, Bavarian, Germany) with a heating rate of 10 K/min and a
continuous flow of dry air at 50 sccm throughout the experiment. The constant temperature
oxidation experiments of the coatings were performed in the TSX1700 muffle furnace
(Cinite, Beijing, China). The experimental temperatures were 800, 950, and 1050 ◦C, and
the holding time was 3 h. The thermal diffusion between the coating and the titanium alloy
was tested by GD-OES using a GD-Profiler 2 (HORIBA Scientific, Kyoto, Japan). The power
was 30 W, and the air pressure was 650 Pa.

2.3. Cutting Experiment Planning

Turning is used to verify the cutting performance of the coating. The cutting test
equipment includes a lathe (CAK3665nj, Shenyang NO.1 Machine Tool, Shenyang, China),
an infrared thermal imaging camera (Testo 890-2 SET, Testo AG, Lenzkirch, Germany), a
standard MSBNR2020K12 toolholder (Fengren Co., Ltd., Taizhou, China), and a standard
SNMA120408 insert (ZGCC, Zigong, China), as shown in Figure 2. The CNC program
for turning employs constant line speed cutting, which means that as the radius of the
workpiece decreases, the spindle speed automatically increases, thus maintaining a constant
cutting speed. Therefore, the tool assures an identical cutting speed, regardless of the
workpiece diameter, and the cutting time can be used to measure the cutting life. The cutting
temperature is measured by the infrared thermal imaging camera. Its parameters are as
follows: maximum range 1200 ◦C, accuracy ±2 ◦C, emissivity setting range 0.01–1, spectral
range 8–14 µm. The cutting parameters are as follows: Vc = 100 m/min, ap = 0.3 mm,
f = 0.1 mm/r. When tool wear occurs, the amount of wear on the flank face is more
straightforward to measure than that on the rake face, so the average wear length VB value
on the flank face is often used to measure tool life. During machining, the VB of the tool is
measured using a tool microscope at regular intervals.
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3. Results and Discussion
3.1. Coating Composition, Physical Phase, and Microstructure

The cross-section and surface morphologies of TiAlSiN monolayer, AlCrN monolayer,
and TiAlSiN/AlCrN multilayer coatings are shown in Figure 3.
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(c,d) AlCrN coating; (e,f) TiAlSiN/AlCrN coating.

The AlCrN coatings show noticeable columnar crystals, while TiAlSiN and TiAlSiN/
AlCrN show the featureless morphology of Si-containing coatings. There are many white
microparticles distributed on the surface of the coatings, showing a typical deposition of arc
ion plating [30,31]. During the evaporation of the AlCr and TiAlSi target, the breakdown
area of the arc spot produced by the cathodic arc on the target surface is tiny, and thus, the
power density is large. Under the dual action of the pressure of internal expansion and the
negative bias voltage at the substrate end, the metal droplets in the melt pool do not have
enough time to evaporate before sputtering onto the substrate surface and then form the
white microparticles. During the coating deposition, these microparticles were gradually
covered by the subsequent deposited coatings or metal droplets, becoming a part of the
coatings. This phenomenon is more apparent for the AlCrN coatings due to the lowest
melting point of Al. These microparticles will increase the surface roughness if located
on the outermost surface, form uneven defects inside the coating if buried deeply by the



Coatings 2023, 13, 1229 6 of 18

coating particles that come later, and form holes if dislodged by strong ion bombardment.
EDS examined the chemical compositions of the three coatings, and the results are shown in
Table 1. The ratio of each component of the coatings is close to the design target. However,
the Si content is lower than the design target due to the lower deposition rate of Si than
that of Al and Ti.

Table 1. Coating thickness and composition measured by SEM and EDS.

