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Abstract: One of the challenges of small modular reactors (SMRs) in comparison with large reactors is
the greater difficulty in achieving high burnups in smaller cores. With greater neutron leakage through
the periphery, a key factor is the neutron economy of the fuel cladding. However, all large supercritical
water-cooled reactor (SCWR) concepts have employed neutron-absorbing stainless steels and nickel-
based alloys in order to meet all the requirements in terms of corrosion and thermalhydraulics.
In order to achieve higher burnups and extend the time between refueling in a SCW-SMR, the
use of chromium-coated zirconium alloy as a potential fuel cladding candidate has been explored.
Chromium coatings up to a few micrometers thick have shown improved oxidation resistance of
zirconium-based claddings under operating conditions relevant to SCWR concepts. In this study, Zr-
2.5Nb alloy (UNS R60904) from pressure tube samples was coated using a physical vapor-deposition
(PVD) method. Oxidation tests were performed on coated samples at 500 ◦C and approximately
25 MPa in a refreshed autoclave. The effects of the oxide on heat transfer and hydraulic resistance
are also discussed in this study. Last, but not least, this study evaluates the coating cost of the fuel
cladding with chromium in a vacuum plasma spray process.

Keywords: chromium-coated zirconium alloy; fuel cladding; oxidation; heat transfer; hydraulic
resistance; thermal conductivity; coating cost; supercritical water-cooled small modular reactor

1. Introduction

The evolution of humankind is associated with the use of materials and tools to such
an extent that the phases of human civilization are named after the engineering materials
of the age. Part of the reason for this is that materials define the operating limit of key
engineering components. A prime example is the material chosen for the nuclear fuel
element cladding in a nuclear reactor, which largely determines the operating conditions.
As the nuclear industry continues to advance, new materials are needed to satisfy the strict
operational and safety requirements needed for the safe operation of a nuclear power plant.

Nowadays, there is an urgent need to reduce greenhouse gases (GHGs) worldwide as
part of climate change policies to limit global warming. These policies are encouraging the
phase-out of fossil-fired plants and transitioning to non-GHG-emitting sources of energy,
such as nuclear. Among others, these policies created an environment to revive SMR
concepts, as these meet several targets in terms of costs and financial risk reductions while
reducing our dependency on fossil fuels. Furthermore, several international programs have
been established to support the advancement of advanced nuclear reactors. Among them,
the Generation IV International Forum (GIF) was established in 2001. The GIF identified
six technologies as potential Generation-IV concepts, namely: gas-cooled fast reactors
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(GFRs), very-high-temperature reactors (VHTRs), molten salt reactors (MSRs), sodium-
cooled fast reactors (SFRs), lead-cooled fast reactors (LFRs), and supercritical water-cooled
reactors (SCWRs) [1,2]. Currently, the vast majority of SMR concepts are based on these
technologies.

Canadian Nuclear Laboratories (CNL) has supported Canada’s participation in the
Generation IV International Forum through the development of the Canadian SCWR
concept [3]. This concept aims to produce 1200 MWe. As Canada is aiming to become a
leader in SMR technology [4], the configuration of the Canadian SCWR concept has been
scaled down to assess the feasibility of a supercritical water-cooled small modular reactor
(SCW-SMR). This technology was chosen because SCW-SMRs are in a good position to
replace old fossil-fired plants of ~300 MWe, as several components can be salvaged, thus
potentially reducing the construction costs.

Generation-IV water-cooled reactors, such as supercritical water-cooled reactors, op-
erate at higher temperatures than the current water-cooled reactors to increase the ther-
modynamic efficiency of the plant, which translates to more electricity produced for the
same amount of fuel burnup. However, there is a limit on the maximum operating tem-
perature, which is limited by the material’s properties. Of particular interest is the fuel
cladding, as this component contains the nuclear fuel and acts as a safety barrier against
the potential release of fission products from the fuel to the coolant. The selection of the
cladding candidate demands a multidisciplinary approach as there are multiple constraints
that need to be satisfied. These constraints can be grouped into three major categories,
namely: (1) performance, (2) safety, and (3) economics [5]. The first one deals with the oper-
ational requirements of the component, such as a low-absorption cross-section (for neutron
economy), corrosion resistance, and a reliable operating life. It must also provide safety
functions, such as allowing for proper core cooling, and should confine the radioactive
material. Finally, the costs of the cladding should be competitive, or the overall gains must
at least offset the current cladding material to be economically justifiable.

Given these requirements, a chromium-coated zirconium alloy was proposed as a
potential candidate for use in an SCW-SMR. Chromium coatings up to a few micrometers
have imparted promising oxidation resistance improvements to zirconium-based cladding
under operating conditions relevant to SCW-SMR concepts [6–11].

In this study, Zr-2.5Nb alloy (UNS R60904) samples machined from a pressure tube
were coated using a physical vapor-deposition (PVD) method. Oxidation testing was per-
formed on the coated samples at 500 ◦C and approximately 25 MPa in a refreshed autoclave.

