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Abstract: An exploration of the plasma-sprayed abradable sealing coatings (ASCs) of a thick and
porous LaMgAl11O19 topcoat onto SiC/SiC ceramic matrix composites (CMCs) is detailed in this
study. Interlayers comprising Si/Si + Yb2Si2O7/Yb2SiO5 environmental barrier coatings (EBCs) were
strategically employed, considering their function in protecting the SiC/SiC CMCs from recession
and mitigating thermal expansivity misfit. An isothermal oxidation test was conducted at 1300 ◦C
and resulted in the formation of bubble and glassy melt on the side surface of the coated sample,
while a significant reaction layer emerged at the Yb2SiO5/LaMgAl11O19 interface near the edge.
The localized temperature rise caused by the exothermic oxidation of the SiC/SiC substrate was
determined to be the underlying factor for bubble generation. The temperature-dependent viscosity
of the melt contributed to various bubble characteristics, and due to the enrichment of Al ions, the
glassy melt exacerbated the degradation of the Yb2SiO5 layer. After a thermal shock test at 1300 ◦C,
the substrate on the uncoated backside of the sample experienced fracture, while the front coating
remained intact. However, due to the presence of a through-coating crack, an internal crack network
also developed within the substrate.

Keywords: isothermal oxidation; thermal shock; ceramic matrix composites; environmental barrier
coatings; abradable sealing coatings

1. Introduction

Substantial improvements in the efficiency of aircraft engines can be achieved by
minimizing the clearances between the rotating and stationary components [1]. In an
ideal scenario, the engine’s working fluids should follow the intended gas paths, flowing
smoothly over the rotor surface. However, in fact, the presence of rotor/stator clearances
induces leakage flows bypassing the rotor tips. These flows, which do not contribute
to the power output, result in an overall loss of energy and efficiency [2]. To this end,
abradable sealing coatings (ASCs) applied to stationary inner surfaces are designed to
preferentially wear when in contact with the rotor tips, providing reliable clearance control
while avoiding catastrophic rotor/stator interaction [3].

In turbine stages with operating temperatures above 1000 ◦C, porous ceramics are
often employed as the abradable materials [4]. Because of extensive research and rapid
development in the field of thermal barrier coatings (TBCs), numerous ceramic materials
with high resistance to thermal shock have emerged, among which yttria-stabilized zirconia
(YSZ) is well known for its high fracture toughness and low thermal conductivity [5–9]. In
addition, the YSZ-based ASCs exhibit excellent abradability with the addition of a polyester
pore-former and/or a hexagonal boron nitride (hBN) dislocator [10–14]. However, the
development of SiC/SiC ceramic matrix composites (CMCs) for substituting current super-
alloys as hot section components, driven by the rising gas inlet temperatures anticipated
in future aero-engines, has necessitated elevated temperature capabilities (>1200 ◦C) for
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ceramic abradables [15–17]. Evidently, the temperature requirement exceeds the long-term
durability of YSZ materials, and the difference in the coefficient of thermal expansion (CTE)
between SiC/SiC CMCs and YSZ makes it difficult for them to be compatible. Therefore,
ceramic abradables based on environmental barrier coatings (EBCs) are gradually being de-
veloped for SiC/SiC CMC seal applications. Qin et al. [18] reported Yb2Si2O7 (YbDS)-based
ASCs with different hBN contents, demonstrating the effect of hBN on the coating hardness
and frictional properties. Another example is the research conducted by Guo et al. [19],
focusing on the preparation of a BaO-SrO-Al2O3-SiO2 (BSAS)-based abradable topcoat
on SiC/SiC CMCs with interlayers consisting of Si/mullite + BSAS/BSAS. In the afore-
mentioned research, abradability was typically given primary consideration. However, a
crucial aspect that should not be overlooked is the thermal shock resistance and chemical
compatibility of the ceramic abradables with the corresponding seal substrates applied to
the turbine stage at the service temperature, as this may cause the premature failure of the
ceramic abradables [20–24]. Additionally, leveraging the concept of thermal environmental
barrier coatings (TEBCs) and incorporating a fugitive phase (polyester) makes the TBC
topcoat porous, which is expected to not only enhance thermal insulation but also improve
abradability [25,26].