Target Coating Thickness (µm)
Chemical Composition (at.%)

Al Cr Ti Si N

Ti0.45Al0.45Si0.10 TiAlSiN 3.69 20.22 − 22.66 3.89 53.23
Al0.7Cr0.3 AlCrN 3.63 33.81 18.14 − − 48.05
Ti0.45Al0.45Si0.10 and Al0.7Cr0.3 TiAlSiN/AlCrN 3.87 27.95 8.01 10.97 2.23 50.85

The results of XRD analysis of the coating using the GIXRD are shown in Figure 4.
Both TiAlSiN and AlCrN coatings exhibit nitride peaks with (111), (200), (220), (311), and
(222) crystal planes of cubic phase c-TiAlN and c-CrAlN each. The TiAlSiN coating has a
strong TiN (200) plane preferred orientation, while the AlCrN coating exhibits a CrN (111)
plane preferred orientation. The diffraction peaks of the TiAlSiN/AlCrN multilayer coating
are located between the TiN and CrN standard peaks, which indicates that the multilayer
coating exhibits a mixed structure of cubic phase c-TiAlCrN with a (200) plane of preferred
orientation. The significant w-AlN phase was present in both TiAlSiN and TiAlSiN/AlCrN
coatings, but not in AlCrN coatings, despite the high Al content of 70 at.% in AlCrN. This
result also appeared in the study of other researchers [32]. This is because the solid solution
of Al in CrN is greater than that in TiN; moreover, the Si addition further reduces the solid
solution of Al in TiN, and the above combined causes lead to the appearance of a significant
w-AlN phase in both TiAlSiN and TiAlSiN/AlCrN coatings.
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The microstructure of TiAlSiN/AlCrN multilayer coatings was analyzed using HRTEM.
As confirmed by HAADF-STEM in Figure 5, the TiAlSiN/AlCrN coating is an alternately
stacked nanomultilayer structure with the layer interface perpendicular to the growth
direction. The mapping scan of the elements confirms that the nanomultilayer structure
consists of alternating AlCr-rich and TiSi-rich sublayers with a modulation period of about
20 nm, consistent with the designed modulation period.
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its element mapping.

Figure 6a clearly shows two different arrangement styles of lattice stripes, which,
combined with the elemental scan results obtained in Figure 5, can be inferred to be
TiAlSiN and AlCrN, respectively. Since the deposition rate of TiAlSiN is slightly lower
than that of AlCrN, the TiAlSiN sublayer is slightly thinner, and the modulation ratio is
slightly less than 1:1. The grain size can be estimated between 3 and 8 nm from the lattice
stripe image of larger magnification in Figure 6b. The upper right illustration in Figure 6b
shows the selected area electron diffraction pattern (SAED) in this region, which exhibits a
polycrystalline diffraction ring feature. Compared with the XRD physical phase calibration
results in Figure 4, it can be inferred that the polycrystalline diffraction ring is formed by
each crystal plane of (111) fcc, (200) fcc, and (220) fcc of the face-centered cubic structure.

The inverse Fourier transform is performed on the two adjacent white box regions of c
and d in Figure 6b individually, and the results are shown in Figure 6c and d, respectively,
and the lattice stripes are calibrated. The spacings of the 2 crystal planes with different
orientations in Figure 6c are 0.240 nm and 0.208 nm, respectively. The (111) and (200)
crystal plane spacings of the standard CrN phase are 0.239 nm and 0.207 nm, respectively,
from the PDF card, indicating that this region is where the AlCrN sublayer is located. The
actual stripe spacing is slightly larger than the standard value because the Ti atoms are
solidly solved in CrN, and the radius of Ti atoms is more significant than that of Cr atoms,
resulting in lattice expansion.

Similarly, the spacings of the 2 crystal planes with different orientations in Figure 6d
are 0.243 nm and 0.209 nm, respectively. The (111) and (200) crystal plane spacings of the
standard TiN phase are 0.245 nm and 0.212 nm, respectively, from the PDF card, indicating
that this region is where the TiAlSiN sublayer is located. The actual stripe spacing is slightly
smaller than the standard value because the Cr atoms are solidly solved in TiN, resulting in
lattice shrinkage. Ti and Cr are solving in each other’s nitride lattices because the two atoms
are mixed in the same furnace cavity after being etched out of the TiAlSi and AlCr targets.

