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Abstract: Compressive deformation was carried out in an Ni-Co-based superalloy with relatively low
stacking fault energy (SFE) at 725 ◦C and a strain rate of 10−2 s−1; the underlying micromechanisms
were investigated under true compression strains varying from 0.1 to 1.0. It was found that dislocation
slipping accompanied by stacking fault (SF) shearing dominated the compressive deformation under
the strain of 0.1 and 0.2. As the strain increased to 0.3 and 0.4, microtwinning was activated and then
interacted with dislocations, leading to the formation of dislocation tangles or blocky distorted region.
When true strain was further increased to 0.6, abundant subgains (SGs) with polygonous shape
appeared and then transformed into nanograins as true strain increased to 1.0. It is demonstrated that
high strain and microtwinning are the prerequisites for the evolution of nanograins in the deformed
Ni-Co-based superalloy. High strain can produce plentiful dislocations and distorted micro-sized SGs;
then the microtwins sheared these distorted regions and refined the micro-sized SGs into nanoscale,
which subsequently transformed into nanograins with further deformation.

Keywords: superalloy; nanograin; microtwin; dislocation; compression

1. Introduction

Ni-Co-based superalloys have been widely used in the discs of industrial gas tur-
bines for their superior combination of service performance that includes excellent high-
temperature strength, oxidation resistance, creep resistance, and fatigue properties [1]. In
view of the unmatched mechanical properties of the present superalloys employed in gas
turbines that demand a higher thrust–weight ratio and thermal efficiency, developing new
superalloys with better service properties and designing advanced coatings with special
protective effects are often seen as feasible approaches [2–4]. In recent years, a novel design-
ing principle that strengthens superalloy at service temperatures and weakens superalloy
at processing temperatures has been developed and applied in the modified Ni-Co-based
superalloy by controlling its alloying element and stacking fault energy (SFE) [5–8]. SFE
has a strong influence on the strengthening mechanisms, mechanical behaviors, and mi-
crostructural evolution of superalloys. Abundant studies have been carried out on the
deformation behaviors of conventional superalloys with higher SFE during tensile or
compressive tests. A consensus has been reached that dislocation motion dominates the
deformation process at different conditions, and the precipitation strengthening of the γ′

phase is greatly affected by the mode of dislocation slip [9,10]. The modified Ni-Co-based
superalloys possess low SFE due to their high electron hole concentration adding Co el-
ement [11], which exhibits distinct deformation behaviors with respect to the high-SFE
superalloys. In the low-SFE superalloys, it was proved that microtwins (MTs) could be
introduced during tensile deformation [12]. Furthermore, the ultimate tensile strength and

Coatings 2023, 13, 1325. https://doi.org/10.3390/coatings13081325 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13081325
https://doi.org/10.3390/coatings13081325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0003-1191-0782
https://doi.org/10.3390/coatings13081325
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13081325?type=check_update&version=1


Coatings 2023, 13, 1325 2 of 8

uniform elongation were improved synchronously because microtwinning was activated
in superalloys with decreased SFE at 650 and 725 ◦C [13]. When deformation occurred at
higher strains, nanograins (NGs) were found to be produced in the superalloys deformed at
a high temperature and low strain rate, which resulted in higher flow stress [14]. However,
the underlying mechanisms on the NG formation related to strain variation have not been
clarified in these low-SFE superalloys based on the experimental analysis.

Moreover, grain refinement generally benefits the mechanical properties of bulk metal
via strengthening and toughening the materials based on the Hall–Petch effect. In high-SFE
metallic materials such as pure Ni, pure Fe, Cu, and Cu alloys, deformation at a low temper-
ature and high strain rate can produce numerous NGs due to dislocation-mediated grain
refining [15–18]. However, the nanocrystallization of modified Ni-Co-based superalloys
shows them to be entirely different from these materials either in the deformation mecha-
nisms or deformation conditions. For better understanding the underlying mechanisms of
nanocrystallization with stain variation in Ni-Co-based superalloys, interrupted compres-
sive tests were carried out for a newly developed Ni-Co-based superalloy in order to clarify
the critical procedures for its grain refinement. NGs are beneficial for strengthening the
Ni-Co-based superalloys, which can be utilized in the gradient structure of the superalloys
that require surface strengthening.