This approach focuses on the performance of a chromium-coated zirconium alloy
from a corrosion resistance point of view. In addition, a review of the current status of
the effect of corrosion on the performance and safety of the cladding and heat transfer
is presented. Finally, to understand the constraint of economics on fuel cladding, a cost
model is established to estimate and analyze the costs associated with coating this cladding
material with chromium in a vacuum plasma spray (VPS) process.

2. Materials and Methods

Zircaloy is currently used as a preferred fuel cladding material in the majority of
commercial nuclear power plants, as it meets the current requirements and operation
conditions. However, Zircaloy degrades under supercritical water conditions. For that
reason, a chromium-coated zirconium alloy was considered as a potential cladding material
for SCW-SMRs.

2.1. Zr-Based Alloy: Sample Preparation

Details of the materials selected for this study are listed in Table 1. Disk-shaped
coupons with a nominal diameter of 22 to 25 mm and nominal thickness of 3 to 4 mm were
machined from a Zr-2.5Nb W087 pressure tube wall with the largest surface area parallel to
the rolling/extrusion direction. A simplified diagram showing coupon cutting is shown in
Figure 1. Each coupon was stamped with an alloy designation and a serial number. The
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surfaces of the coupons were first polished using 360-grit SiC paper, followed by 600-grit
SiC paper. The coupons were then rinsed and washed in an ultrasonic bath of acetone,
followed by isopropyl alcohol to degrease the surfaces.

Table 1. Chemical Composition and Thermal Treatment of Zr-based Alloys.

Candidate
Material

Description UNS
Number

wt% ppm

Nb O C Cr Fe H Hf

Zr-2.5%Nb ASTM B353—12
Pressure Tube wall R60904 2.5 0.12 110 <100 450 <5 44
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Figure 1. Schematics of sample cutting for longitudinal coupons prepared from tube materials.

2.2. Surface Coating via Physical Vapor Deposition

Chromium coating was conducted by the Canadian National Research Council (NRC)
in an unbalanced closed-field magnetron sputtering (UMS) physical vapor-deposition
(PVD) coater (Teer 650) (see Figure 2). Argon was used as a working gas to produce plasma
for metal-target sputtering. A chromium target of more than 99.5% purity was used. The
deposition chamber was depressurized to below 7 × 10−3 Pa (5 × 10−5 Torr) before the
introduction of the working gas. The samples were cleaned with isopropyl alcohol prior
to insertion into the chamber. The planetary turning tables were rotated in the x–y–z
directions during deposition, resulting in a uniform coating on the sample surfaces. A
direct current (DC) of 6 A was applied to the target. A pulsed DC bias voltage of −40 V
was applied to the substrate. The deposition rate was determined to be about 2.46 µm/h.
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A scanning electron microscopy (SEM) picture of the as-deposited Cr coating on
the Zr-2.5Nb substrate is shown in Figure 3a. It can be seen that the Cr coating was
uniformly deposited as a dense layer onto the Zr-2.5Nb substrate. The energy dispersive
spectroscopy (EDS) results from the line scan shown in Figure 3b illustrate that the Cr
weight ratio accounted for the majority of the coating and the substrate had Zr and Nb as
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the main elements. The oxygen signal within the chromium layer (yellow line in Figure 3b)
was notable and uniform suggesting incorporation of oxygen during the coating process.
According to the cross-sectional SEM micrographs and EDS analysis, the thickness of the
as-deposited Cr coating on the Zr-2.5Nb substrate was about 5 µm.
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Figure 3. (a) SEM micrograph of as-deposited Cr-coated Zr-2.5Nb specimen; (b) EDS elemental
mapping performed on the cross-section of the as-deposited specimen with the line scan progressed
from Cr to base Zr-2.5Nb alloy; (c) EDS elemental mapping; and (d) line scan profile of the Cr-coated
Zr-2.5Nb specimen.
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3. Oxidation Experiments

The oxidation experiments were conducted in refreshed autoclaves in supercritical
water at 500 ◦C to evaluate the corrosion behavior of the pressure tube specimen coated
with metallic chromium (Table 1). Other coated specimens were tested at the same time
and not reported here, including chromium-coated Zr-1Nb, Zr-1.2Cr-0.1Fe, and titanium
coupons. The SCW-refreshed autoclave consisted of a 200 L Type 316 stainless-steel feed
tank equipped with a gas bubbler for deoxygenating the feed water, a main loop pump
(Vindum, syringe pump) delivering flow from 1 to 20 mL/min at pressures up to 25 MPa, an
Inconel 625 electrical preheater (Carbolite-Gero Model: EVT Tube furnace), and a 1 L Inconel
625 autoclave (Parker Autoclave Engineers) rated for 25 MPa and 575 ◦C. Downstream
of the autoclave was a cooler, back-pressure regulator (TESCOM, 4000 psi), and an ion
exchange column (see Figure 4).
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Coupons were inserted on a sample tree composed of pre-oxidized 316 L stainless
steel and exposed to the test solutions under the listed conditions in Table 2. The pH
(Endress Hauser Ceragel Model CPS71D), conductivity (Endress Hauser Condumax Model
CLS21D), and dissolved oxygen concentration (Orbisphere Electrochemical Sensor model
31110.02) of the feed water were monitored, as were the pH and conductivity of the test
solution exiting the autoclave.