In addition, more indistinct zones appear in the lattice stripes of Figure 6d, indicating
the presence of a large number of amorphous Si in the TiAlSiN sublayer region, which are
wrapped around the Ti(Al)N nanocrystals. Referring to the XRD results in Figure 4 and the
literature [5–7], it can be inferred that these amorphous Si are Si3N4.
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3.2. Mechanical Properties

Figure 7 shows the nano-hardness and elastic modulus of TiAlSiN monolayer, AlCrN
monolayer, and TiAlSiN/AlCrN multilayer coatings. The TiAlSiN coating achieves the
highest hardness and lowest modulus of elasticity, while the TiAlSiN/AlCrN multilayer
coating has these two values between the TiAlSiN monolayer and the AlCrN monolayer
coating, following the “law of mixtures”. The resistance to plastic deformation and to wear
of the coating can also be usually characterized by H3/E*2 with E* = E(1 − µ2), where µ

is the Poisson’s ratio [33,34]. The larger the value of H3/E*2, the higher the resistance to
plastic deformation and to wear of the coating. The TiAlSiN coating has the highest H3/E*2

value of 0.224 because it has the highest hardness and the lowest modulus of elasticity.
Whether this superiority leads to outstanding cutting performance can only be verified in
actual experiments.
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The adhesion strength between the coating and the substrate is one of the key, and
sometimes decisive, factors in assessing the performance of a coating. Obviously, a good
adhesion strength can extend the service time. Figure 8 shows the large-load scratch test
and the critical Lc2 and Lc3 values obtained for the three coatings. Lc2 is the load when
cracks appear, and the coating sporadically flakes off. Usually, Lc2 is regarded as the critical
load for coating failure and can be used to evaluate the adhesion strength of the coating;
Lc3 is the load when the substrate is exposed. The adhesion strength of AlCrN coating
is the highest; the Lc2 value of TiAlSiN coating is only 41 N. The adhesion strength of
TiAlSiN/AlCrN coating is between the two. The difference between the Lc2 and Lc3 values
of the multilayer coating is significant. The coating debris distributed on both sides of the
scratch is powder-like, indicating that the multilayer coating is slowly peeling off as thin
layers until the last sublayer leaves the substrate; in contrast, the difference between Lc2
and Lc3 of the two monolayer coatings is slight, indicating that the monolayer coating is
rapidly peeling off as a whole after reaching the critical load Lc2, as evidenced by the large
debris distributed on both sides of the scratch.
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Figure 8. The critical Lc2 value and corresponding optical graphs after the scratch test of three
coatings.

The worse adhesion strength of TiAlSiN coatings is related to the poor innate bonding
of Si3N4 amorphous to the substrate crystal and the high residual compressive stresses
after Si addition [33]. The film stress tester obtained residual stresses within all 3 coatings
as compressive stresses—8.3 GPa for the TiAlSiN coating, 5.8 GPa for the AlCrN coating,
and 3.8 GPa for the TiAlSiN/AlCrN multilayer—which was attributed to the multilayer
structure effectively releasing the stresses within the whole coating.