2. Experimental

One kind of Ni-Co-based superalloy was selected as experimental materials with the
chemical compositions of 14.6Cr-3.7Mo-20.5Co-1.9Al-5.7Ti-0.26Fe-0.03C-0.051Zr-Ni bal
(wt.%). The master alloy ingots were first smelted in a 20 Kg vacuum arc furnace, and
then homogenized heat treatment was performed to alleviate composition segregation.
Then, round rods were cut from the treated ingots, which were subsequently encased and
extruded into test bars with diameter of 35 mm at 1160 ◦C. Finally, the test bars were sub-
jected to two-step solution treatments and two-step aging treatments for 1170 ◦C/4 h/AC
+ 1080 ◦C/4 h/AC + 845 ◦C/24 h/AC + 760 ◦C/16 h/AC (AC is air cooling), resulting in
an average grain size of 124 µm determined by electron back-scattered diffraction analy-
sis. Cylindrical specimens with dimensions of Φ 5 × 8 mm were machined by electrical
discharge machining, followed by mechanical polishing to eliminate surface scratch. Com-
pression tests were then carried out for the specimens at 725 ◦C and under the strain rate of
10−2 s−1 using a Gleeble 3800 thermal simulation test machine with temperature control
accuracy of ±1 ◦C, displacement measurement sensitivity of ±1%, and force measurement
accuracy of ±1%, which were interrupted at different true strains (ε) varying from 0.1
to 1.0 in order to study the dependence of deformation microstructures on compression
strains. The microstructure was characterized by an FEI Tecnai F20 transmission electron
microscope (TEM) operated at 200 kV. TEM slices with thickness of 500 µm were cut from
the middle part of the compressed samples along cross sections. The slices were further
ground down to 50 µm and perforated by a twin-jet electro-polisher in a solution of 10%
perchloric acid and 90% ethanol under conditions of 30~32 V and −22~−20 ◦C.

3. Results

The original microstructures were composed of coarse primary γ′ precipitates, tiny
secondary γ′ precipitates, intergranular carbides, and γmatrix (Figure 1). Two kinds of γ′

precipitate were coherently embedded in the face-centered cubic γ matrix. As compressive
strain increased, phase constituents showed no apparent changes, while the deformed
microstructures evolved continually. The deformation microstructures of the tested sample
at lower strains are depicted in Figure 2. It could be found that deformation was dominated
by dislocation motion since high density of dislocation tangles was introduced at the strain
of 0.1 (Figure 2a); meanwhile, fine SF debris scattered both in the γmatrix and primary γ′

precipitates. It could be found that SF propagation was inhibited by the phase interface
of the γ′ precipitates, leading to the independent growth of SFs, which were restrained
either in the γmatrix or primary γ′ precipitates (Figure 2b). As the strain increased to 0.2,
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dislocation slip became more prevalent in order to accommodate larger compression strain;
meanwhile, dislocation climb could be activated thermally when the slip of dislocations was
hindered by the γ′ precipitates. Dislocation motion that included slip and climb continued
to dominate the compressive deformation since high density of dislocation tangles also
appeared in the γmatrix (Figure 2c). The nucleation and propagation of SFs seemed to be
enhanced in that multidirectional growth of SFs could be detected both in the γ matrix and
primary γ′ precipitates (Figure 2d). Meanwhile, the length of SFs generated from different
slip systems increased obviously, and the SFs sheared with each other when they came
across one another. The strengthening effect of the primary γ′ precipitates could be reflected
by the fact that the γ/γ′ interfaces provided critical sites for hindering dislocation slip and
SF propagation; it was found that scarce dislocations or SFs nucleated in the interior of the
primary γ′ precipitates could pass across the γ/γ′ interfaces into the γmatrix.
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Figure 1. Typical microstructures of the samples observed by optical microscope: (a) original sample
(ε = 0); (b) compressed sample (ε = 1.0).