In this study, a porous and thick LaMgAl11O19 (LMA) topcoat was plasma-sprayed
onto SiC/SiC CMCs through the compatibility of the EBC interlayer with a coating structure
of Si/Si + YbDS/Yb2SiO5 (YbMS). The design of the Si + YbDS mixture layer aimed to
compensate for the consumption of silicon during the spraying process, which was reported
in our previous study [27]. Isothermal oxidation behavior and thermal shock resistance
at 1300 ◦C were analyzed by X-ray diffraction (XRD), optical microscopy, and scanning
electron microscopy (SEM) with energy dispersive spectroscopy (EDS).

2. Experimental Procedure
2.1. Material Preparation

Commercially available Si (99.9%, Shanghai ST-NANO Science and Technology Co.,
Ltd., Shanghai, China) and YbMS (99.9%, Beijing Sunspraying New Materials Co., Ltd.,
Beijing, China) powders were employed as the feedstock materials for the Si and YbMS
layers. In this study, YbDS and LMA powders were synthesized in-house by a solid-state
reaction, and the Si + YbDS mixture powder and the LMA–polyester composite powder
were prepared by different methods. For the former, Si and YbDS powders were mixed in a
molar ratio of 1:1, followed by the addition of gum arabic, ammonium citrate, and deionized
water. After ball-milling together for 36 h, the Si + YbDS mixture powder was obtained by
spray-granulating (SFOC-16, Shanghai Ohkawara Dryers Co., Ltd., Shanghai, China). For
the latter, the LMA powder was mixed directly with gum arabic, ammonium citrate, and
deionized water and ball-milled for 72 h. Finally, the LMA slurry was mechanically stirred
with polyester particles (400 mesh, 10 wt.%) for 3 h and then spray-granulated to produce
LMA–polyester composite powder. The XRD pattern of LMA–polyester composite powder
is shown in Figure 1a, where the arrows refer to the diffraction peaks of crystalline aromatic
polyester, while the remaining peaks correspond to those of LMA. Figure 1b shows the SEM
images of the LMA–polyester composite powder, with the majority composed of aggregated
LMA. However, some particles within the dashed box exhibit partial encapsulation of LMA
onto the polyester, which can, to some extent, reduce the loss of polyester during the
spraying process, as shown in Figure 1c. In order to determine the actual content and
decomposition temperature of polyester, thermogravimetric and differential scanning
calorimetry (TG–DSC) analysis of the LMA–polyester composite powder was conducted.
As depicted in Figure 2, the DSC curve exhibits two exothermic peaks at 546.5 ◦C and
582.6 ◦C, indicating the decomposition of polyester. From the TG curve, it can be observed
that the total mass loss corresponding to the two exothermic peaks is 8.1%, which is less
than the amount of polyester added. This difference might be attributed to the loss of finer
polyester particles carried away by the airflow during the spray-granulating process.
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2.2. Coating Preparation

The SiC/SiC CMC substrates utilized in this research were supplied by Chongyi
Hengyi Ceramic Composites Co., Ltd., Chongyi, China, and fabricated using the precursor
infiltration pyrolysis (PIP) process. For sample preparation, the SiC/SiC CMC substrate
was cut into dimensions of 30 mm × 15 mm × 4 mm, and the four edges of the front
surface were chamfered using a diamond grinding wheel to allow for the over-spray of the
coatings on the substrate to reduce edge effects [28]. Following that, the substrate surface
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was roughed by slight sandblasting with 150 mesh Al2O3 grits under 0.3 MPa. Finally, the
substrate was ultrasonically cleaned, soaked in ethanol, and dried before spraying.

Multilayer Si/Si + YbDS/YbMS EBC was first prepared onto the SiC/SiC CMC sub-
strate using the atmospheric plasma spraying (APS) process (MultiCoat with F4MB-XL,
Oerlikon Metco, Wohlen, Switzerland) with a total thickness of 200 µm, during which the
uncoated and coated substrate surfaces were preheated (~500 ◦C) to slow the quenching
by plasma flame prior to each coating application. Subsequently, the LMA–polyester
composite powder was plasma-sprayed onto the EBC-coated surface to form topcoats
with thicknesses of 500 and 1000 µm, respectively, for conducting the thermal shock and
isothermal oxidation tests. The sample with a topcoat thickness of 1000 µm was specifi-
cally designed to enable simultaneous superficial Rockwell hardness measurement and
investigate the effect of prolonged isothermal exposure on the coating hardness. Such
measurement typically requires a thicker topcoat to minimize the influence of underlying
layers on the results [2]. However, discussions regarding coating hardness are outside
the scope of this paper. The coating system used in this study is shown in Figure 3a, and
the APS operating parameters are listed in Table 1. According to the recrystallization
temperature of the LMA coating reported in our previous work (~900 ◦C and 1170 ◦C) [29],
all coated samples were subjected to post-spray heat treatment at 1200 ◦C for 10 h (labeled
LMA-0), which can not only recrystallize the coatings but also remove the polyester parti-
cles, resulting in the formation of a porous LMA abradable topcoat. Figure 3b shows the
SEM image of the LMA-0 sample with a 500-µm-thick LMA topcoat; one can distinguish
the dense EBC interlayer beneath the porous LMA topcoat. This topcoat was primarily
composed of three distinct components, namely splats, un-melted particles, and pores.
The fully melted particles were transformed into relatively dense splats during spraying,
the partially melted particles resulted in a loose coating structure, and the large pores
within the coating were obtained by the polyester burnout procedure after spraying. In
addition, there was a large number of small circular pores within the splats. This was due
to the lower spray power, which resulted in a lower particle speed, making it difficult for
subsequent molten droplets to expel the entrapped air during deposition [30].
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Table 1. APS operating parameters used in this study.

