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Abstract: Porosity poses a challenge to the mechanical properties of cold sprayed coatings, especially
when it is open or surface-connected, limiting the coatings’ capabilities to act as a barrier. The
porosity formation is dependent on the feedstock powder characteristics and the cold spray process
parameters. We present a machine learning-based approach to predict porosity based on the above-
mentioned factors. Nine different machine learning models based on linear regression (LR), decision
trees, random forests, gradient boosting, support vector machine (SVM), and neural networks were
explored. Considering the excellent properties of high entropy alloys, Cantor alloy was taken as
the consumable. Our dataset, derived from the literature and experiments, identified SVM with
a linear kernel and LR as the top-performing models based on the Pearson correlation coefficient
(PCC) and root mean square error, where the PCC values exceeded 0.8. The SHapley Additive
exPlanations method helped in identifying that the type of gas and powder are the top two factors in
pore formation.

Keywords: thermal spray; cantor alloy; gradient boosting; kernel methods; neural networks

1. Introduction

Cold spray (CS) is a solid-state materials deposition process that has attracted attention
due to its relatively low operating temperatures [1]. CS can be used for depositing protective
coatings [2], as well as for depositing bulk components [3]. The deposition is made by
accelerating micron-sized powder to supersonic velocities with the help of a pressurised
and hot gas, expanding through a de Laval (converging-diverging) nozzle [4]. The high-
velocity particles bond cohesively or adhesively due to severe plastic deformation upon
impact [5]. In the process of deposition, porosity may form due to geometrical effects at
the particle/particle interfaces, called interface porosities, and due to variations in the
number density of particles in the gas flow, called stack porosities [6]. These porosities
are detrimental to the mechanical properties and corrosion mitigation behaviour of the
deposited coating [7]. The formation of porosity is affected by powder characteristics
(powder morphology and size), and CS process parameters (gas temperature, gas pressure,
stand-off distance, etc.) [8,9]. Hence, the prediction of porosity as a function of the powder
characteristics and process parameters becomes important to avoid any premature failure
and to optimise the process parameters.

High entropy alloys (HEA) have been recently getting a lot of attention due to their
attractive properties compared to conventional alloys [10,11]. The first few publications on
high entropy alloys date back to 2004 [12,13], where the alloy reported by Cantor et al. [13],
with the composition of Fe20Cr20Mn20Ni20Co20, has been called Cantor alloy. Several
studies [14–20] have deposited Cantor alloy using the CS process. Akisin et al. [14] pro-
vided an understanding of the deformation behaviour and the microstructure development
for Cantor alloy during cold spraying. Ahn et al. [15] performed heat treatments on the
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Cantor alloy coatings to understand the microstructure development and its impact on the
nano-indentation hardness. Xu et al. [16] understood the high-temperature (700–900 ◦C)
oxidation behaviour of Cantor alloy deposited using the CS process. Silvello et al. [17] opti-
mised the deposition efficiency and the porosity for Cantor alloy coatings deposited via the
CS process, via the trial and error method. They also understood the corrosion and erosion
behaviour of the optimised coatings. Cavaliere et al. [18] measured the hardness and the
residual stress profiles for Cantor alloy coatings. They also understood the cyclic deforma-
tion behaviour of the coatings. Feng et al. [19] also reported the influence of heat treatments
on the microstructure and the mechanical properties so that the thermal stability of Cantor
alloy coatings could be understood. Wu et al. [20] optimised the deposition window for
cold spray additive manufacturing via the trial and error method. Although much work
has been done to understand the evolution of microstructure and mechanical properties for
CS deposits, and some work has considered parameter optimisation via the trial and error
method, there is a need for a framework that can account for the CS deposition of HEAs
and can predict porosity without spending much cost on experimentation.