3.3. High-Temperature Oxidation Resistance

The low thermal conductivity and high strength of titanium alloys cause the cutting
process to be prone to high temperatures, so oxidation resistance is one of the essential
properties that must be examined in coated tools. Figure 9 shows the TGA curves of
TiAlSiN monolayer, AlCrN monolayer, and TiAlSiN/AlCrN multilayer coatings continu-
ously heated from room temperature to 1450 ◦C in a synthetic air atmosphere. According
to the rate of oxidative weight gain, the TGA curve can be divided into three stages: slight
oxidation, rapid oxidation, and terminated oxidation. Before 965 ◦C, all 3 coatings showed
no apparent oxidation weight gain and belonged to the slight oxidation stage. When the
temperature reached 965 ◦C, the TiAlSiN coatings first showed noticeable oxidation weight
gain, indicating a shift to the rapid oxidation stage. When the temperature increased to
1375 ◦C, the oxidation weight gain of the TiAlSiN coating no longer changed, indicating that
the terminated oxidation stage was reached, and the whole TiAlSiN coating was completely
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oxidized. In contrast, the AlCrN coating did not terminate oxidation until the end of the
experiment at 1450 ◦C, indicating that the AlCrN coating has superior high-temperature
oxidation resistance than the TiAlSiN coating. It should be mentioned that the rapid oxida-
tion starts, and the termination temperatures of TiAlSiN/AlCrN multilayer coatings are
between the two monolayers.
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Figure 10 shows the XRD patterns of the three coatings after constant oxidation at
different temperatures for three hours. At 800 ◦C, the TiAlSiN and AlCrN coatings showed
no oxide peaks, but the TiAlSiN/AlCrN multilayer coatings showed faint TiO2 and Al2O3
peaks at 35.8◦ and 64.5◦, respectively. At 950 ◦C, oxide peaks started to appear for both
TiAlSiN and AlCrN coatings. However, the peak intensity of the latter remained weak,
which is consistent with the results of the TGA analysis in Figure 9. By the final 1050 ◦C, the
intensity of the oxide peaks of the 2 Ti-containing coatings TiAlSiN and TiAlSiN/AlCrN
continued to increase, while the increase in the oxide peak intensity of the AlCrN coating
was extremely limited. It shows that the AlCrN coating has the most substantial oxidation
resistance among the three coatings. It also shows that the multilayer structure of AlCrN
and TiAlSiN did not hinder the inward diffusion of oxygen or the transport of metal atoms
to the outer surface.

3.4. Thermal Diffusion between the Coating and the Titanium Alloy

Due to the high chemical activity of titanium alloys, chemical reactions between
tools and titanium alloys are prevalent in cutting operations, which are significant factors
affecting tool life. Therefore, it is essential to reveal the degree of chemical interaction
between the coating and titanium alloy for the feasibility of cutting titanium alloy with
coated tools. A total of 3 coatings were applied to the surface of the titanium alloy substrate
and held at 950 ◦C for 3 h. The diffusion of elements at the interface between the coatings
and the substrate was then analyzed using GD-OES. The deposited state samples of the
coatings were also analyzed using GD-OES for comparison. As shown in Figure 11, both
in the deposited state and after 950 ◦C treatment, the diffusion distances of both Ti and
N significantly exceed those of the other elements, whose diffusion is confined within
the mixed diffusion zone of Ti and N on both sides of the interface. Ti and N diffusion
distances in the 3 coatings were similar in the deposited state, ranging from 1.08 nm to
1.68 nm. After the 950 ◦C treatment, the diffusion distance of Ti did not increase much, but
that of N was much larger than that of Ti. This can be explained by the thermodynamic
diffusion mechanism. Ti belongs to vacancy diffusion and N to interstitial diffusion, and
the diffusion activation energy of Ti is much larger than that of N. Hence, the diffusion of
Ti is more difficult than that of N.
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It is also noted that within the Ti-6Al-4V, the variation of Ti and Al shows a seesaw
effect, which means that when Al is enriched, the content of Ti decreases and vice versa.
This is because the Al within Ti-6Al-4V originally formed a replacement solid solution
relationship with Ti. When a large amount of N enters Ti-6Al-4V, the combination of Ti
and N consumes a large amount of Ti, forcing Al out of its original position. However,
there is a high concentration of Al from the coating on the left side of the interface, so Al
can only migrate to the right side (inward), resulting in the “bulging” phenomenon on the
curve. Therefore, it is also found that the bulging position on the Al curve corresponds to
the depressed position of the Ti curve, which indicates that the Al has taken over the Ti
lattice position by substitution at this position.
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Figure 11. GD-OES spectra of coatings on Ti-6Al-4V substrate before and after high-temperature
treatment.

From the coating point of view, Ti diffusion is invasive diffusion, while N diffusion
is lossy diffusion, and the loss of N is much more significant than the invasion of Ti. The
loss of N within the coating means the disintegration of the coating crystal structure, thus
reducing the service life of the coating. The diffusion distances of Ti and N elements in
Figure 11 are shown in Figure 12. The effect of high-temperature treatment on N diffusion is
more significant than that on Ti. Moreover, the loss of N in the AlCrN coating is greater than
that of TiAlSiN. This is because the N atoms in the AlCrN coating tend to combine more
with the Ti atoms in Ti-6Al-4V to generate TiN and so leave the coating. The generation of
TiN can be demonstrated by XRD analysis of the sample’s surface after thermal diffusion of
the AlCrN-Ti alloy. As shown in Figure 13, TiN peaks appear at 2θ = 36.6◦, 42.5◦, and 61.8◦.
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Figure 13. XRD patterns of AlCrN coating on Ti-6Al-4V substrate after heat treatment at 950 ◦C for
3 h.