APS Layers Power
(kW)

Primary Gas
Ar (SLPM)

Secondary Gas
H2 (SLPM)

Feeding Rate
(%)

Spraying
Distance (mm)

Coating Thickness
(µm)

Si 32 35 12 6 100 100
Si + YbDS 32 35 12 6 100 50

YbMS 32 35 12 6 100 50
LMA–polyester 28 35 12 15 130 500/1000

2.3. Isothermal Oxidation and Thermal Shock Tests

Three samples were prepared and subjected to isothermal oxidation in a muffle furnace
(KSL-1700X-S, HF-Kejing, Hefei, China) at 1300 ◦C under an air atmosphere for durations
of 10, 100, and 200 h (labeled as LMA-10, LMA-100, and LMA-200), respectively, with a
heating and cooling rate of 5 ◦C/min. In the thermal shock test, the coated samples were
positioned within a specially designed furnace. Each complete thermal shock process lasted
for 60 min, involving the fast heating of the coated samples to 1300 ◦C and maintaining
this temperature for 55 min, followed by rapid wind-cooling for 5 min to approximately
150 ◦C. Three samples were initially thermal-shocked simultaneously, with one removed
after 100 shocks, another after 200 shocks, and the last one experiencing overall transverse
fracture after 280 shocks, indicating the end of the thermal shock test (labeled as TS-100,
TS-200, and TS-280). For high-temperature tests, all coated samples were packed on a
platinum crucible to avoid contamination.

2.4. Characterization

The phase compositions of the samples were analyzed through XRD using Cu-Kα

radiation in a Rigaku SmartLab instrument. It should be noted that only the LMA topcoat
was detected because of the limited penetration depth of X-rays [31]. The microstructure
of the samples was examined using SEM (QUANTA FEG 450, Hillsboro, OR, USA) with
EDS (Xplore 30, Oxford Instruments, Oxford, UK) for elemental analysis after cold mount-
ing in epoxy resins, sectioning, and fine polishing. Visual inspection and recording were
performed using optical microscopy (SZX7, Olympus, Tokyo, Japan). A thermal analyzer
(STA449F3 Netzsch, Germany) was used for TG–DSC analysis of the LMA–polyester com-
posite powder from room temperature to 1000 ◦C, with the heating rate set at 10 ◦C/min.