Machine learning (ML) has been previously used to perform optimisation and predic-
tion tasks, e.g., Yang et al. [21] used ML to design high entropy-based alloy compositions
and Sai et al. [22] predicted the fatigue life for multi-principal element alloys. ML is espe-
cially attractive due to its ability to identify patterns and relationships in the data that may
not be immediately evident [23]. There are several ML approaches—such as probabilistic
modelling, decision trees (DT), random forests (RF), gradient boosting (GBOOST) machines,
Kernal methods, and neural networks—that can be used to analyse the data at hand [24].
Roy et al. [25] used different ML approaches to predict porosity in different alloys such
as Al, Ti, Ni, and steel for CS deposition. Liu et al. [26] used artificial neural networks
(ANN) to predict the porosity development in Cr3C2–25NiCr coating. No such approach
was found in the literature for CS deposition of high entropy alloys. Hence, we have used
different ML models, based on linear regression (LR), DT, RF, GBOOST, extreme GBOOST
(XGBOOST), support vector machine regression (SVR/SVM), and ANN, to predict the
porosity during CS deposition of Cantor alloy.

In LR, a linear relationship is obtained between the features and the output variables
by using the least square method. Here, the sum of the difference between actual and
predicted values is minimised. The DT learning method generates the model in the form of
a tree. Each node in the DT model represents a feature variable. The output is predicted
based on the feature variables. The output is predicted by tracing the path that starts
from the root and is guided by the values of the feature variables. The RF is an ensemble
algorithm where large numbers of decision trees are combined. The large number of trees
are combined in the RF model so that each tree can be trained enough such that each feature
contributes to the number of models. The output is predicted by averaging the output
from individual trees. GBOOST is also an ensemble algorithm. In GBOOST models, the
weak learners are converted into strong learners. The model is trained to minimise the
loss function of the previous model using gradient descent. During every iteration, the
algorithm computes the gradient loss for the predictions from the current model and then
trains the weak model to minimise the gradient loss. The obtained predictions from the
new model are then added to the ensemble. This process is repeated until the required
criteria are achieved. XGBOOST is an advanced version of the GBOOST models. The trees
here are called the XGBOOST trees, not the DTs. XGBOOST is known to improve execution
speed and model performance. In SVM models, the closest fitted line or the hyperplane
is figured out in a way that the hyperplane has the maximum number of support vectors
across it. A support vector refers to the data point that is closest to the hyperplane. The
SVM models use kernels such as linear, polynomial, and radial basis functions, which
can bring linearity and non-linearity into the model. The artificial neural networks are
inspired by the human brain. The ANNs consist of very well-connected nodes that are
arranged in different layers. The input data passes through the nodes in the hidden layer
to predict the output. The activation functions are used to figure out which node to fire
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up for feature extraction. The weights in the models are adjusted to minimise the loss
function via the gradient descent approach before the final output is achieved. The current
work employs the SHapley Additive exPlanations (SHAP) method to elucidate the key
factors influencing porosity formation, advancing our understanding of the relationship
between process parameters and coating quality. The focus on high entropy alloy (HEA)
coatings underscores the potential of machine learning in optimizing HEA-based coatings
by mitigating porosity.

Optimising cold spray parameters to control porosity can lead to the development of
tailored coatings with specific properties for various industrial applications. For instance,
in corrosion protection applications, coatings with minimal surface-connected porosity are
highly desirable as they provide an effective barrier against corrosive media [27]. By utilis-
ing machine learning algorithms to predict and control porosity formation, manufacturers
can produce coatings with superior corrosion resistance, thereby extending the lifespan of
critical components in infrastructure, transportation, and marine industries [28]. Moreover,
engineered porosity in coatings can also be advantageous in catalytic applications [29]. By
strategically introducing controlled porosity, the active surface area of catalytic coatings
can be increased, leading to enhanced catalytic performance. This has wide-ranging im-
plications across industries such as automotive, chemical processing, and environmental
remediation, where catalytic coatings play a pivotal role in promoting efficient chemical
reactions for emissions control, pollution abatement, and energy conversion.

The ability to accurately predict porosity formation based on CS parameters and
feedstock characteristics has broader implications for advanced materials research and
development. By leveraging machine learning techniques, researchers and manufacturers
can expedite the discovery and optimisation of novel coating materials with tailored
properties, leading to innovations in areas such as wear resistance, thermal insulation, and
electrical conductivity.

