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Abstract: This study explores the influence of angle of attack (AOA) on the icing distribution
characteristics of asymmetric blade airfoil (DU97) surfaces for wind turbines under icing conditions
by numerical simulation. The findings demonstrate a consistence between the simulated ice shapes
and experimental data. The ice thickness distribution on the lower surface of the leading edge
exhibits a trend of first rising and then declining along the chord direction while showing a gradually
decreasing trend on the upper surface. The ice distribution range on the upper surface of the
trailing edge is broader than that on the lower surface. The peak ice thickness at the trailing edge
rises significantly as AOA increases from 5◦ to 10◦, and at the leading edge raises dramatically at
droplet sizes of 30–40 µm and wind speeds of 5–10 m/s. The peak ice thickness is more significantly
influenced by AOA than by ambient temperature due to the combined effect of airflow characteristics
induced by AOA and latent heat (phase change) and sensible heat (thermal convection and thermal
radiation) caused by ambient temperature. The findings offer valuable insights into the flow and heat
transfer physics, and can operate as references for wind turbine anti/de-icing technology.

Keywords: wind turbine; DU97 blade airfoil; angle of attack; icing distribution characteristics;
numerical simulation

1. Introduction

After years of rapid development, wind energy has become one of the most mature and
commercially promising forms of renewable energy [1]. Wind power generation has become
the main utilization method for wind energy worldwide. To improve power generation,
wind turbines are installed in cold regions with high altitude due to high air density [2].
Nevertheless, owing to frequent occurrence of extreme climate conditions, wind turbine
blades can experience an icing phenomenon that results in reduced power production,
reduced service life, disrupted blade aerodynamics and safety hazards induced by ice
shedding [3,4]. Therefore, investigating icing distribution characteristics on blade surfaces
under various icing conditions is a cutting-edge topic of common concern to researchers in
the field of wind energy [5], which contributes to the development of anti/de-icing design
technology for wind turbine blades.

The icing wind tunnel experiment is a common approach used to explore the icing
distribution characteristics. Li et al. [6] reported the icing characteristics on the NACA0018
blade airfoil at different angles of attack; Shu et al. [7] obtained actual ice distribution on
the blade under atmospheric icing conditions; Gao et al. [8,9] described the influence of ice
distribution on aerodynamic characteristics of wind turbine blades at different angles of
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attack; Jin and Virk [10] reported that the ice shapes on the surface of the S832 airfoil were
more complex than those on the surface of the S826 airfoil under the wet icing condition;
and Hu et al. [11] proposed a novel method for measuring ice accretion thickness on the
wind turbine blade.

However, it proved challenging to examine the ice distribution of full-size models due
to limited icing wind tunnel size. Thus, it was crucial to obtain the ice distribution of the
scaled models that corresponded to full-size models. Owing to indistinct flow and heat
transfer physics, it was also difficult to obtain similarity parameters in experiments.

During the last few decades, numerical methods, which can provide better understand-
ing of flow and heat transfer physics regarding ice accretion, have received widespread
attention. For instance, Homola et al. [12] reported that ice accumulation on the surface
of the blade airfoil significantly degraded aerodynamic characteristics under the condi-
tion of higher angles of attack; Jin and Virk [13] compared the icing characteristics of
NACA0012 and NACA23012 airfoils at various angles of attack; Wang et al. [14] analyzed
the aerodynamic performance of iced airfoils at different angles of attack; Hann et al. [15]
reported the effect of angle of attack on the aerodynamic performance of iced S826 airfoil;
Baizhuma et al. [16] obtained the icing distribution characteristics of the NACA0015 and
NACA0018 airfoils at different azimuthal angles; and Ibrahim et al. [17,18] predicted the
quantity of ice accumulation on wind turbine blade surfaces at various angles of attack.