Table 2. Corrosion test parameters representative of scaled-down SCWR.

Test Conditions Value

Test duration (h) A total of 1150

Autoclave temperature (◦C) 500

Heating rate up to 350 ◦C (◦C/h) 60

Heating rate from 350 ◦C to 500 ◦C (◦C/h) 5

Dissolved oxygen content (µg/kg) in feed tank 630

pH 25 ◦C at the outlet of the feed tank Diagnostic

Averaged feed water conductivity (µS/cm) 0.2

Flow rate (g/min) at the inlet to the preheater 15 ± 5

The corrosion of in-core materials is strongly influenced by the effects of the oxidizing
products of water radiolysis. When water is exposed to ionizing radiation, it decomposes
to form chemically reactive species, such as •OH, H2O2, and O2. These oxidizing species
increase the corrosion susceptibility of the in-core materials, including the fuel cladding.
Subramanian et al. [12] estimated the concentrations of O2 and H2O2 at 400 ◦C in the
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Canadian SCWR concept to be 0.3 mg/kg and 0.7 mg/kg, respectively. In the absence of
measured values, these were used as the baseline for water chemistry. The solution in the
feed tank was sparged with a mixture of oxygen and argon to obtain 0.63 mg/kg O2.

After each exposure, the specimens removed from the autoclave were visually in-
spected. The specimens were rinsed with deionized water and dried in a stream of hot air
until no mass change from water vaporization was observed. The specimens were then
kept in a desiccator before being weighed and sent for further post-experimental analyses.

4. Post-Oxidation Analyses
Mass Changes of Oxidized Specimens

Before the test, the surfaces of the bare (uncoated) coupons were shiny and metallic,
while the surfaces of the coated coupons were dull by comparison. After exposure to SCW,
the surfaces of the coupons were dulled, with a cloudy appearance characteristic of an
oxide film. No sign of spalling was observed on the exposed coupons (see Figure 5).
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Figure 6 shows the autoclave oxidation results from Cr-coated Zr-2.5Nb tested at
500 ◦C and 24.5 Mpa containing 630 µg/kg O2 in the feed water. The weight gain per unit
area (in mg/dm2) of each coupon was obtained by an analytical balance with an accuracy
of ±0.001 mg for samples weighing less than 10 g, and the standard deviation between
measurements of the same mass was 0.02 mg.
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At the end of the 1150 h, the weight gain of the coated Zr-2.5Nb pressure tube coupon
(dotted line) was about 50 mg/dm2. To put this number into context, the as-received
pressure tube was oxidized under similar SCW conditions, and the weight gain at the
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end of 48 h was about 89 mg/dm2. A calculated penetration depth (the metal penetration
indicating metal loss during oxidation can be calculated assuming that all oxidized metal
atoms are retained on the surface as oxides: Penetration(in µm) = WG×

(
1− fo/ox

fo/ox

)
× 1

ρalloy
,

where WG is the weight gain in mg/dm2, fo/ox is the weight fraction of oxygen in oxide,
and ρalloy is the density of the material in kg/m3) of 4 µm was obtained from the 2-day
exposure alone. In contrast, a metal penetration of only 1.5 µm after 1150 h was calculated
for the chromium layer on the coated coupon, assuming that only chromium was oxidized
and only Cr2O3 was formed. In the present SCW study, the Cr-coated Zr-2.5Nb showed
improved corrosion resistance over the original Zr-2.5Nb pressure tube coupon, with a
penetration depth of only 0.03 µm/d versus 2 µm/d, assuming linear oxidation kinetics.
The design life of SCW-SMR fuel cladding is expected to be 5 years; therefore, the chromium
layer may have to be 57 µm or thicker to endure. Long-term corrosion tests would be
needed to confirm the assumed linear kinetics. A coating of such a thickness would
have implications for the heat transfer and neutron economy of the fuel cladding, and
would require further investigation. How oxides on corroded coated-Zr-2.5Nb coupons
affect the heat transfer is demonstrated by thermal conductivity measurement in Section 5.
In addition to the change in the materials’ performances, the cost of the coating is also
considered in Section 6 via a cost model.

Previous experimental results on Cr-coated coupons exposed to 500 ◦C and 30 MPa of
pure D2O by Khatamian [8] are included in the figure for comparison. In his experiments,
Zr-2.5Nb was obtained from a 1 mm thick sheet supplied by ATI-Wah Chang, Albany. It
was cold-rolled and annealed at 650 ◦C. It is important to note that a static autoclave was
used by Khatamian. At a similar temperature, Cr-coated samples show similar weight
gains. The weight gains differ within a factor of two at 650 h exposure; the weight gains of
the coated specimen in the current study and the value obtained from Khatamian’s work
are 18 and 35 mg/dm2, respectively.