2. Methods
2.1. Data Collection

Some of the data points in the dataset, used in this work, were collected from the
literature [14–17,19,20]. Only 22 data points could be found in the literature on the CS
deposition of Cantor alloy. A total of 13 data points were collected through experimental
work. Therefore, in total, the final dataset contained 35 data points. The complete dataset
is presented in Table 1. Each data point contained five input features: 1. gas temperature
(T, in ◦C), 2. gas pressure (P, in MPa), 3. type of gas (G, as He and N2), 4. type of powder
(Pdr, as gas atomised (GA) and mechanically alloyed (MA)), and 5. stand-off distance (D,
in mm). Porosity (in %) was considered as the target or the output variable for all the ML
algorithms. The distribution of data can be seen in Figure 1.

The experimental work on CS deposition of Cantor alloy was carried out using the
Impact Innovation GmbH 5/11 CS system, where the CS gun was manipulated with the
help of an OTC robotic FD-V50 6-axis robot. The deposition was made on small steel (S275)
coupons with the dimensions of 30 mm × 30 mm × 5 mm. The porosity was calculated
from the optical micrographs using the ImageJ software [30] as per ASTM E2109. The
porosity values, for the experimental data presented in Table 1, are the average values from
10 optical micrographs. Image thresholding was performed in ImageJ to highlight the pores,
and then the area fraction was calculated. This area fraction here is called porosity. The
process parameters for the experimental work were chosen in a way that a new combination
of parameters could be developed compared to what was available in the literature. This
is useful for creating a better data distribution for the ML models. All the experimental
process parameters and the porosity values are presented in Table 1.
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Table 1. The complete dataset used in this work to predict the porosity, using ML models, for
depositing the Cantor alloy using the cold spray process.

S. no. Gas Temperature (◦C) Pressure (MPa) Stand-Off Distance (mm) Type of Powder Porosity (%) Reference

From the literature

1 He 300 3.0 30 GA 0.32 [15]
2 He 300 3.0 30 GA 0.5 [16]
3 He 400 3.0 20 GA 1.20 [19]
4 He 500 3.0 20 GA 1.11 [19]
5 He 600 3.0 20 GA 0.85 [19]
6 He 700 3.0 20 GA 0.58 [19]
7 He 800 3.0 20 GA 0.66 [19]
8 N2 1000 5.0 30 GA 8.0 [17]
9 N2 1000 6.0 30 GA 3.0 [17]

10 N2 700 2.5 15 GA 7.86 [20]
11 N2 700 2.5 25 GA 10.63 [20]
12 N2 700 2.5 35 GA 6.35 [20]
13 He 300 2.5 15 GA 1.01 [20]
14 He 500 2.5 15 GA 0.74 [20]
15 He 700 2.5 15 GA 0.45 [20]
16 He 300 2.5 25 GA 1.76 [20]
17 He 500 2.5 25 GA 1.46 [20]
18 He 700 2.5 25 GA 0.43 [20]
19 He 300 2.5 35 GA 5.67 [20]
20 He 500 2.5 35 GA 1.77 [20]
21 He 700 2.5 35 GA 0.77 [20]
22 He 400 3.3 20 GA 2.4 [14]

From experiments

23 N2 1000 3.0 15 MA 2.1
24 N2 1000 3.0 50 MA 2
25 N2 1000 6.0 15 MA 2.2
26 N2 1000 6.0 50 MA 2
27 N2 900 4.0 20 MA 1.63
28 N2 900 5.0 30 MA 2.9
29 N2 900 5.0 30 MA 2.89
30 N2 900 4.0 40 MA 5.53
31 N2 1000 6.0 30 MA 0.82
32 N2 1000 5.0 40 MA 1.57
33 N2 1000 4.0 30 MA 1.78
34 N2 1000 5.0 20 MA 2.41
35 N2 900 6.0 20 MA 1.27
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2.2. Machine Learning