According to the literature above, limitations in the size of icing wind tunnel ex-
periments mean that only scaled models can be selected to examine the effect of icing
characteristics distribution on the blade surface, and it is therefore very important to obtain
the similarity relationship between scaling and full-size models. This requires a deeper
understanding of the mechanism of heat and mass transfer. The numerical simulation
provides a highly effective method to obtain more physical parameters, which contributes
to better understanding of icing characteristics. Most researchers have analyzed the effect
of AOA on the icing characteristics of different blade airfoil surfaces, but the above study
has certain limitations, which follow:

(1) The effect of AOA on the icing distribution characteristics of the DU97 blade airfoil
under icing conditions has not yet been identified.

(2) There are few reports on the mechanism of heat transfer and flow for iced blade
airfoils that has been affected by AOA.

The aims of this study follow: (a) to use numerical simulation to explore the influence
of AOA on the icing distribution characteristics of DU97 blade airfoil under icing conditions;
and (b) to reveal the mechanism of heat transfer and flow for iced blade airfoils.

2. Experiment
2.1. Setup

The reflux icing wind tunnel was built at Northeast Agricultural University, and
encompassed a spray system, refrigeration system, air supply system and a test section
with cross-section dimensions of 250 mm × 250 mm, as illustrated in Figure 1. The DU97
blade airfoil with a chord length of 0.1 m and that was made of glass fiber reinforced plastics,
was selected in the experiment, as shown in Figure 2. The span and maximum thickness
of the DU97 airfoil were 20 mm and 30 mm, respectively, the range of achievable flow
velocities in the icing wind tunnel was 1–15 m/s, and the blockage ratio at AOA = 12 degree
was 0.67%. The turbulence intensity at 5 m/s, 10 m/s and 15 m/s were 3.8%, 3.5% and
3.3%, respectively.

Before conducting the experiment, the DU97 blade airfoil, after being cleaned with
alcohol and dried with a blower, was fixed on the holder of the test section. The water
droplets sprayed from the spray system mixed with cold air passing through the refrigera-
tion system, forming supercooled water droplets that impinged on the surfaces of the blade
airfoil in the test section. The temperature and achievable flow velocity were regulated
through the control panel connected to the refrigeration system and air supply system,
respectively. The liquid water content (LWC), with droplet median volume diameter
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(MVD), was regulated through the control panel connected to the spray system. The icing
conditions employed in the experiment included a flow velocity of 10 m/s, an ambient
temperature of 268 K, a LWC of 3.2 g/m3 (with MVD of 26 µm) and an icing time of 300 s.
The angle of attack was 12◦ in the experiment.
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Figure 2. The DU97 blade airfoil.

2.2. Experimental Procedure

The blade airfoil installed in the test section was pre-cooled for 30 s to ensure that the
surface temperature of the blade airfoil was the same as the test temperature. When the
icing conditions reached the set value, the spray system installed in the icing wind tunnel
began to work. The supercooled water droplets from the spray system then, under the
effect of inertial force, impinged on the leading edge. When the icing time reached 300 s, the
spray system stopped working. The transient ice shape on the surface of the blade airfoil
was obtained by a high-speed camera (Phantomv5.1): the frame rate was 1200 frames per
second, which captured the transient ice accretion shape. The ice accretion contour was
then identified based on the images imported into CAXA CAD 2018 software.

3. Modeling
3.1. Mathematical Model

The airflow characteristics around the blade airfoil were obtained by the finite volume
method. The water droplets flow characteristics impinging on a blade airfoil could be obtained
by a Eulerian two-fluid method that took into account droplet volume fraction [19–23]. When
water droplets impinged on a blade airfoil, the water film and ice accretion appeared at
the leading edge. To explore the icing characteristics of blade airfoil surface, a model
was developed that encompassed the water film flow and mass and energy conservation
equations.
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The water film flow with surface roughness was built, and water film velocity was
simplified as a linear distribution normal for roughness wall, which was written as fol-
lows [24–28]:

→
Vw =

yρaV∞
2

2µw
[3.476− 0.707 ln(ks/s)]−2.46 (1)

ks = 0.0012(0.43 + 0.0044V∞)(0.05Ts − 11.27)
[
0.57 + 0.25(LWC) + 1.26(LWC)2

]
(2)

where
→

Vw was the water film velocity, ρa was the air density, V∞ was the free flow velocity,
µw was the dynamic viscosity, y was the distance normal to wall, ks was the surface
roughness, Ts was the surface temperature, and LWC was the liquid water content.