3. Results and Discussion
3.1. Isothermal Oxidation
3.1.1. Bubble and Glassy Melt

The macroscopic photographs of coated samples after heat treatment at 1200 ◦C (LMA-
0) and isothermal oxidation at 1300 ◦C (LMA-10, LMA-100, and LMA-200) are shown in
Figure 4. No obvious cracking phenomena were observed on the front surfaces of any of the
coated samples, but a few horizontal cracks appeared at the chamfered edges, which was
caused by stress concentration [26]. Due to the purpose of over-spray in the APS process,
one side surface of the coated sample was also slightly covered by the loose coating, which
is clearly visible from the side view of the LMA-0 sample, while the other side surface
was not covered due to the presence of the fixture used to hold the sample in place during
spraying (not shown). For LMA-10, the coverage of the coating significantly decreased, and
numerous bubbles appeared in the originally covered areas. For LMA-100 and LMA-200,
the bubbles became less pronounced, but the remaining coating increased. It needs to
be mentioned that the isothermal oxidation tests for these three samples were conducted
separately and not cumulatively, implying that the appearance of bubbles may be related
to the decrease in coating coverage after isothermal oxidation, that is, the detachment of
the covered coating during the cooling process. To investigate the evolution of bubbles
with the isothermal oxidation time, the red solid box regions in Figure 4 were enlarged and
recorded using optical microscopy, as shown in Figure 5. It is evident that compared with
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LMA-10, the bubble size was reduced, but the number increased in LMA-100; however, in
LMA-200, there were no clearly observable bubbles. In addition, the entire side surface of
all coated samples was filled with glassy melt. In a previous paper [32], it was reported that
the formation of bubbles was attributed to the dense microstructure caused by the glassy
melt, preventing the outward escape of CO and/or CO2 gases formed by the oxidation
of SiC/SiC substrate. As a consequence, with increasing isothermal oxidation time, the
temperature-dependent melt viscosity is considered an important factor in the variation in
bubble characteristics, as will be detailed below [33,34].
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Figure 6 shows the XRD patterns of the front and side surfaces of the coated samples
after isothermal oxidation, respectively. From the XRD peaks on the front shown in
Figure 6a, the abradable topcoat maintained a single LMA phase during the 200 h isothermal
oxidation. From the XRD peaks on the side shown in Figure 6b, it can be observed that in
addition to the SiC phase corresponding to the substrate and the LMA and YbDS phases
corresponding to the coatings, SiO2 and mullite phases were also present on the side
surface of the coated sample, while Si and YbMS phases corresponding to the coatings were
not detected. It is speculated that the Si layer covering the side surface and the SiC/SiC
substrate oxidized to form SiO2 at elevated temperature, and subsequently, through the
reaction between YbMS and SiO2, YbMS was transformed into YbDS [35]. However, the
unexpected appearance of mullite is worth noting, as a comparative study conducted by
Hu et al. [36] with a completely wrapped coating structure of Si/YbMS/LMA showed
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that the mullite emerged at an isothermal oxidation temperature of 1360 ◦C, accompanied
by the generation of a glassy mixed layer in the upper layers. It was concluded that
enstatite (MgO·SiO2), tridymite (SiO2), and cordierite (2MgO·2Al2O3·5SiO2) formed by
the exothermic reaction between YbMS and LMA at above 1300 ◦C underwent a eutectic
reaction at approximately 1355 ◦C, leading to the appearance of glassy melt and the
precipitation of mullite, as shown in the ternary phase diagram in Figure 7 [32]. By contrast,
the temperature used in this study was 1300 ◦C, and similar glassification phenomena only
appeared on the side surface covered by the loose coating. Therefore, considering that oxide
formation (SiO2) is an exothermic process, this might have generated continuous additional
heat during isothermal oxidation, leading to localized temperature rises on the side surface
of the coated sample [37]. In general, initial oxidation is the most intense, as the formation of
the glassy melt effectively impedes the inward permeation and diffusion of oxygen [36,38].
Therefore, in LMA-10, the relevant temperature rise was the highest, leading to a lower
viscosity of the melt and a higher generation of CO and/or CO2 gases, which increased
the possibility of bubble formation and coating detachment. As the isothermal oxidation
continued (LMA-100 and LMA-200), the slowing oxidation rate of the SiC/SiC substrate
resulted in a lower temperature rise and, therefore, an increase in melt viscosity, a decrease
in gas generation, and, ultimately, a difference in bubble characteristics.
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The BSE mode SEM images of the side surface of the coated sample in Figure 5a,c are
shown in Figure 8, and the corresponding EDS results are shown in Table 2. For LMA-10,
many grey needle-like grains appeared in the glassy melt and were located above the
remaining coating dominated by LMA (Figure 8a,b). Furthermore, according to the Al/Si
atomic ratio at point 2, the phase composition of these grains was close to that of the
mullite (Al6Si2O13). As shown in Figure 8c,d, needle-like grains also appeared in the melt
regions without any remaining coating in LMA-200, but they exhibited a white contrast.
EDS quantitative analysis at point 4 indicated that the white needle-like grains had an
approximate atomic ratio of Yb and Si, suggesting that they were YbDS. The findings of the
above analyses are consistent with the XRD results in Figure 6b, involving the dissolution
of YbMS and partial LMA into melt (points 1 and 3 in Figure 8) and the precipitation of
crystalline YbDS and mullite phases [39,40].
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Figure 8. SEM images of the side surface of the coated sample: (a,b) LMA-10, (c,d) LMA-200;
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Table 2. EDS point scan results in Figure 8.