We used different ML models, based on LR, DT, RF, GBOOST, XGBOOST, SVR, and
ANN, to predict the porosity. Different kernels, such as linear (lin), polynomial (poly),
and radial basis function (rbf), in the SVR algorithms, were tried in this work to bring the
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linearity and non-linearity into the model. The architecture of the ANN model was decided
based on the optimised accuracy after changing the number of hidden layers, nodes, and
other parameters using the grid search method. The dataset was divided into training
and test sets with a ratio of 8:2. A fixed “random_state” was used to split the data into
training and test sets. As the random state was chosen for data division for training and
testing, the dataset for both had the combination of the literature and the experimental data.
The algorithms were developed in Python using PyCharm as an integrated development
environment. All the hyperparameter values for each algorithm were tuned using the grid
search method [31]. Five-fold cross-validation was used during the grid search method to
generalise the prediction capability of the models; five-fold cross-validation improved the
efficiency slightly when compared to two-fold and ten-fold cross-validation. The tuned
hyperparameter values for all the models are presented in the supplementary file (from
Tables S1–S9). The performance of the ML models was evaluated with the following three
parameters: 1. Pearson correlation coefficient (PCC, Equation (1)), 2. mean absolute error
(MAE, Equation (2)), and 3. root mean square error (RMSE, Equation (3)).

PCC =

√√√√√1 −
∑
(

Pactual − Ppredicted

)2

∑(Pactual − Pmean)
2 (1)

MAE =
1
Z

Z

∑
i=1

∣∣∣Pactual − Ppredicted

∣∣∣ (2)

RMSE =

√√√√∑
(

Pactual − Ppredicted

)2

Z
(3)

Here, Pactual is the actual value of porosity, Ppredicted is the predicted value of porosity
by ML algorithms, Pmean is the average value of the available porosity values, and Z is
the total number of data points, which was 35 in this work. To obtain the best predictions
from the algorithms, PCC value should be higher whilst MAE and RMSE values should
be lower.

3. Results and Discussion
3.1. Performance of All Models

The PCC, MAE, and RMSE values obtained from all the ML models are plotted in
Figure 2. The PCC values for all the models increased in the following sequence: SVR_poly
< ANN < SVR_rbf < GBOOST < XGBOOST = DT < RF < LR < SVR_lin. The MAE values
decreased in the following sequence: SVR_poly > ANN > GBOOST > SVR_rbf > RF = LR
> SVR_lin > XGBOOST > DT, whilst the RMSE values decreased as: SVR_poly > ANN >
SVR_rbf > GBOOST > RF > XGBOOST = DT > SVR_lin > LR. It is clear from the above
sequences that the non-linear SVR models did not perform well on the given dataset—they
were among the least-performing models, based on the PCC and RMSE values. ANN
model was also among the least-performing models. It was reported that the ANN model
performed well for large datasets [32], hence, because of the smaller dataset, the ANN
model did not perform better than other ML models, except for SVR_poly. There was no
consensus in the PCC, MAE, and RMSE values for the top-performing model. However,
the above-mentioned sequences suggested that the top five models were: 1. SVR_lin, 2. LR,
3. RF, 4. DT, and 5. XGBOOST.



Coatings 2024, 14, 404 7 of 14

Coatings 2024, 14, x FOR PEER REVIEW 7 of 14 
 

 