The following demonstrates the inevitability of TiN generation in terms of the Gibbs
free energy of chemical reactions. The possible reactions with N involving the elements
within the reaction system consisting of AlCrN coating and Ti-6Al-4V are as follows:

2Ti + N2(g) = 2TiN (1)

2Cr + N2(g) = 2CrN (2)

2Al + N2(g) = 2AlN (3)

2V + N2(g) = 2VN (4)

The Gibbs free energies of each of the above chemical reactions from the 0 to 1000 ◦C
range are shown in Figure 14. Because Equation (1) has the lowest Gibbs free energy,
Ti atoms are more easily bound to N atoms than Cr atoms. Driven by this reaction, the
N atoms leave the coating and enter the titanium alloy until the reaction equilibrium is
approached and the reaction rate becomes slower and slower.
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Figure 12 also shows that the N loss of the TiAlSiN/AlCrN multilayer coating is
greater than that of AlCrN, which is caused by a large number of defects between the layers
of the multilayer coating, termed the “interlayer defect” problem, which can be explained
by the model in Figure 15. Firstly, TiAlSiN and AlCrN have different lattice constants,
although they belong to the same bcc-NaCl crystal structure. So, the interlayer lattice
cannot form coherent epitaxial growth smoothly. Secondly, if two sublayers are to form
a co-lattice epitaxial growth, one of the layers should be used as a template layer and the
other layer as a modulation layer. The modulation layer abandons its own lattice structure
and grows upward with the lattice type of the template layer, and its thickness is required
to be thin. The experiments confirmed [35,36] that the modulation layer thickness should
be controlled below 3 nm. The 2 sublayers of the multilayer coating in this work have a
thickness of about 10 nm each, which far exceeds the thickness limited by the formation
of coherent epitaxial growth of the modulated layer. Finally, as shown in Figure 15 and
confirmed in Figures 4 and 6, the TiAlSiN coating contains a large amount of amorphous
Si3N4, which surrounds the TiN grains and adds difficulties to connecting TiN and CrN
into a coherent structure [37].
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Figure 15. Schematic diagram of TiAlSiN/AlCrN coating with nanomultilayers structures.

The grain boundaries and crystallographic defects are more significant at the non-
coherent layer interfaces than within the layers. Vacancies, dislocations, and bond de-
formations due to the irregular arrangement of atoms cause loose crystal structure and
low stacking density at this location, which becomes a channel for the rapid diffusion of
atoms (ions). Moreover, the loosening of the crystal structure also causes a decrease in the
interatomic bonding force, which leads to a decrease in the diffusion activation energy and
an increase in the degree of diffusion. It should also be added that multilayer coatings have
finer grains than monolayer coatings, increasing grain boundaries.

Although interdiffusion between the titanium alloy and the coating does occur at high
temperatures, the experimental results were obtained under high-temperature conditions
lasting three hours. In the case of TiAlSiN/AlCrN, which has the highest N loss, the total
diffusion distance for 3 hours is 10.36 − 1.19 = 9.17 µm, and the diffusion rate is about
0.051 µm/min. Assuming that the coating is applied for 30 min of cutting, the diffusion
distance is only 1.528 µm. In the actual cutting process, it is not possible to maintain the tool
temperature at 950 ◦C for a long time because of the necessary pause or cooling imposed.
Therefore, the diffusion distance during cutting should be less than 1.528 µm.

