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Abstract: The mechanical response of a quasicrystal thin film is strongly affected by an adhesive layer
along the interface. In this paper, a theoretical model is proposed to study a thin two-dimensional
hexagonal quasicrystal film attached to a half-plane substrate with an adhesive layer, which under-
goes a thermally induced deformation. A perfect non-slipping contact condition is assumed at the
interface by adopting the membrane assumption. An analytical solution to the problem is obtained
by constructing governing integral–differential equations for both single and multiple films in terms
of interfacial shear stresses that are reduced to a linear algebraic system via the series expansion of
Chebyshev polynomials. The solution is compared to that without adhesive layers, and the effects
of the aspect ratio of films, material mismatch, and the adhesive layer, as well as the interaction
between films, are discussed in detail. It is found that the adhesive layer can soften the localized
stress concentration. This study is instructive to the accurate safety assessment and functional design
of a quasicrystal film system.

Keywords: two-dimensional hexagonal quasicrystal films; adhesive layer; Chebyshev polynomials;
thermally induced deformation; interfacial behavior

1. Introduction

Quasicrystal (QC) solids with specially arranged atoms perform a lot of unique
properties, such as low surface energy, ideal wear and corrosion resistance, and high
hardness [1–3]. With these extraordinary properties, QCs have great potential in surface-
modified coatings and functional films [4–8]. In addition, QC optical films hold significant
promise and application value. Compared with traditional photonic crystal films, they
exhibit richer photonic bandgaps, independence of the incident direction, and lower refrac-
tive index thresholds [9,10]. Some QC optical films were designed and produced in the
laboratory [11,12]. Thus, QC materials, as a new kind of structural materials, have broad
engineering application prospects.

Much research was conducted on the preparation technology of QC films [13,14].
During production and service, thermal stress is unavoidable, which is a main source of
residual stress in thin films. Generally, thermal stress appears when the thermal expansion
coefficients are different between the film and substrate [15]. The residual stress may cause
the cracking or debonding of film and lead to damage or even failure [15–17]. Therefore,
a good understanding of the mechanical response under thermally induced deformation
can largely improve and optimize the production and performance of the QC film system.
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There are usually two typical theoretical models for analyzing the interfacial behavior
in film/substrate systems. One is the crack model, and the other is the contact model.
The crack model was developed by Akisanya and Fleck [18] and Yu et al. [19], which
assumes a pre-existing line crack located at the edge of a thin film. However, in engineering
applications, the film is usually tightly bonded to the substrate. Therefore, the contact
model was proposed. In this model, the contact mechanics theory is adopted to analyze
the stress field along the interface and the singularity at the edge of the film and then to
predict potential cracking [20]. For example, Arutiunian [21] investigated the perfect contact
problem between a finite-length reinforced material and a half-plane and obtained the
solution in terms of an infinite power series. Later on, Erdogan and Gupta [22] solved the
problem more effectively by constructing the integral equations in terms of interfacial shear
stress. Meanwhile, Hu [23] analyzed interfacial stresses with dielectric and conducting
layers of thin films via the finite difference method. Later, Shield and Kim [24] consid-
ered the bending stiffness and proposed a beam model to study a film/substrate system.
The thermally induced deformation in film systems was discussed in detail by Lanzoni
and Radi [15]. Chen et al. [25,26] extended the model to functionally graded substrates
and discussed the influence of a material inhomogeneity parameter. More smart material
films were studied, such as thermoelectric films [27] and lithium-ion films [28]. Several
mechanical models were developed for the three-dimensional analysis [29] and double-film
case [30]. Furthermore, when applied in MEMS or electrostatically actuated micropumps,
the size of films can reach a micro- or even nanoscale, and thus, the theoretical model was
developed to consider the size effect [31–33].

In engineering applications, the film is usually bonded to the substrate with an adhe-
sive layer. The layer can not only bond film and substrate together, but it can also alter the
mechanical response of the whole structure. Qing [34] studied the influence of an adhesive
layer on the performance of a piezoelectric film bonded to a substrate and revealed that the
increase in adhesive thickness would alter the resonant frequency and electromechanical
impedance, as well as the amplitude of signals. The durability and regulating effect of ad-
hesive layers on film systems were explored comprehensively [35–38]. Thus, it is essential
to fully understand the mechanical response of a QC film system with adhesive layers.
A few studies were conducted on QC films without adhesive layers [39,40]; however, to the
best of our knowledge, there is no research on QC films with an adhesive layer. Up to now,
a few hundred solid QC materials have been found, among which over one-third belong to
two-dimensional (2D) QCs. Therefore, we select the 2D hexagonal QC as a film material
and study its mechanical behavior with an adhesive layer.