disadvantageous where the data might not have linearity. This model is also prone to 
outliers, noise, and overfitting. The DT model is also simple and easy to understand, and 
does not require a lot of data preparation. In addition, it can handle the numerical as well 
as the categorical data. However, the trees can be highly non-robust, and a little change in 
the training data might lead to a bigger change in the predictions. In addition, the over-
complex tree might lead to generalisation issues. The RF model reduces overfitting in 
decision trees and helps to improve accuracy. It is quite versatile and can be used for 
regression and classification tasks. However, the complexity of the trees, in comparison 
to trees in DT, makes it a little bit hard to interpret, leading to a longer training time. The 
GBOOST model often provides better accuracy. This model is found to be flexible as it 
provides several hyperparameter tuning options and can be optimised on different loss 
functions. No preprocessing of the data is needed for this model, however, the 
computation can be highly expensive and time-consuming. This model has been found to 
increase the complexity of the classification problems. Most of the advantages and 
disadvantages of the XGBOOST model are the same as for the GBOOST model, however, 
XGBOOST has higher performance than GBOOST, and the training period is lower than 
that of GBOOST. The SVM models are useful when we are unaware of the nature of the 
data, as they work well with the unstructured as well as the structured data. The risk of 
overfitting is lower in the SVM models, however, choosing the best Kernel function is not 
easy. It takes a longer time to train these models and sometimes becomes difficult to 
interpret the final model and the individual parameter impact. The ANN model is 
generally efficient when there is a large dataset available for training. These models can 
provide a deeper relationship between the input and the output variables; hence, 
enhancing the accuracy of the model. However, a smaller dataset reduces the accuracy. 

 
Figure 2. The Pearson correlation coefficient (PCC), mean absolute error (MAE), and root mean 
square error (RMSE) values for all the employed ML models: LR, DT, RF, GBOOST, XGBOOST, 
SVR_lin, SVR_poly, SVR_rbf, and ANN. 

The actual and the predicted values of porosity for the LR, DT, RF, XGBOOST, and 
SVR_lin models are plotted in Figure 3. The actual and the predicted values of porosity 
for GBOOST, SVR_poly, SVR_rbf, and ANN models are plotted in Figure 4. The 40 % 
prediction band on the fitted line is also shown in all the plots. The number of outliers to 
the 40 % prediction band were found to be 1, 1, 2, 2, 2, 2, 3, 3, and 4 for XGBOOST, RF, LR, 
DT, SVR_lin, ANN, SVR_poly, SVR_rbf, and GBOOST, respectively. This observation was 
in line with the top five models as understood from Figure 2. However, the ANN model 
also showed a better fit here. 

Figure 2. The Pearson correlation coefficient (PCC), mean absolute error (MAE), and root mean
square error (RMSE) values for all the employed ML models: LR, DT, RF, GBOOST, XGBOOST,
SVR_lin, SVR_poly, SVR_rbf, and ANN.

It is important to highlight the advantages and disadvantages of the models used in
this work to better understand the outcomes of the models. The LR model is useful when
it is clear that there is a linear relationship between the independent and the dependent
variables; this model is quite simple and easy to interpret. However, this model comes with
an assumption that there is a linearity between the variables, making it disadvantageous
where the data might not have linearity. This model is also prone to outliers, noise, and
overfitting. The DT model is also simple and easy to understand, and does not require a
lot of data preparation. In addition, it can handle the numerical as well as the categorical
data. However, the trees can be highly non-robust, and a little change in the training data
might lead to a bigger change in the predictions. In addition, the over-complex tree might
lead to generalisation issues. The RF model reduces overfitting in decision trees and helps
to improve accuracy. It is quite versatile and can be used for regression and classification
tasks. However, the complexity of the trees, in comparison to trees in DT, makes it a little
bit hard to interpret, leading to a longer training time. The GBOOST model often provides
better accuracy. This model is found to be flexible as it provides several hyperparameter
tuning options and can be optimised on different loss functions. No preprocessing of the
data is needed for this model, however, the computation can be highly expensive and
time-consuming. This model has been found to increase the complexity of the classification
problems. Most of the advantages and disadvantages of the XGBOOST model are the same
as for the GBOOST model, however, XGBOOST has higher performance than GBOOST,
and the training period is lower than that of GBOOST. The SVM models are useful when
we are unaware of the nature of the data, as they work well with the unstructured as
well as the structured data. The risk of overfitting is lower in the SVM models, however,
choosing the best Kernel function is not easy. It takes a longer time to train these models
and sometimes becomes difficult to interpret the final model and the individual parameter
impact. The ANN model is generally efficient when there is a large dataset available for
training. These models can provide a deeper relationship between the input and the output
variables; hence, enhancing the accuracy of the model. However, a smaller dataset reduces
the accuracy.