5. Effect of Coating on Heat Transfer

Although chromium coatings on zirconium alloy fuel cladding constitute only a frac-
tion of the cladding thickness, they provide a barrier between the base cladding and coolant.
Chromium coatings are expected to provide the following advantages over uncoated
cladding: harder surface, minimum oxidation during normal operation, and improved
high-temperature strength and steam oxidation kinetics [13].

Recent research and development (R&D) of ATF (accident-tolerant fuel) focused on the
application of Cr-coated zirconium alloy fuel cladding for current subcritical light-water
reactors (LWRs). Lee et al. [14] conducted flow boiling experiments to evaluate the heat
transfer effects of Cr-coating on zirconium alloy fuel cladding. The tests were executed at
atmospheric pressure. It was found that the heat transfer coefficients (HTCs) increased by
5.2% compared with a non-coated zircaloy-4 cladding. Cold-spray Cr coating increased the
surface roughness of the fuel cladding, which allowed for generating smaller and faster
bubbles; thus, the HTC improved.

Another study carried out by Su et al. [15] analyzed the critical heat flux (CHF)—HF
is a limiting heat flux at which the heated surface can no longer maintain continuous liquid
contact—on chromium-coated zirconium alloy and bare zirconium alloy surfaces. The
authors found that the chromium surface and the bare zirconium alloy surface had similar
wettability and that there was practically no difference in the steady-state CHF limits, both
under low-pressure and high-pressure conditions. The CHF limits were also similar when
the chromium-coated surface was covered by 40 µm of CRUD (Chalk River Unidentified
Deposit) deposit.

Although the observations presented by Su et al. are relevant for subcritical conditions,
they are also important for accident scenarios in SCWRs, as these conditions are an exten-
sion of current LWRs, thus covering several phenomena and design-basis accidents (DBAs).

Furthermore, as SCWRs operate above the critical point of water (supercritical), the
operating conditions are more demanding than those of current LWRs, with corrosion being



Coatings 2023, 13, 1648 8 of 19

one of the main concerns, especially on the fuel element cladding, potentially affecting the
performance and safety of the reactor core design. Corrosion deposits on the cladding affect
mainly two phenomena, namely hydraulic resistance and heat transfer, both impacting the
thermalhydraulics design requirements. The surface roughness of the oxide layer directly
affects the hydraulic resistance by enhancing the flow turbulence, in theory reducing the
cladding temperature [16]. However, if the oxide layer is thick enough, it could act as an
insulator, thus changing the heat transfer characteristics of the fuel element, increasing the
risk of overheating the cladding, and offsetting the benefits of the enhanced turbulence.
This observation suggests that there is a threshold in the oxide layer thickness that needs to
be identified. Currently, CNL is developing a model to predict the cladding temperature
subjected to corrosion deposits and to estimate the threshold. However, to find this value,
one of the most important transport variables needed is the thermal conductivity of this
oxide layer. CNL conducted experiments to measure the thermal conductivity of the
oxidized coupons.

Thermal Conductivity Measurements

An apparatus was developed to measure the thermal conductivity of the coated
samples, where the surface coating may be intentionally deposited on the sample to achieve
a desired outcome or may be due to uncontrolled processes, such as oxidation. The
thermal conductivity apparatus used for the present investigations adopted the Divided
Bar methodology, with several modifications implemented to accommodate the nature of
the specimen in the investigation. The apparatus is shown in Figure 7 and the setup for the
test sample is shown in Figure 8. The apparatus consists of a 5 kN load bar connected to
a furnace that has three independently heated zones capable of reaching 800 ◦C in each
zone. The test sample arrangement comprises two control specimens, which have a known
thermal conductivity, that sandwich the sample for which the thermal conductivity is being
measured. The load is transferred to the test sample arrangement through extension rods
to provide good contact at the interfaces between the three components of the test sample
arrangement. The contact between the components is also further improved by using
high-conductivity boron nitride paste at these interfaces. Using the three-zone furnace, a
temperature gradient is imposed on the test sample arrangement. The three-zone furnace
is also used to set a higher ambient environment, which reduces the heat loss from the
test sample arrangement. The heat loss is further reduced by insulating the test sample
arrangement with a porous 0.85 wt% alumina–silica composite (shown in Figure 7) and
wrapped in alumina wool to insulate the gaps for the thermocouple penetration. Each
control specimen is instrumented with five thermocouples in series to measure the heat
flow and capture the rate of radial heat loss from the insulated test sample arrangement.
The thermocouples are spaced 3 mm apart.
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To quantify the thermal conductivity of a coated sample, a benchmark test was per-
formed with a polished sample (benchmark sample) that was not coated. The benchmark
sample was made from Zr-2.5Nb material. The test was then repeated with the coated
specimen (test sample). The thermal conductivity was obtained from steady-state data
using the Fourier heat conduction equations across the test sample arrangement. Under
steady-state conditions for a set of thermal resistances connected in series, the thermal
conductivity for any given sample is given by:

k j = −ki·
Ai
Aj
· dTi/dxi
dT j/dxj

· · · i 6= j, (1)

where k is the thermal conductivity, A is the cross-sectional area, and dT/dx is the tem-
perature gradient along the heat conduction path. A significant portion of measurement
uncertainty is incurred when estimating the interface conductance between the control
specimen and the sample based on the measurements. To help reduce this uncertainty, the
benchmark sample geometry is made to match the test sample geometry closely (±0.1 mm).
The thickness of the as-deposited Cr coating on the Zr-2.5Nb substrate was about 5 µm.
The overall sample diameter of the tested sample (Cr coating with 1150 h oxidation) was
12.20 mm and the overall sample thickness was 4.16 mm. The conductivities of the bench-
mark sample were measured as 16.61 and 16.69 W/(mK) ± 1.1 W/(mK) at 140 ◦C and
250 ◦C, respectively. The results of the measurements on a Zr-2.5Nb chromium-coated
sample that was also oxidized for 1150 h is shown in Table 3 below. The reported measure-
ment uncertainty propagated from the measured temperatures and pressure through the
root-sum-squared method. The measured thermal conductivities of the coated samples
were lower than those of the bare samples. Thus, lower heat transfer rates or higher surface
temperatures would be expected for conduction heat transfer. These conductivity values
serve as an input to the overall heat transfer modeling, which would incorporate forced
convection or two-phase heat transfer. The overall heat transfer modeling would capture
potential heat transfer enhancements as a result of the porosity and increased roughness of
the surface.
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Table 3. Thermal conductivity measurements of Cr-coated Zr-2.5Nb.

Temperature Thermal Conductivity Measurement Uncertainty

140 ◦C 10.25 W/(mK) ±3 W/(mK)

250 ◦C 9.04 W/(mK) ±3 W/(mK)

6. Cost Analysis of Coated Fuel Cladding

The coating selection for the oxidation experiments was based on the familiarity
of chromium coating with the PVD method to conduct the initial R&D. Ongoing R&D
will consider alternative coating processes, such as a future in-house VPS method. The
differences in microstructure and surface uniformity between these coating methods could
result in different oxidation behaviors. In addition, the neutron economy will have to be
assessed. These performance indicators would need to be evaluated in relation to coating
method aspects, such as commercial scalability and deposition time. Due to resource
availability and future in-house development, a VPS method is chosen for initiating R&D
coating economics for the SCW-SMR concept.

The VPS process is expected to be applied to coating the outer surface of a zirconium-
based fuel cladding of a 64-element fuel bundle in an SCW-SMR, similar to that shown in
Figure 9. The VPS process, which is a direct current (DC) plasma spray process (Figure 10),
is also assumed to use a 99.99% purity Cr powder for evaluating the cost of coating.
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and its cross-section [17].

A VPS process is useful for meeting SCW-SMR design requirements, because the
VPS process “[p]revents in-flight and post-deposition oxidation of the spray powders
insuring an oxide-free deposit” [18]. The VPS process uses inert conditions (inert gases to
generate the plasma) to avoid both an oxidizing atmosphere and a reducing atmosphere.
An oxidizing atmosphere is avoided (no air or oxygen in the plasma gas) to prevent the
oxidation of the coating and the cladding. A reducing atmosphere is avoided (no hydrogen
in the plasma gas) to prevent the hydriding of the cladding (Zr absorbs hydrogen, which
precipitates as hydrides, embrittling the material).
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process, while the black arrow indicates the resulting product (i.e., the coating on the substrate). The
schematic excludes cold spray and weld coating [19].

The estimated cost of coating fuel cladding is, therefore, based on a VPS process with
chromium coating. Furthermore, as coating cost information is sometimes propriety, the
costing approach presented below is intended to satisfy two aspects of the Generation IV
International Forum’s (GIF) charter [20]:

1. Research Emphasis: “The principal interest of GIF is in intermediate and long-term research”;
2. Open Research: “To the extent practicable, the R&D [research and development]

fostered by the GIF should be open and nonproprietary”.

The costing approach is thus shown in a transparent manner to enable an under-
standing of the connection between reactor design requirements and coating options. The
inherent uncertainty in the cost estimates should be recognized, as both the fuel concept
and the coating options require further R&D.