The mass conservation equation included the mass transfer of the impinging water
droplets, water evaporation, and ice accretion, and was written as follows:

ρw

[
∂ f
∂t

+∇ ·
( →

Vw f
)]

= α

(→
Vd ·

→
n
)
(LWC)− 0.622hc

ca

(
pv,w − pv,e

pe − pv,w

)
− .

mice (3)

where ρw was the water film density, f was the water film thickness, α was the volume
fraction of droplets, Vd was the droplet velocity, hc was the convective heat transfer coeffi-
cient, ca was the air specific heat capacity,

.
mice was the ice accumulation rate per unit area,

and pe, pv,w and pv,e were boundary layer edge pressure, saturated vapor pressure of water
film surface and boundary layer edge, respectively.

The energy conservation equation included the heat transfer induced by the impinging
water droplets, water evaporation, ice accumulation, radiative heat transfer, convective
heat transfer and anti-icing heat fluxes, which was written as follows:

ρw

[
∂ f cw T̃

∂t +∇ ·
( →

Vw f cwT̃
)]

= α

(
ed +

1
2

→
V

2

d

)(→
Vd ·

→
n
)
(LWC)

− 0.622hc Levap
ca

(
pv,w−pv,e
pe−pv,w

)
+

.
mice

[
Lfus − cice

(
T̃ice − T̃0

)]
+σε

(
T4

∞ − T4
w
)
+ hc

[
γ V2

∞
2ca
− (Ts − T∞)

]
+

.
Qanti

(4)

where cw was the water film specific heat capacity, T̃ was the interface equilibrium tem-
perature, ed was the droplet energy, Levap was the evaporation of latent heat, Lfus was the
fusion of latent heat, cice was the ice-specific heat capacity, σ was the Stefan-Boltzmann
constant, ε was the emissivity,

.
Qanti was anti-icing heat flux, and Ts, Tw and T∞ were the

surface temperature, water film temperature and free flow temperature, respectively.
Owing to the fact that the water film thickness, quantity of ice accumulation and

interface equilibrium temperature were unknown, additional equations were built to solve
unknown variables in conjunction with the above equations, which could be described as
follows: 

f ≥ 0
.

mice ≥ 0

f T̃ ≥ 0
.

miceT̃ ≤ 0

(5)

For Equation (4), the recovery factor was solved based on flow regime, including
n = 1/2 for laminar regime and n = 1/3 for turbulent regime, which was written as follows:

γ = 1−
(

Vk
V∞

)2

(1− Prn) (6)
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where γ was the recovery factor, and Vk was the wind speed related to roughness.
The heat transfer coefficient was solved based on laminar and turbulent regions. For

the laminar region, the heat transfer coefficient was written as follows [29]:

hc = 0.296
ka√

ν

V−2.88
e

s∫
0

V1.88
e ds

−1/2

(7)

where ka was air thermal conductivity, Ve was velocity of boundary layer edge, and ν was
the kinematic viscosity.

To determine laminar-turbulent transition, the Von Doenhoff criterion was employed
as follows [30]:

Rek =
Vkks

ν1
≥ 600 (8)

When the Reynolds number exceeded 600, the boundary layer was considered to be
turbulent flow [29], which was written as follows:

Vk
Ve

=
2ks

δ
− 2
(

ks

δ

)3
+

(
ks

δ

)4
+

1
6

δ2

ν

dVe

ds
ks

δ

(
1− ks

δ

)3
(9)

where δ was the boundary layer thickness, which was given by [29]:

δ =
315

37V3
e

√√√√√0.45ν

s∫
0

V5
e ds (10)

The relationship between heat transfer coefficient and the Stanton number was written
as follows:

hc = StρCpVe (11)

The empirical relationship for solving the Stanton number was written by [31]:

St = 0.5Cf/
(

Prt +
√

0.5CfSt−1
k

)
(12)