The actual and the predicted values of porosity for the LR, DT, RF, XGBOOST, and
SVR_lin models are plotted in Figure 3. The actual and the predicted values of porosity for
GBOOST, SVR_poly, SVR_rbf, and ANN models are plotted in Figure 4. The 40% prediction
band on the fitted line is also shown in all the plots. The number of outliers to the 40%
prediction band were found to be 1, 1, 2, 2, 2, 2, 3, 3, and 4 for XGBOOST, RF, LR, DT,
SVR_lin, ANN, SVR_poly, SVR_rbf, and GBOOST, respectively. This observation was in
line with the top five models as understood from Figure 2. However, the ANN model also
showed a better fit here.
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3.2. Hierarchical Impact of Input Features

To further optimise the ML algorithms, the SHapley Additive exPlanations (SHAP)
method [33] was used to downselect the most important input features. The SHAP method
was performed for the top five models and the obtained results are shown in Figure 5.
In the SHAP analysis, each data point of an input feature was assigned with a SHAP
value. The higher the magnitude of the SHAP value for the input feature, the higher its
importance. It can be seen in Figure 5 that the type of gas (G) and the type of powder (Pdr)
were found to be the top two input features, meaning that they contributed the most to
the formation of porosity during CS deposition. The sequence for the importance of the
remaining input features for LR, DT, RF, XGBOOST, and SVR_lin models was: T > D > P,
D > T > P, D > P > T, D > T > P, and T > P > D, respectively. Here T, D, and P refer to
temperature, stand-off distance, and pressure, respectively.
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Figure 5. The figure showcases the hierarchical importance of the input features obtained from
the SHAP method for the top five models: LR, DT, RF, XGBOOST, and SVR_lin. The hierarchical
importance indicates which factor contributes the most to the formation of porosity during cold spray
deposition of the Cantor alloy.

Because the dominance in the importance level was for the type of gas (G) and the
type of powder (Pdr) input features and the dataset only had two types of values for these
features, to check for bias in the data, data from only three input features (gas temperature,
gas pressure, and stand-off distance) were passed through all the ML models. The PCC,
MAE, and RMSE worsened when compared to the models with five input features. These
values are presented in Table 2. This suggested that the type of gas and the type of powder
did have an impact on the porosity formation. It has been reported that it is the particle
velocity that predominantly controls the deposition characteristics [34]. The lighter gas will
impart higher velocity to the particles during the nozzle travel and hence, will reduce the
coating porosity [35]. The MA powder has irregular morphology which leads to higher
particle velocity through a heightened drag effect. This irregular shape accelerates particles
more effectively than the spherical powders, resulting in denser coatings [9].
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Table 2. The Pearson correlation coefficient (PCC), mean absolute error (MAE), and root mean square
error (RMSE) values for all the employed ML models: LR, DT, RF, GBOOST, XGBOOST, SVR_lin,
SVR_poly, SVR_rbf, and ANN, with only three input features (gas temperature, gas pressure, and
stand-off distance).

ML Model PCC MAE RMSE

LR 0.056 2.73 3.49
DT 0.3 2.16 3.58
RF −0.018 2.38 3.41

GBOOST 0.29 3.21 4.23
XGBOOST NAN 2.24 3.38

SVR_lin −0.02 2.24 3.5
SVR_poly −0.078 5.73 8.211
SVR_rbf −0.35 2.02 3.63

ANN −0.02 2.21 3.94

Apart from the type of gas and the type of powder as the top two input features,
gas temperature, and stand-off distance can be considered to be the next two important
features, although a consensus was hard to see from Figure 5. However, of the top five
models, three models (DT, RF, and XGBOOST) showed that the stand-off distance (D) was
the third most important input feature, whilst LR and SVR_lin models showcased that the
temperature (T) was the third most important input feature. Pressure (P) was ranked in
fifth position by three models (LR, DT, and XGBOOST). It has been seen that the increase in
the temperature will lead to the expansion of the gas in the nozzle leading to an increase in
the gas velocity [35]. An increase in pressure will lead to an increase in the acceleration of
the particles during their travel through the nozzle [35]. However, it has been reported that
temperature has more impact on the particle velocity than the pressure [36]. The critical
standoff distance also affects the particle velocity, e.g., helium will create a lower drag
force on the particles compared to nitrogen or air at a given velocity, hence, the stand-off
distance will be greater for helium [37]. Therefore, based on the above understanding, the
data for the top four input features (type of gas, type of powder, stand-off distance, and gas
temperature) were passed through the top five models.