This paper is organized as follows. In Section 2, the problem is first described and
each part of the system is analyzed correspondingly. Then, Section 3 presents the interfacial
boundary conditions and constructs the governing integral–differential equations in terms
of interfacial shear stresses. Next, the model is developed into a double film case in Section 4.
After that, Section 5 discusses the effects of various influencing factors in more detail.
Finally, some important conclusions are drawn in Section 6.

2. Formulation of the Problem

Consider a thin 2D hexagonal QC film bonded on an isotropic elastic substrate, in-
cluding an adhesive layer. The lengths of the QC film and adhesive layer are both l = 2a,
and the thicknesses of the QC film and adhesive layer are, respectively, denoted as h f and
hl . Compared with the thin QC film and adhesive layer, crystal substrate can be regarded
as semi-infinite. As illustrated in Figure 1, the rectangular coordinate system (xoz) is se-
lected with an x-axis along the interface while the z-axis is perpendicular to the interface;
meanwhile, the origin point is located at the center of the adhesive layer.
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Figure 1. An illustration of a 2D hexagonal QC film with an adhesive layer. 

2.1. The QC Film 
For a 2D hexagonal QC material with thermal effect referred to a rectangular coordi-

nates system 𝑥, 𝑦, 𝑧 , it is assumed that the plane oxy is parallel to the quasiperiodic plane, 
and the orthogonal direction oz is the periodic direction. For 2D hexagonal QCs, the point 
groups 6 mm, 622, 6 m2, and 6/mmm belong to Laue class 10. The linear constitutive equa-
tions take the following forms [41] 𝜎 = 𝑐 + 𝑐 + 𝑐 + 𝑅 + 𝑅 − 𝛽 𝜃,  

𝜎 = 𝑐 + 𝑐 + 𝑐 + 𝑅 + 𝑅 − 𝛽 𝜃,  

𝜎 = 𝑐 + 𝑐 + 𝑐 + 𝑅 + 𝑅 − 𝛽 𝜃,  

𝜎 = 𝑐 + + 𝑅 , 𝜎 = 𝑐 + + 𝑅 ,  

𝜎 = 𝑐 + + 𝑅 + 𝑅 ,  

𝐻 = 𝑅 + 𝑅 + 𝑅 + 𝐾 + 𝐾 , 

𝐻 = 𝑅 + 𝑅 + 𝑅 + 𝐾 + 𝐾 , 𝐻 = 𝑅 + + 𝐾 , 

𝐻 = 𝑅 + + 𝐾 , 

𝐻 = 𝑅 + + 𝐾 + 𝐾 , 𝐻 = 𝑅 + + 𝐾 + 𝐾 , 

𝑞 = −𝑘 , 𝑞 = −𝑘 , 𝑞 = −𝑘 ,  

(1)

where 𝑤   and 𝑢   are phason and phonon displacements; 𝐻   and 𝜎   are phason and 
phonon stresses; 𝑐 𝐾 , 𝑅 , and 𝛽  are, respectively, elastic stiffness constants, phonon–
phason elastic constants, and thermal constants; 𝜃  and 𝑞   denote the temperature 
change and heat fluxes, respectively, with 𝜃 = 0 corresponding to a reference state. As 
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Figure 1. An illustration of a 2D hexagonal QC film with an adhesive layer.

2.1. The QC Film

For a 2D hexagonal QC material with thermal effect referred to a rectangular coordi-
nates system (x, y, z), it is assumed that the plane oxy is parallel to the quasiperiodic plane,
and the orthogonal direction oz is the periodic direction. For 2D hexagonal QCs, the point
groups 6 mm, 622, 6 m2, and 6/mmm belong to Laue class 10. The linear constitutive
equations take the following forms [41]

σxx = c11
∂ux
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+ c12

∂uy

∂y
+ c13

∂uz
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∂wx

∂x
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)
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(1)

where wi and ui are phason and phonon displacements; Hij and σij are phason and phonon
stresses; cij(Ki), Ri, and βi are, respectively, elastic stiffness constants, phonon–phason
elastic constants, and thermal constants; θ and qi denote the temperature change and heat
fluxes, respectively, with θ = 0 corresponding to a reference state. As the problem is on
the xoz plane, all the components should be independent of the spatial variable y. Thus,
Equation (1) can be reduced to
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σxx = c11
∂ux