6.1. Total Unit Cost of Coating

Two common methods of estimating the total unit cost of producing a coating are:
(1) the cost to coat a specific part; and (2) the cost to spray a given amount of powder onto
a substrate [21,22]. In either case, the total unit cost consists of two broad categories: the
direct costs (Cdir) and the indirect costs (Cind) [18,23]. More specifically, the total unit cost
of producing a coating per part (Ctotpart) in equation form is

Ctotpart =

(
Cdir +

Cind
Nhy

)
× Nhp, (2)

where Nhy is the operating hours per year and Nhp is the number of hours per part [18,23].
In the second method, a generic cost function of the total cost per 1 kg of coating deposited
(Ctot) is shown in Equation (3)

Ctot = Cpwd + Cgas + Celc + Clab︸ ︷︷ ︸
direct cost

+ Ceqp︸︷︷︸
indirect cost

(3)

where Cpwd is the cost of powder used per 1 kg of coating deposited, Cgas is the cost of gas
used for depositing 1 kg of material, Celc is the electricity cost per unit mass of coating, Clab
is the labor cost per unit mass of coating, and Ceqp is the equipment cost allocated to the
deposition of 1 kg of material [22,24–28]. In the present study, the second method is used,
since less information is required [22,24,25]. In addition, this aspect is important because
the primary data source for estimating a vacuum plasma [21] used both costing methods
for providing cost estimates, but did not provide the methodology, nor the full assumptions
or clarity on using some of the data provided.
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The equations provided below for the main cost categories that make up the broad
costs are guided by several references [22,24–30], which provide more details than those
presented below. For instance, the maintenance costs and maintenance time are omitted.
In addition, there are no adjustments for inflation from data sources. An economic factor
not considered in this and other studies to determine the expected price of coating is profit;
hence, studies focus on the unit cost. Despite these limitations, the equations for the main
cost categories below may be used as “a basis for generating more exact cost figures” [29];
hence, these equations provide a first approximation for calculating the order of magnitude
of cost estimates.

Future experiments at CNL are expected to use a plasma spray process similar to the
ultra-low-pressure plasma spray (ULPPS) system discussed in [18,31]. Potential changes to
the cost estimates based on the equipment used from [21] are, therefore, discussed.

6.1.1. Direct Cost

Since the spray material will be in powder form, the material costs are determined
by the powder cost. This cost is determined by the amount of powder used or consumed
(mpwd) per 1 kg of deposited material and the powder price (cpwd) [22,24,25]

Cpwd = mpwd·cpwd. (4)

The material powder used is determined by

mpwd =
1 + φ

YDE
, (5)

where φ is the fractional overspray and YDE is the deposition efficiency [22,24,25].
The total gas cost for depositing 1 kg of material (Cgas) is the amount of gas (mgas)

used to deposit 1 kg of material multiplied by the unit cost of gas (cgas) [24,25]

Cgas = mgas·cgas. (6)

In addition, the amount of gas is determined by the gas flow rate (
.

mgas) and the deposition
time (trun) in Equation (7) [24,25]

mgas =
.

mgas·trun. (7)

To account for a mixture of gases [28], such as helium (He) and argon (Ar), Equations (6) and (7)
are combined in Equation (8) and adjusted by mass fractions

Cgas = wAr·
.

mAr,gas·trun·cAr + wHe·
.

mHe,gas·trun·cHe (8)

where wAr is the mass fraction of Ar used,
.

mAr,gas is the Ar gas flow rate, cAr is the cost of
Ar ($/kg), wHe is the mass fraction of He used,

.
mHe,gas is the He gas flow rate, and cHe is

the cost of He ($/kg).
Electricity is the only source of energy in the plasma process to generate the energy

for the gas and creating the plasma. The cost of electricity depends on the power level
(qelc) of the equipment, deposition time (trun), and the electricity unit cost (celc, $/joule or
$/kWh) [28]

Celc = qelc·trun·celc. (9)

Labor costs (Clab) depend on the number of workers (qlab), the time to complete the
job (tcomp), and the labor rate (clab, $/h), and [22,28]

Clab = qlab·tcomp·clab. (10)
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6.1.2. Indirect Cost

Typically, indirect costs consist of various factors, such as maintenance workshop,
quality control laboratory, and general administrative and expenses [18,23], but the most
prominent component in coating cost studies is the amortization (ACeqp) of the capital
investment in equipment acquisition (ceqp). The formula for amortization depends on a
fractional annual interest rate (i) and equipment lifetime (n) [22,26,30]

ACeqp =
i·(1 + i)n

(1 + i)n − 1
·ceqp. (11)

An additional equation divides the ACeqp by the annual operating time (top) of the
equipment and multiplies the time to run an operation to yield the equipment cost per 1 kg
of coating deposited [22,24,25]

Ceqp =
ACeqp

top
·trun. (12)

6.1.3. Time

When applying the element of time to the main cost equations, it is useful to break
down the model equipment run time (trun) required to deposit 1 kg of coating deposit into
the powder feed time (ton—also referred to as the deposition or coating time) and idle time
(to f f ) [22,24,25]

trun = ton + to f f . (13)

The time necessary to deposit a coating (ton) is determined by dividing the powder used
or consumed (mpwd) per 1 kg of deposited material by the powder feed rate (

.
mpwd) [22,29,30]

ton =
mpwd
.

mpwd
=

(1 + φ)/YDE
.

mpwd
. (14)

For the purposes of this study, no assumption is made for to f f , which is usually
considered an independent variable. Hence, the costing in this study assumes trun = ton.
In addition to incorporating the deposition (coating) time, the time to complete a job
usually accounts for preparation and post-coating operations [22,26]. For the present study,
however, the time to complete the job is assumed to be equal to the deposition time, i.e.,
trun = ton = tcomp.