3.3. Performance of Top Five Models with Top Four Input Features

The PCC, MAE, and RMSE values after this are shown in Figure 6. The PCC values
increased in the following sequence: RF < XGBOOST = DT < SVR_lin = LR. The MAE
values decreased in the following sequence: LR = RF > SVR_lin > XGBOOST > DT, whilst
the RMSE values decreased as: RF > XGBOOST = DT > LR = SVR_lin. There was no clear
agreement between all the evaluation parameters, however, if PCC and RMSE values were
compared then it can be said that SVR_lin and LR models performed the best with the
top four input parameters. On a closer look, it was observed that the PCC values for LR,
RF, and SVR_lin models, with the top four input features, decreased when compared to
the PCC values with five input features (Figure 2). The PCC values remained the same
for the DT and the XGBOOST models. The MAE and RMSE values increased for LR and
RF models when compared to the outputs with five input features, whilst these values
decreased slightly for the XGBOOST model. The MAE value decreased slightly for the
SVR_lin model, whilst the RMSE value increased for the SVR_lin model. The MAE values
remained the same for the DT model, but the RMSE value decreased very slightly for the
DT model. These observations suggested that all five input features were important for
porosity control. However, it will be interesting to see the experimental results for the
hierarchical impact of these features on porosity formation. This was not within the scope
of the current work.
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3.4. Best Models

All five input features were important for controlling the formation of porosity during
CS deposition of Cantor alloy. Therefore, from Figure 2, it can be stated that SVR_lin and
LR models were the best-performing ML models, based on the PCC (0.85 and 0.83 for
SVR_lin and LR models, respectively) and RMSE values (2.07 and 2.06 for SVR_lin and LR
models, respectively). The accuracy of the models is also dependent on the number of data
points [38]. In addition, there are other CS process parameters, such as the gun traverse
speed and the track spacing or increment that influence the formation of porosity [39].
Therefore, the accuracy of the current models can be further improved by analysing more
data points and by incorporating other input features. Although limited data points were
available for the current work, the top two models, i.e., SVR_lin and LR models performed
reasonably well, with the PCC values > 0.8.

4. Conclusions

Nine machine learning models, such as linear regression (LR), decision trees, random
forests, gradient boosting, support vector machine (SVM), and neural networks, were
explored to predict the formation of porosity during cold spray deposition of Cantor
alloy. Among the nine machine learning models examined, SVM with linear kernel and
LR models demonstrated reasonable performance, boasting PCC values exceeding 0.8.
All the input features, namely: type of gas, type of powder, gas temperature, stand-off
distance, and gas pressure proved crucial for minimising porosity. The SHapley Additive
exPlanations analysis highlighted the hierarchical influence of gas type and power as the
top factors contributing significantly to porosity formation during the deposition of Cantor
alloy via the cold spray process. This underscored the importance of these key input
features in optimising the process and minimising porosity in coatings.

Supplementary Materials: The following supporting information can be downloaded at: https://
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values were obtained from the linear regression model; Table S2: the tuned hyperparameter values
for the decision trees model; Table S3: the tuned hyperparameter values for the random forests
model; Table S4: the tuned hyperparameter values for the GBOOST model; Table S5: the tuned
hyperparameter values for the XGBOOST model; Table S6: the tuned hyperparameter values for the
SVR_lin model; Table S7: the tuned hyperparameter values for the SVR_poly model; Table S8: the
tuned hyperparameter values for the SVR_rbf model; Table S9: the tuned hyperparameter values for
the ANN model.
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