∂x
+ c13

∂uz

∂z
+ R1

∂wx

∂x
− β1θ,

σzz = c13
∂ux

∂x
+ c33

∂uz

∂z
+ R3

∂wx

∂x
− β3θ,

σxz = c44

(
∂ux

∂z
+

∂uz

∂x

)
+ R4

∂wx

∂z
,

Hxx = R1
∂ux

∂x
+ R3

∂uz

∂z
+ K1

∂wx

∂x
,

Hxz = R4

(
∂ux

∂z
+

∂uz

∂x

)
+ K4

∂wx

∂z
,

qx = −k11
∂θ

∂x
, qz = −k33

∂θ

∂z
,

(2)

with their governing equations without body forces and heat sources as

∂σxx

∂x
+

∂σzx

∂z
= 0,

∂σzx

∂x
+

∂σzz

∂z
= 0,

∂Hxx

∂x
+

∂Hxz

∂z
= 0,

∂qx

∂x
+

∂qz

∂z
= 0. (3)

As the 2D hexagonal QC film is significantly thin, it is reasonable to ignore the peeling
stress and adopt a membrane assumption in the present work, which means only the
interfacial shear stress transfers across the interface [15]. In addition, it is well known that
thermal expansion basically results in axial deformation. Based on the characteristics of
2D hexagonal QCs and the film/substrate mechanical model, we propose the following
assumptions: (1) σ

f
xx and u f

x are uniformly distributed along the thickness of 2D hexagonal
QC film, and they are only dependent on spatial variable x; (2) phason stresses equal to zero
at the interface, and they cannot transfer between QC materials and crystal materials [42],
thus only phonon interfacial shear stress τ(x) transfers between the 2D hexagonal QC film
and adhesive layer; (3) phonon and phason stresses σ

f
zz and H f

xx can be neglected in the QC
film, where the superscript “ f ” denotes the 2D hexagonal QC film.

According to these assumptions, the equilibrium condition in Equation (3) can be
rewritten as

∂σ
f
xx

∂x
+

τ(x)
h f

= 0. (4)

The tractions are free at two ends of QC film, that is

σ
f
xx(x = ±a) = 0. (5)

As all the loads are transferred through the interface and they are caused by interfacial
shear stress τ, combining Equations (4) and (5) leads to the normal stress σ

f
xx in the 2D

hexagonal QC film in terms of τ(x) as

σ
f
xx(x) = −

∫ x

−a

τ(ξ)

h f
dξ, (6)

with ∫ a

−a
τ(ξ)dξ = 0. (7)

Adopting assumption (3), σ
f
zz = 0, and H f

xx = 0, and combining with Equation (2) yields

∂uz

∂z
=

R1R3 − c13K1

c33K1 − R2
3

∂ux

∂x
+

K1β3

c33K1 − R2
3

θ,

∂wz

∂z
=

c13R3 − c33R1

c33K1 − R2
3

∂ux

∂x
− R3β3

c33K1 − R2
3

θ. (8)
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Inserting Equation (8) into Equation (2) yields

σ
f
xx(x) = EY

∂u f
x

∂x
− ETθ, (9)

wherein ET and EY are, respectively, the effective thermal constant and Young’s modulus
for the 2D hexagonal QC film defined as

EY = c11 +
c13(2R1R3 − c13K1)− c33R2

3
c33K1 − R2

3
,

ET = β1 +
R1R3 − c13K1

c33K1 − R2
3

β3. (10)

Here, it is worth noting that, like other studies on QC films without adhesive layers,
the coefficients EY and ET contain the phonon–phason coupling terms, which implies
that even if no phason loads are applied, QC films are still different from crystal films.
Combining Equations (6) and (9), the axial strain of 2D hexagonal QC film is

ε
f
xx =

∂u f
x

∂x
= − 1

EYh f

∫ x

−a
τ(ξ)dξ +

ET
EY

θ. (11)

2.2. The Adhesive Layer

The mechanical response of the 2D hexagonal QC film is totally transferred through
an adhesive layer, and thus, the material properties and geometry of the layer immensely
influence the behavior of the whole system. As the adhesive layer is sufficiently thinner
than the 2D hexagonal QC film, it is, therefore, reasonable to assume that the axial stress
and deformation are also uniformly distributed across its thickness, which means they are
only functions of spatial variable x. The displacements on the upper and lower surfaces
of the adhesive layer are denoted as u+

l and u−
l , respectively. For the adhesive layer,

the constitutive relation between the shear strain and phonon interfacial shear stress is

−τ(x) = µlε
l
xz(x), (12)

where µl denotes the shear modulus of the adhesive layer, and the superscript “l” denotes
the adhesive layer. Thus, the shear strain is given as

εl
xz(x) =

u+
l − u−

l
hl

. (13)

2.3. Substrate

For an isotropic thermal elastic substrate, the constitutive and governing equations in
the absence of body forces and heat sources are