Point Yb (at%) Si (at%) La (at%) Mg (at%) Al (at%) O (at%)

1 1.18 27.55 1.15 1.59 8.17 60.36
2 0.22 9.78 0.13 0.08 26.75 63.04
3 1.13 36.83 1.84 2.15 5.94 52.11
4 19.38 20.52 1.41 0.32 0.55 57.82

3.1.2. Coating Microstructure

Figure 9 shows the BSE–SEM images of the LMA-10, LMA-100, and LMA-200 samples.
For LMA-10, the interfaces between the coatings and the substrate were well combined,
but a few vertical cracks (mud cracks) were observed in the YbMS interlayer, as indicated
by the black arrows in Figure 9a. These cracks may have resulted from the thermal
mismatch stresses generated during the spraying process and the cooling stage of the heat
treatment, along with the volume shrinkage associated with recrystallization [41]. For
LMA-100 and LMA-200, as shown in Figure 9b,c, large mud cracks (red dashed lines)
appeared in the porous LMA topcoat, and the depth of crack propagation increased with
the prolonged isothermal oxidation time. At the same time, the number of mud cracks
in the interlayer increased (black arrows). It is worth noting that the large mud crack
in LMA-200 extended inward gradually along a direction parallel to the coating surface
and terminated at the YbMS/LMA interface instead of the common mode perpendicular
to the coating surface. On the one hand, cracks tend to propagate along the path of the
least resistance (porosity); on the other hand, this is related to the excellent mechanical
properties of YbMS itself, which has higher stress tolerance [42,43]. This crack deflection
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acts as a toughening mechanism to reduce the risk of damage to the interlayer from thick
topcoats with higher stress levels [26,44]. Compared with heat treatment at 1200 ◦C, the
microstructure of the porous LMA topcoat remained almost unchanged after isothermal
oxidation at 1300 ◦C, as shown in Figure 9a′–c′′. The size of these unmelted particles has not
significantly increased, maintaining a submicron size and indicating an excellent resistance
to sintering.
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(c–c′′) LMA-200.

In order to investigate the isothermal oxidation behaviors of the Si/Si + YbDS/YbMS
interlayers, the coating interfaces were characterized by high-magnification SEM micro-
graphs, as shown in Figure 10a–c. After the prolonged isothermal oxidation, there was
no significant increase in the opening displacement or propagation of the mud cracks in
the YbMS layer, and the cracks terminated within the YbMS layer and did not propagate
further into the Si + YbDS layer. This is mainly attributed to the relatively good thermal
expansion matching between the underlayers [26]. In addition, due to the lower CTE of Si
than that of SiC/SiC substrate, the compression in the Si regions can prevent the cracks
from extending downward.
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The SEM image of the interface between the Si + YbDS layer and the YbMS layer after
10 h of isothermal oxidation is shown in Figure 10a′. It can be clearly observed that four
different contrasts are included, and these contrasts were quantitatively analyzed by EDS, as
shown in Table 3. The black contrast (point 1) contained only Si and O elements, indicating
that the Si constituent was subjected to slight oxidation during spraying, heat treatment,
and isothermal oxidation; the contents of Yb and Si elements in the dark grey contrast
(point 2) were relatively close, suggesting that it was YbDS; the content of Si element in
the light grey contrast (point 3) was about half that of Yb element, indicating that it was
YbMS; the white contrast (point 4) showed a lower Si content (5.3 at%), indicating that it
was Yb2O3, possibly resulting from the decomposition of YbMS during spraying. With
increasing isothermal oxidation time, as depicted in Figure 10b′,c′, the area representing
YbDS in the dark grey contrast of the Si + YbDS layer increased; meanwhile, the areas
representing Si in black contrast and YbMS in light grey contrast decreased. The above
phenomena involved the continuous oxidation of the Si constituent during isothermal
oxidation and the subsequent reaction of SiO2 with YbMS [27]:

Si + O2 +Yb2SiO5 → Yb2Si2O7 (1)

Table 3. EDS point scan results in Figure 10.

Point Yb (at%) Si (at%) O (at%)

1 - 94.56 5.44
2 19.78 19.85 60.37
3 25.71 12.60 61.69
4 31.61 5.30 63.09

This has a beneficial effect of consuming SiO2, which is detrimental to the thermal
shock resistance of the coatings. As reported in the literature, a reversible phase trans-
formation between β- and α-cristobalite during thermal shock, along with significant
volume change, led to severe microcracking of the SiO2 scale known as thermally grown
oxide (TGO), [45,46]. These microcracks establish a rapid diffusion pathway for oxidants,
facilitating their reach to the un-oxidized Si constituent and consequently increasing the
oxidation rate. The consumption of YbMS, generated by the decomposition of YbDS dur-
ing spraying, also benefits the coating lifetime by reducing thermal mismatch stress. In
addition, the in situ-formed YbDS constituent exhibits dense microstructures without any
defects, which is expected to effectively reduce the oxidation of the underlying Si bond
coat. However, a little SiO2 TGO formation was observed on the side of the Si constituent
near the Si + YbDS/YbMS interface. To address this issue, further studies are needed that
more finely adjust the ratio and distribution of the Si and YbDS constituents.