Stk = 1.92Re−0.45
k Prt

−0.8 (13)

3.2. Geometry and Computational Mesh

The computational domain of DU97 blade airfoil is illustrated in Figure 3. To obtain
the external flow field of the blade airfoil in a large space, the size of the fluid region was
set to approximately 20 times the chord length, before the near wall enhancement approach
with inflation factor (1.1) was performed to obtain non-uniform structured mesh on DU97
blade airfoil. It was observed that the computational average relative error between 91,475
and 194,827 mesh was less than 0.5%, as depicted in Figure 4. The computational efficiency
for 91,475 mesh improved by 52%, compared to 194,827 mesh. The mesh of 91,475 was
therefore employed to ensure computational accuracy while also improving computational
efficiency in numerical simulation. On the basis of the book [32], the operating conditions
of wind turbines included an ambient temperature of 233–323 K, a wind speed of 3–25 m/s,
and LWC of 0–5 g/m3 (with MVD of 10–5000 µm). In this study, the icing conditions
included wind speed of 5–15 m/s, ambient temperature of 258–268 K, LWC of 0.6 g/m3

(with MVD of 30–50 µm) and an icing time of 1800 s.
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3.3. Boundary Condition and Solution Method

The far-field condition was set as the boundary condition of fluid field around the
DU97 blade airfoil, and the surface of the DU97 blade airfoil was set as a boundary condition
of no slip wall in a numerical simulation (the detailed boundary conditions are illustrated in
Table 1). The heat and transfer model was, after considering roughness effect, implemented
by compiling UDF, which coupled with FENSAP-ICE to achieve the numerical calculation
of icing characteristics. The detailed discrete format and iterative solution method described
by [5] was then applied.
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Table 1. Boundary conditions.

Type Values

Far-field

Pressure: 101,325 Pa
Temperature: 258–268 K

Speed: 5–15 m/s
LWC: 0.6 g/m3

Wall No slip

3.4. Model Validation

To validate the numerical method, the icing experiments on a DU97 blade airfoil were
conducted in the Northeast Agricultural University icing wind tunnel. It was discovered
that a consistence between the simulated ice shapes and experimental data was obtained,
as shown in Figure 5. The relative error between simulation and experiment was in the
range of 1.7%–8.3%. It was discovered that the error of the vast majority of points was
within 2%. Significantly, the maximum error point was at the ice horn. This phenomenon
aligned with the literature, as reported by Lu et al. [33]. The maximum error (8.3%) in this
paper was smaller than that reported in the literature (more than 10% error) [14,33] due
to the consideration of roughness effect in the water film heat and mass transfer model.
The ice shape exhibited asymmetry distribution due to the interaction between geometry
configuration and the angle of attack. The ice distribution on the surface of the blade airfoil
fluctuated in the experiment and was relatively smooth in the numerical simulation, which
was ascribed to the fact that the medium volume diameter of droplets was employed in the
numerical simulation, which was equivalent to droplets of different sizes.

Coatings 2024, 14, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 5. The simulated and experimental ice shape on the blade airfoil surface. 

4. Results and Discussion 

Investigating the influence of AOA on the icing distribution characteristics on the 

surface of DU97 blade airfoil can provide fundamental guidance for de/anti-icing technol-

ogy applied during the operation of a horizontal axis wind turbine. Figure 6 depicts the 

ice shapes on the surface of the DU97 blade airfoil at different AOA for an ambient tem-

perature of 258 K. It is evident that the ice shape on the surface of the blade airfoil exhibits 

more significant asymmetry with an increase in AOA, which results in a greater degrada-

tion of aerodynamic performance, which aligns with findings reported by Homola et al. 

[12]. This is ascribed to the change in airflow induced by geometry configuration, and heat 

flux caused by phase change, convective heat transfer and thermal radiation. In addition, 

it is prone to form ice horns with an increase in AOA, due to the distribution of non-uni-

form impinging water droplets on the blade airfoil surface. 

  

  

Figure 5. The simulated and experimental ice shape on the blade airfoil surface.