σxx =
E(1 − v)

(1 + v)(1 − 2v)
∂ux

∂x
+

Ev
(1 + v)(1 − 2v)

∂uz

∂z
− E

1 − 2v
αθ,

σzz =
Ev

(1 + v)(1 − 2v)
∂ux

∂x
+

E(1 − v)
(1 + v)(1 − 2v)

∂uz

∂z
− E

1 − 2v
αθ, σzx =

E
2(1 + v)

(
∂ux

∂z
+

∂uz

∂x

)
,

∂σxx

∂x
+

∂σzx

∂z
= 0,

∂σzx

∂x
+

∂σzz

∂z
= 0,

(14)

where E, α, and v are, respectively, the elastic modulus, thermal expansion coefficient,
and Possion’s ratio of crystal substrate.
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As stress generated inside the substrate is only attributed to phonon shear stress
caused by the 2D hexagonal QC film, the boundary condition along the interface is given as

σs
xz(x, 0) =

{
−τ(x), |x| < a
0, |x| > a

, σs
zz(x, 0) = 0, (15)

where the superscript “s” denotes crystal substrate. Adopting the fundamental solutions of
a half-plane under a concentrated horizontal force by Muskhelishvili [43] and taking the
thermal deformation into consideration [15], the axial strain on the upper surface of the
substrate is obtained as

εs
xx(x, 0) =

2
(
1 − v2)
πE

∫ a

−a

τ(ξ)

x − ξ
dξ − (1 + v)αθ. (16)

Then, the transferred interfacial shear stress τ can be assumed as

τ(x) =

{
f (x), |x| < a,
0, |x| > a,

(17)

where f (x) denotes the distribution function of shear stress τ.

3. The Integral–Differential Equation
3.1. Formulation of Integral–Differential Equation

Adopting the perfectly bonded continuity condition, u+
l and u−

l of the adhesive layer
are equal to the transverse displacements of the 2D hexagonal QC film and the upper
surface of the crystal substrate, respectively. Taking the derivative of Equation (12) with
respect to x gives

−dτ(x)
dx

= µl
ε

f
xx(x)− εs

xx(x)
hl

. (18)

Substituting Equations (11) and (16) into Equation (18) yields the governing integral–
differential equation for the shear stress function f (x) as

2
(
1 − v2)
πE

∫ a

−a

f (ξ)
x − ξ

dξ +
1

EYh f

∫ x

−a
f (ξ)dξ − hl

µl

d f (x)
dx

= ε0, |x| < a, (19)

where ε0 is the mismatch strain originated by the thermal variation defined as

ε0 =

[
(1 + v)α +

ET
EY

]
θ. (20)

When the thickness of an adhesive layer approaches zero, the differential term in
Equation (19) disappears, and the model is reduced to that without an adhesive layer.

3.2. Solution on the Integral–Differential Equation

Let us introduce the normalized quantities”

x = as, ξ = ar, (21)

Then, Equations (7) and (19) can be rewritten as∫ 1

−1
f (s)ds = 0, (22)

2
(
1 − v2)
πE

∫ 1

−1

f (r)
s − r

dr +
a

EYh f

∫ s

−1
f (r)dr − hl

µla
d f (s)

ds
= ε0, |s| < 1. (23)
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As the integral equations contain the classical Cauchy-type singular kernel, the integral
differential equations can be numerically solved by Chebyshev polynomials. A general
solution can, thus, be assumed in terms of Chebyshev polynomials as

f (s) =
1√

1 − s2 ∑∞
n=0 AnTn(s), (24)

where Tn(s) are the Chebyshev polynomials of the first kind for s with order n, and An
are coefficients to be determined. Inserting Equation (24) into Equations (22) and (23) and
considering the properties of Chebyshev polynomials, one obtains

A0 = 0, (25)

∑∞
n=1 AnUn−1(s)

[
2
(
1 − v2)
πE

+
a

EYh f

√
1 − s2

n

]
+

hl
µla

∑∞
n=1 An

[
nUn−1(s)√

1 − s2
+

sTn(s)

(1 − s2)
3/2

]
= −ε0, (26)

where Un(s) are the Chebyshev polynomials of the second kind for s of order n.
In calculation, we truncate the Chebyshev polynomial expansions to the N-th term,

and the collocation points can be selected as

sk = cos
kπ

N + 1
, k = 1, 2, . . . , N. (27)

Then, Equation (26) can be further written as N linear algebraic equations, correspond-
ing to the N unknown coefficients An, i.e.,

∑N
n=1 AnUn−1(sk)