The deformation microstructures of the tested sample at medium strains are depicted
in Figure 3, which shows significant differences with respect to prior deformation at lower
strains. When deformed at the strain of 0.3, numerous MT bundles were introduced
that prevailed over the dislocation-controlled deformation and propagated parallelly with
smaller spacing (Figure 3a). Meanwhile, SFs that extended along different directions were
found to intersect with MTs, resulting in the formation of blocky obstacles, which would
hinder dislocation motion and increase the density of dislocation tangle around these
MTs. With the accumulation of dislocations due to the interaction between dislocations,
SFs, and MTs, distorted stripes were introduced which had nearly straight boundaries
that ran parallel to the MT boundaries, indicating the crucial role that MTs played on
the formation of these distorted regions (Figure 3b). When deformed at the strain of 0.4,
abundant distorted blocks emerged from the channels between the primary γ’ precipitates,
and the size of the distorted regions grew obviously (Figure 3c). Simultaneously, the density
of dislocation in the γmatrix decreased remarkably due to long-term dislocation recovery,
which was much more advantageous at higher strain. Under higher magnification, it could
be found that these distorted blocks were sheared by fine SFs that propagated along two or
more directions (Figure 3d). Furthermore, the interfaces of the primary γ’ precipitates and
γmatrix still had an impediment effect for SF shearing.
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Figure 2. Typical microstructures of the compressed specimens at lower strains: (a) dislocation
tangles, ε = 0.1; (b) SF nucleation, ε = 0.1; (c) SF propagation, ε = 0.2; (d) interaction between
dislocations and SFs, ε = 0.2.
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Figure 3. Typical microstructures of the compressed specimens at medium strains: (a) MT formation,
ε = 0.3; (b) strip-like distorted region, ε = 0.3; (c) distorted blocks, ε = 0.4; (d) the γ/γ′ interface,
ε = 0.4.
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The deformation microstructures of the tested sample at higher strains were depicted
in Figure 4. When deformed at the strain of 0.6, the primary γ′ precipitates were sur-
rounded by numerous intersected SFs/MTs; these SFs/MTs seemed to penetrate the phase
boundaries of primary γ′ precipitates on account of the continuous dislocation activities
(Figure 4a). Apart from the numerous distorted regions, some SGs were found in the
localized zone (Figure 4b). These SGs could be classified into two types, which included
polygonal SGs with straight GBs and banded SGs that arranged parallelly. When the com-
pressive test was carried out at the strain of 1.0, abundant SGs with polygonal shape formed
that replaced the original distorted dark regions (Figure 4c). Besides these SGs, numerous
nanograins (NGs) could be detected in the forms of equiaxial or irregular particles, which
was verified by the presence of diffraction rings using selected area electron diffraction
(Figure 4d). It was shown that SFs/MTs and SGs/NGs could hardly coexist since SFs/MTs
were constantly absent from the regions that had plentiful SGs or NGs when deformation
occurred at true strain of 0.6 and 1.0.
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Figure 4. Typical microstructures of the compressed specimens at higher strains: (a) shearing of
primary γ′ precipitates by SFs/MTs, ε = 0.6; (b) SG formation, ε = 0.6; (c) SG refinement, ε = 1.0;
(d) NG formation, ε = 1.0.

4. Discussion

It has been well documented that dislocation slipping dominates the high-temperature
deformation for superalloys with higher SFE, while SF shearing or microtwinning can be
motivated in superalloys with lower SFE [19–21]. The tested superalloy has relatively lower
SFE by adding 20% Co element in order to obtain a high concentration of electron hole. By
interrupted compressive deformation investigation, it is interesting to find that the defor-
mation micromechanisms of the tested superalloy underwent continual transformation
with the implied strain level, which was dominated by dislocation slipping at lower strain,
then SF/MT shearing at medium strain, and SG/NG forming at higher strain. It is worth
noting that oxygen atoms have obvious impacts on the deformation behaviors of the tested
samples since the deviation from stoichiometry and appearance of the oxygen anions can
lead to some changes in the charge state of the cations, which in turn will greatly change
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the electronic parameters [22,23]. That will seriously affect the practical application of the
tested materials. It is well known that the complex transition metals and alloys easily allow
the oxygen excess and/or deficit. In order to eliminate the adverse effects of oxygen atoms,
the compression tests were carried out in a vacuum.

In this study, when the samples were deformed at lower strain and 725 ◦C, {111} <110>
slip system was activated subsequently, then the a/2 <110> full dislocations dissociated into
a/3 <112> Frank partial dislocation and a/6 <112> Shockley partial dislocation to facilitate
the dislocation motion in face-centered cubic (FCC) metals [24]. Though the slipping
dislocations could pass across fine secondary γ′ precipitates by a shearing mechanism,
they would be impeded and piled up by larger primary γ′ precipitates unless dislocation
climbing was activated. With the continuous slipping and climbing, most of the dislocations
tangled around the γ/γ′ interfaces, which transformed into obstacles for the movement
of other dislocations. Subsequently, slip of paired a/6 <112> Shockley partial dislocations
gradually turned to prevail over the individual dislocation motion, which led to the
initiation of SF debris in the γmatrix and primary γ′ precipitates. Further deformation led
to the multidirectional initiation and propagation of SFs and accelerated the formation of
dense dislocation tangles.