4. Results and Discussion

Investigating the influence of AOA on the icing distribution characteristics on the sur-
face of DU97 blade airfoil can provide fundamental guidance for de/anti-icing technology
applied during the operation of a horizontal axis wind turbine. Figure 6 depicts the ice
shapes on the surface of the DU97 blade airfoil at different AOA for an ambient temperature
of 258 K. It is evident that the ice shape on the surface of the blade airfoil exhibits more
significant asymmetry with an increase in AOA, which results in a greater degradation
of aerodynamic performance, which aligns with findings reported by Homola et al. [12].
This is ascribed to the change in airflow induced by geometry configuration, and heat flux
caused by phase change, convective heat transfer and thermal radiation. In addition, it is
prone to form ice horns with an increase in AOA, due to the distribution of non-uniform
impinging water droplets on the blade airfoil surface.
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Figure 7 illustrates the ice thickness distribution on the upper and lower surfaces of
DU97 blade airfoil along the X-direction at AOA, and shows that the peak ice thickness
rises from 5.99 mm to 6.93 mm with an increase in AOA (0–10◦). For the lower surface of
the leading edge, the distribution of ice thickness exhibits a trend of first rising and then
declining along the X-direction. On the other hand, the distribution of ice thickness in
the upper surface of the leading edge shows a gradually decreasing trend. In addition,
it is evident that a small amount of ice accumulation appears on the trailing edge of the
DU97 blade airfoil as AOA increases, which is significantly different from NACA0012 blade
airfoil [5]. Notably, the peak ice thickness on the trailing edge of the DU97 blade airfoil
rises significantly as AOA increases from 5◦ to 10◦, which is due to the fact that the droplet
collection efficiency on the surface of the blade airfoil, which is induced by the interaction
between geometry configuration and angle of attack, changes, leading to the change in heat
and mass transfer caused by phase change, convective heat transfer and thermal radiation.

Figure 8 shows the ice thickness distribution on the surface of the DU97 blade airfoil
along the Y-direction at angles of attack of 0–10◦, and indicates that the peak ice thickness
on the upper surface of the blade airfoil occurs at an AOA of 0◦ and at an AOA of 10◦

on the lower surface. In addition, the ice thickness on the lower surface of the trailing
edge is significantly higher than that on the upper surface. Notably, the ice accretion
distribution range on the upper surface of the trailing edge is broader than that on the
lower surface, which is due to the fact that the change in AOA causes the variation in
airflow characteristics, resulting in non-uniform droplet collection distribution on the blade
airfoil surface. Subsequently, under the combined effects of phase change, convective heat
transfer and thermal radiation, the ice distribution on the blade airfoil surface undergoes
corresponding changes.
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Figure 7. The ice thickness distribution along the X-direction at AOA, (a) The lower surface; (b) The
upper surface.
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Figure 8. The ice thickness distribution along the Y direction at various angles of attack.
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Figure 9 shows ice thickness distribution on the surface of DU97 blade airfoil along
the X-direction for droplet sizes of 30–50 µm, and indicates that the peak ice thickness rises
from 5.8 mm to 6.9 mm as droplet sizes increase from 30 µm to 50 µm. Owing to an increase
in droplet sizes, the droplet collection efficiency on the surface of DU97 blade airfoil raises,
resulting in an increase in ice thickness through solidification. It is observed that the peak
ice thickness increases more significantly for droplet sizes of 30–40 µm than for droplet
sizes of 40–50 µm, which is because larger droplets colliding with the blade airfoil will
break and splash, causing a slow increase in the peak droplet collection efficiency on the
surface of the DU97 blade airfoil. In addition, it is evident that ice thickness distribution
exhibits a trend of first rising and then declining at the leading edge and trailing edge. This
is due to the fact that the droplet collection efficiency of the blade airfoil caused by the
interaction between geometry configuration and droplet size varies, leading to the change
in ice thickness distribution through solidification.
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Figure 10 depicts ice thickness distribution on the surface of DU97 blade airfoil along
the X-direction at wind speeds of 5–15 m/s, and shows that the peak ice thickness rises
from 3.6 mm to 9.8 mm as wind speed rises from 5 m/s to 15 m/s. Owing to an increase in
wind speed, the droplet collection efficiency of the blade airfoil surface caused by inertial
force raises, resulting in increased ice accumulation through solidification. It is evident
that the peak ice thickness increases more significantly at wind speeds of 5–10 m/s than
at wind speeds of 10–15 m/s. This is elucidated by the fact that higher inertial force
causes droplet deformation, leading to a change in ice distribution caused by the droplet
collection efficiency. Additionally, it is observed that ice thickness distribution exhibits a
trend of first rising and then declining, at both the leading edge and trailing edge. This
is because the droplet collection efficiency of the blade airfoil induced by the interaction
between geometry configuration and airflow characteristics varies, leading to non-uniform
ice thickness distribution through solidification.