2
(
1 − v2)
πE

+
a

EYh f

√
1 − s2

k

n

+ hl
µl a

∑N
n=1 An

nUn−1(sk)√
1 − s2

k

+
skTn(sk)(
1 − s2

k
)3/2

 = −ε0, k = 1, 2, . . . , N (28)

After solving Equation (28), we can obtain all the coefficients An. Then, the phonon
interfacial shear stress f (x) can be readily determined from Equation (24) as

f (x) =
1√

1 − (x/a)2
∑N

n=1 AnTn

( x
a

)
. (29)

As we are focused on the mechanical response of QC film, the normal stress is derived
from Equation (6) as

σ
f
xx(x) = − a

h f
∑N

n=1
An

n
Un−1

( x
a

)√
1 −

( x
a

)2
. (30)

Note that when the adhesive layer approaches zero hl → 0 , the problem is reduced to
a 2D hexagonal QC film directly bonded to the substrate without an adhesive layer. In such
a case, shear stress shows a classical square singularity at the ends of the film, and shear
stress intensity factors are obtained as

KII(−a) =
√

πa∑N
n=1 AnTn(−1), (31)

at the left end, and as
KII(a) =

√
πa∑N

n=1 AnTn(1), (32)

at the right end.

4. A Double Film Model

In practical engineering, there are usually multiple films attached to the same sub-
strate for functional design or safety monitoring. Thus, it is essential to build an effective
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theoretical model to analyze the interfacial behavior and the coupling effect of adjacent
films. As a simple but representative case, a double film problem is, thus, investigated.
As shown in Figure 2, two 2D hexagonal QC films are bonded to the substrate with ad-
hesive layers. The two films are, respectively, denoted as Film 1 from A to B and Film 2
from C to D, with their lengths denoting as 2L1 and 2L2, and the distance between the two
films is 2d.
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Figure 2. Illustration of two 2D hexagonal QC films with adhesive layers. 
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Figure 2. Illustration of two 2D hexagonal QC films with adhesive layers.

Like one single QC film, the normal stress in each film can be expressed by interfacial
shear stress as

σ
f i
xx(x) = −

∫ x

ai

τi(ξ)

hi
f

dξ, (33)

where the subscript i = 1, 2 corresponds to Film 1 and 2, respectively. After substituting
into the institutive equations, one obtains the axial strain of each film as

ε
f i
xx =

∂u f i
x

∂x
= − 1

Ei
Yhi

f

∫ x

ai

τi(ξ)dξ +
Ei

T
Ei

Y
θ. (34)

Meanwhile, the phonon interfacial shear stress on the adhesive layer is expressed as

−τi(x) = µi
lε

li
xz(x), (35)

where

εli
xz(x) =

u+
li − u−

li
hi

l
. (36)

Keep in mind that the upper displacement of an adhesive layer is equal to 2D hexag-
onal QC film while the lower displacement to the upper surface of the substrate, Equa-
tion (34), can be represented with respect to x as

−dτi(x)
dx

= µi
l
ε

f i
xx − εs

xx

hi
l

. (37)

The total axial strain of the upper surface of the substrate is

εs
xx(x, 0) =

2
(
1 − v2)
πE ∑2

i=1

∫ bi

ai

τi(ξ)

x − ξ
dξ − (1 + v)αθ. (38)
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Suppose the transferred interfacial shear stress of each film as

τi(x) =

{
fi(x), ai < x < bi,
0, otherwise,

(39)

Inserting Equations (34) and (38) into (37) yields the governing integral differential
equations for the shear stresses of each film as

2
(
1 − v2)
πE ∑2

i=1

∫ bi

ai

fi(ξ)

x − ξ
dξ +

1
Ei

Yhi
f

∫ x

ai

fi(ξ)dξ −
hi

l
µi

l

d fi(x)
dx

= εi
0, ai < x < bi, (40)

where εi
0 is the mismatch strain of the i-th QC film, and

εi
0 =

[
(1 + v)α +

Ei
T

Ei
Y

]
θ. (41)

Introducing the following quantities,

c1 =
b1 − a1

2
, x1 =

b1 + a1

2
, ξ1 =

x − x1

c1
,

c2 =
b2 − a2

2
, x2 =

b2 + a2

2
, ξ2 =

x − x2

c2
,

(42)

Equation (40) can be rewritten as

2
(
1 − v2)
πE ∑2

i=1

∫ 1

−1

fi(r)
ξi − r

dr +
ci

Ei
Yhi

f

∫ ξi

−1
fi(r)dr −

hi
l

µi
lci

d fi(ξi)

dξi
= εi

0, |ξi| < 1. (43)

∫ 1

−1
fi(ξi)dξi = 0, for i = 1, 2. (44)