In equation (12), the amortization cost was divided by the operating time of the
equipment. This time period was calculated by [21,30]

top = shi f t× hours per shi f t per day× days per year. (15)

6.1.4. Total Unit Cost

The equations of the coating cost model are used to calculate the total unit cost estimate
for depositing 1 kg of coating based on the parameter values in Table 4. Note that the
currency in the tables and the cost analysis is expressed in American dollars.

Table 5 presents the coating costs of using chromium in a VPS method for major cost
categories and the total unit costs. The distribution of the major cost categories is presented
in Figure 11. The two largest costs are the powder cost and the amortization cost of the
equipment.
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Table 4. Parameters for Calculating Costs.

Parameter Name Variable Value Unit References and Notes

Fractional overspray φ 0.3 Fraction Based on Meyer and Rusch [21]
Deposition efficiency YDE 0.7 Fraction Meyer and Rusch [21]
Powder spray rate

.
mpwd 4.54 kg/h Meyer and Rusch [21]

Powder unit cost
(mesh-325) cpwd 364 $/kg Alfa Aesar [32]

Mass fraction of argon wAr 0.97 Fraction Calculated based on Meyer and Rusch [21]
Mass fraction of helium wHe 0.03 Fraction Calculated based on Meyer and Rusch [21]

Argon gas flow rate
.

mAr,gas 10.788 kg/h Conversion based on Meyer and Rusch [21], and
weight and volume equivalents [33]

Helium gas feed rate
.

mHe,gas 0.305 kg/h Conversion based on Meyer and Rusch [21], and
weight and volume equivalents [33]

Argon price cAr 2.56 $/kg Becker [34]
Helium price cHe 40.39 $/kg Becker [34]
Electric power level qelc 80 kW Meyer and Rusch [21]
Electricity price celc 0.09 $/kWh Boulos [23]
Number of workers qlab 1 Meyer and Rusch [21], and Stier [35]

Wage rate clab 65.25 $/h
Selected lower bound of EUR 60/h–EUR 80/h
based on Stier [35], and Euro to American dollar
exchange rate of 1.0875 [36]

VPS equipment cost ceqp 2,500,000 $ Meyer and Rusch [21]
Interest rate i 0.1 Fraction Meyer and Rusch [21]
Amortization time n 10 Years Meyer and Rusch [21]

Operating time per year top 2000 h/year 1 shift (Meyer and Rusch [21]), 8 h (de Botton
[30]), 250 days (de Botton [30])

Equipment run time trun 0.41 h/kg Present study
Deposition time ton 0.41 h/kg Based on Meyer and Rusch [21]
Idle time not applied Present study
Time to complete tcomp 0.41 h/kg Present study

Table 5. Summary of Chromium Coating Unit Costs for VPS Process.

Cost Category Unit Cost ($/kg of Coating Deposited)

Powder 676
Gas 11.14

Electricity 2.95
Labor 26.72

Total Direct Cost 716.80
Amortization of Equipment 83.29

Total Indirect Cost 83.29
Total Unit Cost of Coating 800.09

Costs in bold highlight sub-total and total unit costs.

Future experiments will likely use a plasma spraying process with specifications closer
to those specified in a ULPPS process (Table 6). The specifications in Table 6 correspond to
experiments based on reconstructing existing conventional low-pressure plasma spraying
processes (LPPS, also termed VPS) [31]. Regarding power costs, the ULPPS process is
expected to yield a lower unit cost than the conventional VPS process. This benefit may
be offset, since the powder feed rate for the ULPPS process is lower than that of the
conventional VPS process. An additional increase in cost could stem from the increase in
gas costs, since the gas flow rate used in the ULPPS is high [18]. Despite the uncertainty in
coating costs with a ULPPS process, the process is expected to produce superior coatings of
greater density and adhesion [37].
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Table 6. Parameter Specifications for a ULPPS.

Operating Parameters Parameter Values 1

Plasma gas flow rate Ar 35 slpm 2

He 60 slpm
Net power 60 kW

Powder feed rate 2× 8 g/min
1 Parameter values correspond to specification A in Mauer [31], and Boulos, Fauchais, and Heberlein [18]. 2 slpm
is standard liters per minute.

Alternative considerations are different powders and spray processes. While pure
chromium has been studied for supercritical water environment conditions previously, the
Ni-Cr alloy has also been studied under similar and sub-critical conditions [38]. In light of
the potentially different protection performances amongst the powder options, optimizing
the plasma spray process and considering the different fuel residence times to minimize
fuel cycle costs are recommended.