Figure 11a–c show the low-magnification SEM images at the edge of the coated
samples. The edges of the thick LMA topcoat (~1 mm) remained intact after prolonged
isothermal oxidation without any large cracking or delamination, which was attributed to
the excellent resistance to the sintering of the LMA material at 1300 ◦C, and at the same
time, the larger porosity contributed to stress relaxation. An interesting phenomenon was
observed at the chamfer where the coating thickness decreased. However, even at the
very edge, the LMA topcoat retained a thickness of several hundred micrometers. This
suggests that the coating covering the side surface was dominated by LMA, and mullite
may be the main reaction product. However, the absence of prominent mullite peaks in
the XRD pattern of Figure 6b demonstrates that it may have dissolved in the glassy melt
(points 1 and 3 in Figure 8). The SEM images at the chamfer are shown in Figure 11a′–c′.
Similar to Figure 10, the YbDS constituent in the Si + YbDS layer increased, while the
Si constituent decreased with the increase in isothermal oxidation time. The difference
is that a distinct reaction layer appeared between the YbMS/LMA interface after 100 h
of isothermal oxidation, and the thickness increased after 200 h. Interestingly, the thick
reaction layer only appeared at the chamfered edge with glassy melt on one side surface
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of the sample, and the corresponding interface on the other side surface was relatively
stable. Generally, at 1300 ◦C, LMA reacts slightly with YbMS to form a thin interface layer
dominated by Yb3Al5O12 [32,47]. This suggests that the Al-rich melt and mullite products
on the side surface of the sample may be responsible for the prominent reaction layer.
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Therefore, EDS point analysis was performed in the high-magnification micrographs
of the reaction layer, as shown in Figure 11a′′–c′′ and Table 4. After 100 h of isothermal
oxidation, it was observed from points 1 and 4 that these two layers were LMA and YbMS,
respectively, with nearly stoichiometric ratios. In the reaction layer near LMA (point 2), Yb,
Si, Mg, and Al elements were present. Since there is no corresponding single phase for these
four elements, it is identified as containing at least two phases. The Si and Mg contents
were similar, and the Yb/Al ratio was close to 3:5, so the possible phase compositions were
MgSiO3 and Yb3Al5O12. In the reaction layer near YbMS (point 3), Yb, Si, and La elements
were present with similar contents. Yb and La are both rare earth elements, suggesting
a possible phase composition of a LaXYb2-XSiO5 solid solution. After 200 h of isothermal
oxidation, it is observed from point 8 that the reaction front moved toward the YbMS
side, and the thickness of the reaction layer near the LMA side increased. In the reaction
layer near YbMS (point 7), only Yb and Si elements were present with similar contents,
suggesting a possible phase composition of YbDS. In the reaction layer near LMA, two
distinct contrasts were observed. The shallower contrast region (point 5) had elements and
contents similar to point 2, possibly indicating MgSiO3 and Yb3Al5O12. The deeper contrast
region (point 6) had a lower Yb content compared with point 3, suggesting a possible
phase composition of LaXYb2-XSi2O7. These evolutions indicate that as the isothermal
oxidation proceeded, the original LaXYb2-XSiO5 solid solution (point 3) and YbMS (point 4)
continuously lost Yb ions, which subsequently diffused toward the LMA side to form the
dominant Yb3Al5O12. The glassy melt containing a large number of Al ions accelerated
the elemental diffusion and the consequent interfacial reaction, which could explain the
movement of the reaction front. Ultimately, this resulted in the phase transformation of
LaXYb2-XSiO5 and YbMS into LaXYb2-XSi2O7 and YbDS, respectively. This phenomenon
parallels the behavior observed when Yb2O3-rich coatings encounter calcium–magnesium–
alumina–silicate (CMAS) deposits at elevated temperatures, which involves the dissolution
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of YbMS and, upon saturation, the subsequent precipitation of Yb3Al5O12 garnet [39,48]. In
addition, due to the closely matched CTE between YbMS (7.5 × 10−6 K−1) and Yb3Al5O12
(7.83 × 10−6 K−1), no cracks were observed in the reaction layer [45,49]. However, porosity
increased in the reaction layer near the LMA, as shown in Figure 11b′,c′.