Considering the Cauchy-type singular kernel, the phonon interfacial shear stress
function fi(x) can be expressed as

fi(ξi) =
1√

1 − ξ2
i

∑∞
n=0 Ai

nTn(ξi), for i = 1, 2. (45)

where Ai
n are unknown coefficients to be determined. Substituting Equation (45) into

Equations (43) and (44) leads to

A1
0 = 0, A2

0 = 0,

2
(
1 − v2)
πE ∑∞

n=1 A1
n
∫ 1
−1

1
ξ1 − r

1√
1 − r2

Tn(r)dr +
2
(
1 − v2)
πE ∑∞

n=1 A2
n
∫ 1
−1

1
ξ2 − r

1√
1 − r2

Tn(r)dr +
c1

E1
Yh1

f
∑∞

n=1 A1
n
∫ ξ1
−1

1√
1 − r2

Tn(r)dr−

h1
l

µ1
l c1

∑∞
n=1 A1

n

 nUn−1(ξ1)√
1 − ξ2

1

+
ξ1Tn(ξ1)(
1 − ξ2

1

)3/2

 = ε1
0,

2
(
1 − v2)
πE ∑∞

n=1 A1
n
∫ 1
−1

1
ξ1 − r

1√
1 − r2

Tn(r)dr +
2
(
1 − v2)
πE ∑∞

n=1 A2
n
∫ 1
−1

1
ξ2 − r

1√
1 − r2

Tn(r)dr +
c2

E2
Yh2

f
∑∞

n=1 A2
n
∫ ξ2
−1

1√
1 − r2

Tn(r)dr−

h2
l

µ2
l c2

∑∞
n=1 A2

n

 nUn−1(ξ2)√
1 − ξ2

2

+
ξ2Tn(ξ2)(
1 − ξ2

2
)3/2

 = ε2
0.

(46)
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Adopting the properties of Chebyshev polynomials and truncating to the N-th term,
one can rewrite Equation (46) as

2(1−v2)
E

[
∑N

n=1 A1
nUn−1(ξ1) + ∑N

n=1 A2
n

(
ξ2+

√
ξ2

2−1
)n√

ξ2
2−1

]
+ c1

E1
Y h1

f
∑N

n=1
A1

n
n Un−1(ξ1)

√
1 − ξ2

1 +
h1

l
µ1

l c1
∑N

n=1 A1
n

[
nUn−1(ξ1)√

1−ξ2
1

+ ξ1Tn(ξ1)

(1−ξ2
1)

3/2

]
= −ε1

0,

|ξ1| < 1

2(1−v2)
E

[
∑N

n=1 A2
nUn−1(ξ2)− ∑N

n=1 A1
n

(
ξ1+

√
ξ2

1−1
)n√

ξ2
1−1

]
+ c2

E2
Y h2

f
∑N

n=1
A2

n
n Un−1(ξ2)

√
1 − ξ2

2 +
h2

l
µ2

l c2
∑N

n=1 A2
n

[
nUn−1(ξ2)√

1−ξ2
2

+ ξ2Tn(ξ2)

(1−ξ2
2)

3
2

]
= −ε2

0,

|ξ2| < 1

(47)

Similarly, the collocation points are selected according to Equation (27), and then
Equation (47) can be rewritten as

2(1−v2)
E

∑N
n=1 A1

nUn−1(sk) + ∑N
n=1 A2

n

(
ς1

k+
√
(ς1

k)
2−1

)n

√
(ς1

k)
2−1

+ c1
E1

Y h1
f
∑N

n=1
A1

n
n Un−1(sk)

√
1 − s2

k +
h1

l
µ1

l c1
∑N

n=1 A1
n

[
nUn−1(sk)√

1−s2
k

+ sk Tn(sk)

(1−s2
k)

3/2

]
= −ε1

0,

|ξ1| < 1

2(1−v2)
E

∑N
n=1 A2

nUn−1(sk)− ∑N
n=1 A1

n

(
ς2

k−
√
(ς2

k)
2−1

)n

√
(ς2

k)
2−1

+ c2
E2

Y h2
f
∑N

n=1
A2

n
n Un−1(sk)

√
1 − s2

k +
h2

l
µ2

l c2
∑N

n=1 A2
n

[
nUn−1(sk)√

1−s2
k

+ sk Tn(sk)

(1−s2
k)

3
2

]
= −ε2

0,

|ξ2| < 1

(48)

where
ς1

k =
c1

c2
sk +

x1 − x2

c2
, ς2

k =
c2

c1
sk +

x2 − x1

c1
. (49)

There are totally 2N algebraic equations corresponding to the 2N unknown coefficients.
After solving Equation (48), we can obtain all the coefficients, A1

n and A2
n. Inserting these

coefficients into Equation (45), one obtains the shear interfacial stresses at each film.