An alternative to the VPS process is a cold spray (CS) process. The CS process will
likely increase the coating thickness to 50 µm [35]—the VPS process can also achieve 50 µm
thickness. This suggestion has been considered for accident-tolerant fuels in light-water
reactors [38–40]. A review of light-water reactor studies indicated that “because the coating
layer is significantly thinner than the cladding, the neutronic performance should be close
to that of the current UO2–Zr system, with the exception of the neutron economy. The
additional coating material in the cladding leads to greater neutron absorption by materials
other than U, and the cycle length is reduced if the same type of fuel is used. Nevertheless,
this issue can be easily resolved by slightly increasing the 235U enrichment” [40]. For an
SCW-SMR, however, the extent to which the thickness when using CS or the thickness when
using either VPS or ULPPS would affect the neutron economy and its cost implications for
an SCW-SMR are unknown.

Regardless of the potential changes in using chromium coating discussed thus far, an
additional concern is the use of helium gas. Helium gas is typically considered scarce and
has a relatively high price (could be as high as USD 100/kg) [35], with the most recent
helium shortage supply in 2022 [41]. Alternatives to address the helium challenges are to
consider alternative gases, such as nitrogen, as well as the technological option of recycling
helium [22,26,31,35].

To complement the aforementioned topics, such as powder and gas selection, further
analysis may consider the sensitivity of the total coating unit cost to powder and gas price
changes, and the economic conditions that enable such changes.
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6.2. Coating Cost of a Core

The cost of coating fuel cladding (Ccoat f c) all the fuel elements in the reactor core of a
SCW-SMR was calculated using Equation (16)

Ccoat f c = de× sa× ρ× Ctot, (16)

where de is the coating depth, sa is the coating surface area, ρ is the coating powder density,
and Ctot is the total unit cost of coating, as calculated above.

The parameters for the equation correspond to the required coating weight in a reactor
core (Table 7) based on the expected dimensions of a 64-element fuel bundle, and the
chromium coating cost provided in the previous sub-section. Given these assumptions, the
estimated cost is approximately USD 527,200 per reactor core.

Table 7. Fuel Cladding Specifications for Coating Weight for a Reactor Core.

Fuel Cladding Specification Variable Parameter Value Unit References

Coating Depth de 0.00005 m (50 µm) Present study
Coating Surface Area sa 1843 m2 Present study
Chromium Density ρ 7150 kg/m3 (7.15 g/cm) [42]

Weight 658.87 kg Present study

7. Conclusions

The lessons learned during the development of the Canadian SCWR [3] have been
used for the development of the Canadian SCW-SMR concept. Of utmost importance is the
early identification of key variables, design targets, requirements, and constraints, and their
interrelations. The identification of these parameters requires multiple models to draw the
interrelations. For that reason, a methodological and systematic approach is used. In this
approach, three groups of requirements are used to classify and identify the parameters,
including: (1) performance, (2) safety, and (3) economics [5].

This study described and compared the results of corrosion tests. In order to reduce
the corrosion rate of zirconium fuel cladding under SCW-SMR conditions, Cr-coated Zr-
2.5Nb pressure tube was proposed and tested under relevant conditions for approximately
48 days. The effectiveness of the coating in reducing the corrosion of a standard Zr-2.5Nb
pressure tube was demonstrated. Weight gain was used for assessing the performance of
the coupon, which had some inherent uncertainties, but was useful as a first approximation.
The corrosion performance of the Cr-coated Zr-2.5Nb pressure tube sample was consistent
with that in previous work under 500 ◦C and 25 MPa oxygenated SCW, the conditions
relevant to the Canadian SCW-SMR. When the life of the SCW-SMR of fuel cladding is
expected to last 5 years, a thicker chromium coating might be considered to substantially
the reduce corrosion rate of the zirconium fuel cladding. A thicker coating, however, could
potentially affect the heat transfer and neutron economy of the fuel cladding. Further study
on these two fronts is required.

This study also presented a limited review of the important safety aspects of chromium-
coated zirconium alloy claddings, such as the potential impact on heat transfer due to an
increase in oxide thickness and the corresponding reduction in thermal conductivity. This
information is needed for a more realistic estimation of the peak cladding, fuel temperatures,
and maximum oxide layer thickness. CNL is working on a heat transfer model to estimate
the temperature profiles of oxidized claddings. However, the model requires the thermal
conductivity of the oxide layer. To close this gap, thermal conductivity measurements of
the exposed coupon were conducted and the results are presented in Table 3.

Finally, a cost model for coating in a vacuum spray process was applied to estimate
and analyze the chromium coating costs of fuel cladding. The estimated total cost of
coating fuel cladding with chromium is approximately USD 527,200 per reactor core. The
cost analysis indicated that chromium powder was the major cost item determining the
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total cost when compared with equipment, labor, electricity, and gas costs. The coating
cost method and estimates are expected to be used for further analysis when considering
alternative fuel bundle options.
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