Table 4. EDS point scan results in Figure 11.

Point Yb
(at%)

Si
(at%)

La
(at%)

Mg
(at%)

Al
(at%)

O
(at%) Phase Composition

1 0.22 0.73 3.44 2.65 36.02 56.94 LaMgAl11O19
2 12.80 2.75 0.25 3.24 19.73 61.23 Yb3Al5O12, MgSiO3
3 14.29 14.26 12.03 0.73 - 58.69 LaXYb2-XSiO5
4 25.26 13.31 1.01 0.77 - 59.65 Yb2SiO5
5 14.09 2.27 0.75 3.09 22.47 57.33 Yb3Al5O12, MgSiO3
6 7.88 17.17 13.33 0.8 - 60.82 LaXYb2-XSi2O7
7 20.72 21.31 0.66 1.12 - 56.19 Yb2Si2O7
8 24.99 11.08 1.31 1.19 - 61.43 Yb2SiO5

According to the above analysis, a comprehensive description of the corrosion behavior
can be provided. The microstructure evolution on the side surface of the coated sample
during isothermal oxidation at 1300 ◦C is shown in Figure 12. In short-term oxidation
(1300 ◦C × 10 h), the higher local temperature rise caused by the greater oxidation rate of
the SiC/SiC substrate results in the formation of melt with lower viscosity. This hinders
the escape of CO and/or CO2 gases, leading to the formation of larger bubbles and the
detachment of a significant portion of the coatings covered. Simultaneously, some coatings
are retained because they are enveloped by the melt. As the oxidation time increases
(1300 ◦C × 100 h and 200 h), the dense microstructure formed by the melt prevents the
inward penetration of oxygen, reducing the oxidation rate of the substrate. This gradual
decrease in local temperature rise, coupled with the increased viscosity of the melt, slows
the formation of bubbles. Consequently, more coatings are retained. During this period,
the melt rich in Al comes into contact with the YbMS/LMA interface, accelerating their
reaction and exacerbating the degradation of YbMS. Although the impact of this reaction
layer on the performance of the coatings requires further research, the melt indeed has
the capability to protect the integrity of the substrate, as reported in our previous studies,
preventing a significant reduction in strength retention [36].
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3.2. Thermal Shock

The macroscopic photographs on the front and back of the coated samples after 100,
200, and 280 shocks (TS-100, TS-200, and TS-280) are shown in Figure 13a–c′, with no coating
protection on the back due to single-sided spraying. After 100 shocks, the front coating
was intact, while the backside substrate exhibited slight oxidation. Following 200 shocks,
there was coating damage at one corner on the front side due to a partial fracture of
the SiC/SiC substrate on the backside. After 280 shocks, the samples exhibited overall
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transverse fracture with significant substrate contraction, but the coating still adhered well.
Additionally, it is evident that severe oxidation occurred inside the SiC/SiC substrate after
the fracture. Figure 13d shows the XRD pattern of the front surface of the coated samples,
revealing the stability of the LMA coating during the thermal shock test, with no observable
phase transition. However, as depicted in Figure 13e, diffraction peaks associated with
the SiO2 phase appeared in the XRD pattern on the backside, and the intensity of these
peaks increased with the increase in the number of shocks. This not only indicates the
poor durability of SiC/SiC substrate without coating protection at the high temperature of
1300 ◦C but also highlights the excellent thermal shock resistance exhibited by the coatings.
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Figure 13. Front and back images of TS-100 (a,a′), TS-200 (b,b′), and TS-280 (c,c′); (d,e) show the
XRD patterns, respectively.