τi(x) =
1√

1 −
(

x − xi
ci

)2
∑N

n=1 Ai
nTn

(
x − xi

ci

)
, for i = 1, 2, (50)

Substituting Equation (48) into Equation (31), the axial stresses at each sub-film yield

σ
f i
xx(x) = − ci

hi
f
∑N

n=1
Ai

n
n

Un−1

(
x − xi

ci

)√
1 −

(
x − xi

ci

)2
, for i = 1, 2, (51)

For the case of two QC films directly attaching to the substrate without adhesive layers,
the corresponding algebraic equations in Equation (48) are reduced to

2
(
1 − v2)

E

∑N
n=1 A1

nUn−1(sk) + ∑N
n=1 A2

n

(
ς1

k +
√(

ς1
k
)2 − 1

)n

√(
ς1

k
)2 − 1

+
c1

E1
Yh1

f
∑N

n=1
A1

n
n

Un−1(sk)
√

1 − s2
k = −ε1

0, |ξ1| < 1

2
(
1 − v2)

E

∑N
n=1 A2

nUn−1(sk)− ∑N
n=1 A1

n

(
ς2

k +
√(

ς2
k
)2 − 1

)n

√(
ς2

k
)2 − 1

+
c2

E2
Yh2

f
∑N

n=1
A2

n
n

Un−1(sk)
√

1 − s2
k = −ε2

0, |ξ2| < 1 (52)

Meanwhile, the Mode II stress intensity factors (SIFs) near both ends of each QC film
are obtained as

KII(a1) =
√

πc1∑N
n=1 A1

nTn(−1),
KII(b1) =

√
πc1∑N

n=1 A1
nTn(1),

(53)

for QC Film 1, and
KII(a2) =

√
πc2∑N

n=1 A2
nTn(−1),

KII(b2) =
√

πc2∑N
n=1 A2

nTn(1),
(54)

for QC Film 2.
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5. Numerical Results and Discussion

In numerical simulations, we used the material constants of a 2D hexagonal QC from
Li et al. [44]. Three typical metals, copper (Cu), aluminum (Al), and zirconium dioxide
(ZrO2), were selected as substrate materials, and their material constants are given in
Table 1. As is known, epoxy has a good thermosetting property and a rather strong rigidity
and strength, making it an ideal bonding material widely used in aerospace, automobile,
and other fields. Thus, epoxy is selected as the adhesive material. For simplicity, SIF is
normalized by Etθ

√
h.

Table 1. The material properties of substrate materials.

Material µ(GPa) v α (10–6/K)

Al 30.5 0.33 7.2
Cu 47.8 0.35 17.0

ZrO2 77.5 0.29 10.6

5.1. Validation of Numerical Simulations and Influence of the Aspect Ratio of QC Film

At first, a single 2D hexagonal QC film with an adhesive layer was investigated. As the
problem is symmetrical, normal and shear stresses are, respectively, symmetrically and
anti-symmetrically distributed about the middle point of 2D hexagonal QC film, only half
of the distribution of stresses are plotted along QC film. To verify the theoretical solution,
the numerical results of shear stress distributions were compared with the finite element
software COMSOL for the aspect ratio a/h = 15, as illustrated in Figure 3. It is observed that
the discrepancy between the theoretical solution and the finite element simulation is tiny.
The difference is mainly attributed to the different models. In the theoretical derivation,
a one-dimensional membrane model is used to simplify the problem. In contrast, a real
two-dimensional model is simulated by the finite element method. Therefore, when the
aspect ratio of QC film is large enough, its length is usually at least one order of magnitude
higher than the thickness of the QC film; our proposed solution is accurate and in good
agreement with the finite element simulations. It is shown in Figures 3 and 4 that, as the
increase of aspect ratio a/h, shear stress increases distinctly, making it more concentrated
near the tips of QC film; meanwhile, the increasing aspect ratio raises the maximum value
of axial stress. Therefore, an increasing aspect ratio results in easier damage to the system.
This phenomenon coincides with a piezoelectric film [37] and is like a QC film system
without an adhesive layer [39].
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5.2. Influence of Material Mismatch

Figure 5 implies that different material mismatches have a significant influence on
normal and shear stresses. In addition, a higher value of shear stress corresponds to a higher
normal stress for a given substrate material. Thus, selecting a proper substrate material can
restrict the level of stress and strengthen the bonding effect.
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5.3. Influence of an Adhesive Layer

The shear modulus of epoxy is influenced by many factors, but it is mostly dependent
on the crosslinking degree and the type and content of filler, ranging from 1 to 5 GPa.
As shown in Figure 6a, an adhesive layer with a larger shear modulus leads to a higher
value of shear stress near the ends of the QC film. Meanwhile, Figure 6b shows that the
increase of shear modulus in an adhesive layer generates a higher level of normal stress
as well. This is because an adhesive layer with a larger shear modulus is harder and can
effectively transmit shear stress.