3.5. Cutting Performance of Coated Tools

Turning Ti-6Al-4V experiments were implemented to study the wear and life of the
coated tools. Figure 16 shows that the lives of TiAlSiN monolayer-, AlCrN monolayer-, and
TiAlSiN/AlCrN multilayer-coated tools were 24.2 min, 25.9 min, and 30.4 min, respectively,
under the wear criteria of 600 µm on the flank face.
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(cutting parameters: Vc = 100 m/min, ap = 0.3 mm, f = 0.1 mm/r).

After cutting, SEM analysis was conducted on the rake and flank faces of the three
tools, and the results are shown in Figure 17. The identical wear characteristics of the three
coated tools are as follows. Crates are observed on the rake face, formed by the continuous
flow of chips at the same spot, resulting in localized excessive wear. Uniform wear and
tool-tip blunting can be observed on the flank face. Heavy Ti-6Al-4V adhesion was visible
on both the rake and flank faces. The differences in the wear characteristics of the three
coated tools are as follows. The TiAlSiN tool has a large coating flaking area on its rake
face, which is directly related to its low adhesion strength, which is consistent with the test
results of the adhesion strength of the TiAlSiN coating at room temperature revealed in
Figure 8. It must be mentioned here that although the starting oxidation temperature of
TiAlSiN coating is lower than that of the other two coatings at 965 ◦C, the highest cutting
temperature measured in cutting experiments for the 3 coated tools is 750 ◦C, which can
meet the need for oxidation resistance. Therefore, removing TiAlSiN coating should be
mainly attributed to its lower adhesion strength, rather than oxidation resistance. The
lower adhesion strength causes premature coating detachment before full service, seriously
affecting the coated tool’s life.
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The other two coated tools showed no coating flaking on the rake face, indicating that
the adhesion strength had met the cutting requirements. In this case, the coating is gradually
attrited, so as seen in Figure 16, the wear curves of both AlCrN- and TiAlSiN/AlCrN-coated
tools are smoother than that of TiAlSiN-coated tools. It must be pointed out that in the
static diffusion experiments in Figure 12, although more severe diffusion was also seen in
TiAlSiN/AlCrN multilayers than in AlCrN, the cutting life of the former was not lower
than that of the latter as a result, which indicates that diffusion with titanium alloys is not
the most critical factor in determining the cutting life of the tool, but rather the hardness H
and the modulus of elasticity E. More precisely, it should be the H3/E*2 value. The larger
H3/E*2 values of TiAlSiN/AlCrN multilayer coatings provide higher plastic deformation
and wear resistance.

4. Conclusions

Using the PVD cathodic arc evaporation technique, three types of nanocoatings—
TiAlSiN monolayer, AlCrN monolayer, and TiAlSiN/AlCrN multilayer—were prepared,
and the microstructure, mechanical properties, oxidation resistance, diffusion properties
with titanium alloy, and cutting performance of the coatings were investigated.

1. Among the many factors affecting coating performance, adhesion strength is the
primary condition for cutting applications. When the adhesion strength is above a
threshold value, the tool life starts to depend on other factors besides the adhesion
strength. TiAlSiN coating has the lowest adhesion strength, leading to the lowest
cutting life, despite its high H3/E*2 value and low titanium alloy affinity; AlCrN
coating has the highest adhesion strength among the three coatings, but not the
highest cutting life.

2. All elements within the coating and the titanium alloy will inter-diffuse at high
temperatures, but the Ti and N elements are the most significant. The intrusion of N in
the coating into the titanium alloy side is much greater than the intrusion of Ti in the
titanium alloy into the coating side. The nitride coating containing Cr aggravates the
loss of N in contact with the titanium alloy. In addition, the multilayer structure of the
coating does not prevent diffusion; on the contrary, the interlayer defects inherent in
the multilayer structure can lead to more severe diffusion than in a monolayer coating.

3. Compared to static diffusion experiments between the coating and the titanium alloy,
the main factor affecting the life of the coated tool is not the two-party diffusion, but
still the H3/E*2 value of the coating, given the shorter contact time and lower cutting
temperature in the cutting application. That is why although the TiAlSiN/AlCrN
multilayer coating has more severe diffusion than the AlCrN monolayer, the cutting
life is instead higher owing to its higher H3/E*2 value.
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