The microstructure in the middle of the coated samples was analyzed through low-
magnification SEM images, as shown in Figure 14a–c. After the thermal shocks, there was
good bonding between the coatings and substrate, and no apparent large mud crack was
observed in the porous LMA topcoat. Remarkably, even in coated samples subjected to
280 shocks resulting in overall transverse fracture, no delamination of the coatings was
observed. Similar to the observations in the coated samples after isothermal oxidation,
mud cracks were observed in the YbMS interlayer after thermal shocks, and the number
increased with continued shocking, as indicated by the black arrows. Figure 14a′–c′ show
the high-magnification SEM images of the Si/Si + YbDS/YbMS interlayers. The most
significant variation was the increasing opening displacement of the mud cracks with
thermal shocks, reaching approximately 5 µm in the coated sample of TS-280. This is a
result of the gradual accumulation and release of thermal mismatch stresses within the
coatings. Generally, the main concern with mud cracks lies in providing a rapid pathway for
oxygen diffusion, leading to the oxidation of the internal Si layer and potentially affecting
the lifespan of the coatings. However, it can be observed that even as the cracks widen,
they do not extend into the Si layer or even the SiC/SiC substrate. The Si + YbDS mixture
layer functions by applying compressive stress and consuming SiO2 and YbMS through
reactions, inhibiting the continuous propagation of mud cracks and reducing the likelihood
of subsequent microcracking of the SiO2 scale.
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Figure 15 shows the cross-sectional SEM images of the TS-100, TS-200, and TS-280
samples near both edges, where the damage to the coatings and substrate was more severe.
For TS-200, a large mud crack emerged at the chamfered edge of the LMA topcoat (region
1), and a mud crack originating from YbMS directly propagated into the SiC/SiC substrate
(region 4). For TS-280, cracks occurred in the LMA topcoat at both chamfered edges, with
an increased displacement in the crack opening (regions 2 and 3). More surprisingly, a
crack network formed within the SiC/SiC substrate, which could be one of the reasons
for the substrate fracture (region 5). To investigate the crack propagation, the five regions
above were characterized by high-magnification SEM images, as shown in Figure 16. The
extent of cracking in regions 1 and 2 of the LMA topcoat was similar, but there was an
increase in the number of mud cracks in the interlayer with thermal shocks. Region 3
exhibited a distinctive cracking pattern, where a large mud crack originating in the LMA
topcoat bifurcated after extending to the YbMS/LMA interface, as shown in Figure 16c.
One branch extended along the interface; another continued inward and terminated within
the Si + YbDS mixture layer; and the third penetrated the entire coating structure, reaching
the interior of the SiC/SiC substrate. In general, the higher stress concentration at the
chamfered edge is a result of the combined in-plane tension and bending moment exerted by
the overlying coatings [26]. This results in the crack extending vertically until it encounters
a defect or compression region, at which point bifurcation occurs. However, the extension
of cracks along the YbMS/LMA interface may be attributed to weaker interface bonding
due to the lower power and longer distance when spraying the LMA topcoat. The mud
crack in region 4 was also connected to a horizontal crack along the YbMS/LMA interface,
Figure 16d, which is expected to be detrimental to the thermal shock resistance of the
topcoat. Furthermore, more severe substrate damage occurred beneath the mud crack in
region 5 of the TS-280 sample, as shown in Figure 16e. Specifically, the through-coating
crack acts as a shortcut for the in-diffusion of oxygen to directly contact the substrate,
leading to severe oxidation of the substrate at high temperatures. During the thermal shock
process, due to the volume change caused by the phase transformation of SiO2 TGO, the
substrate undergoes cracking, forming a network of cracks and ultimately contributing to
the fracture of the substrate.
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4. Conclusions

An abradable topcoat based on LMA was prepared by APS onto SiC/SiC CMCs
through an EBC interlayer with a coating system of Si/Si + YbDS/YbMS, featuring loose
coatings covered on the side surface of the sample due to over-spray. Isothermal oxidation
behavior and thermal shock resistance were investigated at 1300 ◦C, and some significant
phenomena through studying the phase composition and microstructure of the samples
were obtained, as follows:

1. The additional heat generated by the oxidation of the SiC/SiC substrate led to a local-
ized temperature rise on the side surface of the coated sample. This in turn resulted
in the formation of glassy melt through a eutectic reaction, further contributing to
bubble formation due to its dense nature. The promotion of element diffusion by the
melt led to an acceleration of the interfacial reaction between the YbMS and LMA
layers at the chamfered edge, with the reaction front extending toward the YbMS side.
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2. During the initial stage of oxidation, a higher temperature rise and a lower melt viscos-
ity occurred, resulting in the generation of numerous bubbles and the detachment of
coatings covered. Subsequently, as the melt acted as a barrier to oxygen in-diffusion,
there was a subsequent decrease in the temperature rise, an increase in melt viscosity,
and, ultimately, the disappearance of bubbles.

3. In the thermal shock test, the lack of coating protection on the backside of the sample
resulted in continuous oxidation and cracking damage to the SiC/SiC substrate,
ultimately leading to an overall transverse fracture. While the coated side did not
experience coating delamination, the mud cracks contributed to the formation of a
crack network within the substrate.
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