The effects of ambient temperature and AOA on the peak ice accretion thickness
are explored, as Figure 11 shows. The peak ice accretion thickness varies in the range of
5.72–6.93 mm in relation to ambient temperature (−15–−5 ◦C) and angle of attack (0–10◦).
As ambient temperature decreases from −5 ◦C to −15 ◦C, the peak ice accretion thickness
increases by 4.7%, 7.4% and 12.1% at angle of attack of 0◦, 5◦ and 10◦, respectively. Addi-
tionally, when an angle of attack increases from 0◦ to 10◦, the peak ice accretion thickness
raises by 8.1%, 13.7% and 15.7% at ambient temperature of −5 ◦C, −10 ◦C and −15 ◦C,
respectively. Notably, the peak ice accretion thickness is more significantly influenced by
angle of attack than by ambient temperature, which may be attributed to the following fac-
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tors: (1) ambient temperature affects the freezing rate of water droplets on the blade airfoil
surface; and (2) AOA results in non-uniform droplet collection distribution on the blade
airfoil surface, which is induced by the variation in airflow characteristics. Furthermore,
ice accretion thickness on the blade airfoil surface exhibits a nonlinear distribution, which
is due to the combined effects of latent heat (phase change) and sensible heat (thermal
convection and thermal radiation).
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5. Conclusions

In this study, numerical simulation was used to explore the influence of angle of attack
(AOA) on the icing distribution characteristics of asymmetric blade airfoil (DU97) surfaces
under icing conditions, and the analysis of the mechanism of heat transfer and flow for
iced blade airfoils yielded the following findings:

(1) The ice thickness distribution on the lower surface of the leading edge exhibits a trend
of first rising and then declining along the chord direction, and the counterpart on the
upper surface shows a gradually decreasing trend.
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(2) The peak ice accretion thickness on the trailing edge of DU97 blade airfoil rises
significantly as AOA increases from 5◦ to 10◦.

(3) The ice distribution range on the upper surface of the trailing edge is broader than on
the lower surface, which is due to the non-uniform droplet collection distribution on
the blade airfoil surface.

(4) The peak ice thickness raises more dramatically for droplet sizes of 30–40 µm than
droplet sizes of 40–50 µm.

(5) The peak ice thickness increases more significantly at wind speeds of 5–10 m/s than
at wind speeds of 10–15 m/s.

(6) The peak ice accretion thickness is more significantly influenced by angle of attack than
by ambient temperature, which is due to the combined effects of airflow characteristics
induced by angle of attack and latent heat (phase change) and sensible heat (thermal
convection and thermal radiation) induced by ambient temperature.

The present study mainly focuses on the effect of icing distribution characteristics on
a static DU97 blade airfoil and provides insight into macroscopic flow and heat transfer
physics. In fact, the size of the wind turbine blade is very large, and the icing characteristics
on the blade surface will become more complex under rotating conditions. It is very
difficult to investigate the ice distribution on a full-size wind turbine blade, and a deeper
understanding of the icing physical mechanism is therefore crucial for proposing reasonable
similarity criteria. In future, a multi-scale icing model with the rotating framework will
be developed to reveal ice distribution from the perspectives of multi-scale flow and heat
transfer physics, which will provide an important point of reference for the exploration of
reasonable similarity criteria.
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