When compressive deformation occurred at medium strains, microtwinning was
activated that produced numerous MT bundles. MT is a kind of special deformation twin
that has a thickness of 4–50 atom layers, which play an important role in the deformation
mechanisms of low SFE superalloys. It is reported that MTs could synchronously improve
the strength and plasticity by acting both as dislocation blockers and dislocation slip planes
in Ni-Co-based superalloys during tensile tests [13]. It has been well documented that MTs
were generally introduced by severe plastic deformation that applied high strain rate and
deformation amount at a low temperature [25,26]. However, this study shows that MTs
can be introduced in Ni-Co-based superalloy during compressive deformation at a lower
strain rate of 0.01 s−1 and a higher temperature of 725 ◦C, which is in accordance with
other superalloys [27,28].

The underlying mechanisms for MT formation in the precipitation strengthening
superalloys can be rationalized by a diffusion-controlled atom reordering theory [29,30].
This indicates that pseudo twins act as the critical prerequisite for MT formation, and
that these are produced by the pairwise passage of four identical a/6 <112> Shockley
partial dislocations along adjacent {111} slip planes. However, the pseudo twin has high-
energy Al/Al nearest neighbor bonds in its complex stacking structure that are unstable
in thermodynamics due to the relatively high anti-phase boundary (APB) energy in the
LI2-structured γ′ precipitate. When deformation is carried out at a high temperature
(650–800 ◦C) and low strain rate, the transformation of pseudo twins into true MTs will
be thermally activated by atom reordering that eliminates the high-energy Al/Al atom
bonds after irreversible atom diffusion and exchange [30]. Once MTs are introduced, MT
boundaries will act as the barriers for dislocation motion and result in dislocation tangle.
Meanwhile, the intersection of MTs and SFs tends to aggravate the impediment effect for
dislocation motion by locking dislocation slip. With the great increase in dislocation density
at MT boundaries, distorted stripes are evolved from the highly tangled dislocations and
detwinned MTs. Then, the distorted stripes will develop into larger distorted regions with
irregular shape during further deformation.

Under higher strain level, polygonal and banded SGs appear initially, and then trans-
form into equiaxial or irregular NGs as the further deformation is applied. When com-
pressive deformation is carried out at the strain of 0.6, the distorted regions are enlarged
to accommodate more dislocations. With the rotation of deformed grains, the orienta-
tion difference between the distorted regions and surrounding matrix increases gradually,
which changes into SGs as a result of severe deformation. Then, microtwinning will be
activated in the newly formed SGs when the orientation difference is high enough to hinder
dislocation motion and MT shearing into the γmatrix according to previous results [14].
Subsequently, the SGs are sheared and divided into finer SGs by MT cutting, which results
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in the formation of polygonal and banded SGs. With the continual refinement effects of MTs
in these SGs, the grain size of SGs decreases extremely and NGs will be introduced finally.
It is shown that MT formation serves as the precursor for nanocrystallization in the tested
superalloys since NGs are absent from the procedure without MTs and are introduced after
the formation of MTs. It can be rationalized that initial deformation is necessary to supply
numerous distorted regions for SGs formation, and microtwinning generally prevails over
dislocation slipping when dislocation motion is impeded in the distorted regions. MTs play
a critical role in subdividing and fragmenting the SGs, which serve as the precursor for NG
generation.

5. Conclusions

In order to understand the nanocrystallization mechanisms of the newly developed
Ni-Co-based superalloys, compressive tests were carried out at 725 ◦C and 0.01 s−1 with
different true strains. Three main conclusions can be drawn as follows:

(1) The deformation mechanisms of the tested superalloy evolve gradually with the
applied compression strain, which in our study was controlled by dislocation slipping
and SF shearing at lower strains, transformed into deformation microtwinning at
medium strains, and then dominated by SG and NG formation at higher strains.

(2) A nanocrystallization approach is found in an Ni-Co-based superalloy with low
SFE via compression deformation at a high temperature and low strain rate, which
exhibits obviously differently from the high-SFE alloys that NG formation creates at a
low temperature and high strain rate, revealing that the NG formation of the tested
superalloy is a thermal activation-assisted process of microstructural evolution.

(3) The NG formation of the tested superalloy can be ascribed to high strain and mi-
crotwinning. High strain applied during compression tests produces plentiful disloca-
tions and distorted micro-sized SGs; then, microtwinning resulting from low SFE will
refine the micro-sized SGs into NGs with further deformation.
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