The thickness of an adhesive layer can also influence the behavior. As shown in
Figure 7a, when the thickness of an adhesive layer grows, the concentration of shear
stress near the ends of QC film is weakened dramatically and tends to a lower value.
In the extreme case without an adhesive layer, the value of shear stress approaches infinity
theoretically. This implies that the existence of an adhesive layer can greatly reduce stress
concentration between the film and substrate, acting like a rubber gasket in engineering.
Moreover, the normal stress in QC film decreases with increasing the thickness of an
adhesive layer, as shown in Figure 7b.

Based on Figures 6 and 7, it is seen that a thicker adhesive layer with a smaller shear
modulus can reduce the level of stress and be helpful for designing a more reliable system.
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5.4. Influence of the Distance between Films without Adhesive Layers

Next, the shear and normal stresses of QC film were analyzed in the double-film model
attaching to the substrate without adhesive layers. The substrate material was chosen and
fixed as aluminum, with the geometries of c1 = c2 = 4ha = 4hb. First, let us consider
the situation without adhesive layers. As observed in Figure 8, the distribution is no
longer anti-symmetric due to the adjacent influence by the other film, and stress near the
adjacent ends is higher than those away. When the two films get closer, the coupling effect
grows dramatically; however, when they move away, the interaction effect is weakened,
approaching the case of a single film. As shown in Figure 9, a similar phenomenon is also
found for normal stress. As shown in Figure 10, SIFs at the adjacent ends are higher than
those at the away ends, while these values start to decrease when the two films move away
and finally approach the case of a single film.
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5.5. Influence of Film Thickness and Length without Adhesive Layers

As shown in Figure 11, when the ratio hb/ha increases, the values of SIFs at the ends
in the right film perform a dramatic increase, while the values at the left one show a gentle
growth. In general, the increase in film thickness greatly influences the values of SIFs and,
thus, changes the most dangerous point in the system.

Figure 12 plots the values of SIFs at the ends of films versus the ratio of film thickness.
It is concluded that, as the length of the left film increases, all the SIFs increase and gradually
tend to a steady level. Meanwhile, the values of SIFs in the longer film are higher than
those in the shorter one. However, the influence of film length is generally weak, and the
biggest difference is roughly 2.2%.
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5.6. Influence of Adhesive Layers in a Double Film Model

Taking an adhesive layer into account, we studied two films with the same length and
thickness. As it is symmetric, the right QC film was only chosen. As seen in Figure 13a,
there is no obvious difference when the distance changes, which is close to the situation
of one single film. Compared with Figure 8, the existence of an adhesive layer acts like
a “soft cushion” and greatly weakens the interaction effect. Such an influence can also
be found in normal stress, as illustrated in Figure 13b compared with Figure 9. Further
study confirms that the thicker and softer the adhesive layer, the weakening effect is more
obvious. The adhesive layer can be treated as a “soft cushion”. Thus, the problem is close
to a single film case. However, it is worth noting that the conclusion is not applicable to the
case when the stiffness of an adhesive layer is sufficiently large.
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6. Conclusions

The interface behavior of 2D hexagonal QC films induced by temperature change with
and without adhesive layers was briefly studied. Based on the membrane assumption,
the governing integral–differential equations for QC films in terms of interfacial shear
stresses were obtained and numerically solved. In numerical simulations, the influenc-
ing factors on the interfacial behavior were comprehensively discussed. It is found that
the aspect ratio of films, material mismatch, adhesive layer as well as the interaction be-
tween films can all greatly influence the mechanical performance of the QC film systems.
Some main conclusions are obtained as follows.

(1) A high aspect ratio makes the system more easily damaged, and the proper se-
lection of substrate material can restrict the stress level and strengthen the bonding effect
of QC film.

(2) The adhesive layer can be treated as a “soft cushion”, which can greatly weaken
the localized stress concentration near the ends of QC films. Meanwhile, a thicker adhesive
layer with a smaller shear modulus reduces the level of stress and fracture.

(3) In the case without an adhesive layer, the point at the adjacent end of a longer film
in a double-film system is more dangerous than other points due to the interaction effect.
However, the existence of adhesive layers can greatly alleviate the interaction influence.
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