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Abstract: The application of additive manufacturing (AM) in the aerospace industry has led to the
production of very complex parts like jet engine components, including turbine and compressor
blades, that are difficult to manufacture using any other conventional manufacturing process but can
be manufactured using the AM process. However, defects like nicks, surface irregularities, and edge
imperfections can arise during the production process, potentivally affecting the operational integrity
and safety of jet engines. Aiming at the problems of poor accuracy and below-standard efficiency in
existing methodologies, this study introduces a deep learning approach using the You Only Look
Once version 8 (YOLOv8) algorithm to detect surface, nick, and edge defects on jet engine turbine and
compressor blades. The proposed method achieves high accuracy and speed, making it a practical
solution for detecting surface defects in AM turbine and compressor blade specimens, particularly
in the context of quality control and surface treatment processes in AM. The experimental findings
confirmed that, in comparison to earlier automatic defect recognition procedures, the YOLOv8 model
effectively detected nicks, edge defects, and surface defects in the turbine and compressor blade
dataset, attaining an elevated level of accuracy in defect detection, reaching up to 99.5% in just 280 s.

Keywords: additive manufacturing; deep learning; gas turbine and compressor blades; defect
detection; image processing

1. Introduction

Additive manufacturing (AM) has gained a massive reputation as a fast-expanding
technology within the aerospace industry, acclaimed for its capability to fabricate intricate
components such as turbine and compressor blades, thereby enhancing structural efficiency
and reducing weight [1,2]. Despite its considerable advantages, the AM process is sus-
ceptible to various defects, including nicks, edge inconsistencies, and surface roughness,
attributable to variations in material properties, printing parameters, and post-processing
techniques. These imperfections could significantly undermine the quality, safety, and
performance integrity of high-stakes aerospace components [3,4]. Therefore, maintaining
the structural integrity and operational efficacy of turbine and compressor blades in jet en-
gines necessitates the implementation of real-time defect detection strategies, facilitated by
advanced deep learning methodologies. This area of study has been extensively researched,
underscoring its significance within the aerospace engineering domain.

The aerospace industry has adopted AM technology since the mid-2010s, when avia-
tion industries like GE Aviation, SpaceX, and Lockheed Martin, as well as the government,
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like the US Air Force, invested massively due to its distinctive attributes, including dimin-
ished material waste, facilitation of lightweight designs, decreased reliance on assembly
via component consolidation, and the capacity to manufacture intricately complex compo-
nents. These advantages collectively result in reduced fuel consumption and cost savings,
a consequence of streamlined certification processes [5].

Traditional defect detection methods, such as visual inspection, are labor-intensive,
time-consuming subjective, require skilled personnel to perform the inspection, and may
not always provide precise results. In addition, non-destructive testing (NDT) tech-
niques [6], optical methods (OM) [7], engine borescope inspection [8], though precise,
are significantly costly due to the necessity of not only certified tools but also engineers
with specialized licenses [9]. In the recent past, image-based analytic tools, such as deep
machine learning (DML), have shown considerable promise and extensive potential in im-
age recognition tasks, including object detection, that is applicable to industries to enhance
quality control in production systems and have yielded significant outcomes in quality
assurance of surface coatings defect detection.

Several studies have delved into the application of deep learning for failure detection
across various manufacturing settings, particularly focusing on the outer layers of additive
manufacturing (AM) parts, including turbine and compressor blades for jet engines [10–12].
However, the majority of these investigations have predominantly utilized traditional
convolutional neural networks (CNNs), which are not optimal for spotting subtle and
asymmetrical flaws. In the Malta et al. [13] study, a CNN algorithm was trained to detect
surface defects in automotive engine component detection. The results demonstrated
the model’s ability to accurately identify specific components in live video monitoring.
Aust et al. [14] devised a technique for identifying edge defects in high-pressure compressor
blades utilizing small datasets, employing traditional computer vision methods, followed
by defect feature point calculation and clustering via the DBSCAN algorithm, although
this method is primarily limited to edge defect detection.

In a separate study by Matthias et al. [15], a multi-scale technique of various length
scales was presented, utilizing the sustained finite element method (FEM) for analyzing
surface defects in three-dimensional space. To validate the model, its application was
focused on the quadrature area of a jet turbine and compressor blade, resulting in effective
computation and analysis of crack growth. In a research study by Yoon et al. [16], an
analysis was conducted on the defects found in gas turbine blades within a cogeneration
plant. Scanning electron microscopy (SEM) was implemented to obtain photographs,
revealing that cracks were initiated as a result of concentrated stresses around preexisting
defects. Liu et al. [17] analyzed the FEM-based deep vibration analysis method in the gas
turbine rotor blades dataset to detect potential locations of dynamic crack propagation.

He et al. [18] proposed an improved R-CNN cascade mask deep learning-based
methodology aimed at achieving accurate edge failure detection in turbine blades. In the
field of nick damage detection in rotating 3D blade-like structural elements, Buezas et al. [19]
employed genetic algorithms (GAs) to implement multi-layer detection. Advancements
in continuum robotics have enabled researchers, as mentioned in references [20,21], to
design snake-like robots capable of autonomously exploring the intricate inner spaces of gas
turbines. Morini et al. [22] conducted a specialized study on compressor fouling, addressing
associated issues and potential solutions. Furthermore, in order to optimize the blade
defect analysis process, Li et al. [23] focused on utilizing measurement parameters, while
Zhou et al. [24] emphasized the establishment of mapping and fault index relationships.

In the context of object detection using the YOLO network, Redmon et al. [25] ap-
proached the issue of defect detection as a regression problem. The method involves direct
regression of the target’s bounding box from varied locations within the input dataset,
leading to a substantial increase in detection speed while maintaining precision. Concur-
rently, Hui et al. [26] developed an advanced model leveraging the YOLOv4 framework to
detect cracks in jet engine blades. This enhancement incorporated an attention mechanism
within the architecture network to augment background differentiation and enhanced multi-
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scale feature fusion through the application of bilinear interpolation, thereby significantly
elevating detection capabilities.

In the pursuit of achieving 100% accuracy in quick succession of time, intensive
efforts have been devoted to various deep learning-based defect detection algorithms,
and the YOLOv8 model has been distinguished as the preeminent version, surpassing
its predecessors in efficacy as corroborated by a multitude of studies referenced in the
literature reviews [10,27,28]. The principal aim was the pragmatic application of the
YOLOv8 architecture, which, despite its baseline proficiency, required bespoke alterations
to accommodate the unique defect typologies inherent to AM specimens. Concomitantly,
the model underwent further customization to proficiently identify defects that manifest
post-production, including but not limited to surface coatings, nicks, and edge deformities,
particularly in the context of AM-fabricated components such as aero-engine compressor
and turbine blades.

In this research, the innovative application of YOLOv8, one of the most widely used
state-of-the-art object detection frameworks, was explored within the context of aero-
engine turbine and compressor blade defect detection, significantly enhancing inspection
speed, accuracy, and reliability over traditional methods. The proposed methodology
seeks to enhance the detection of surface, nick, and edge defects on jet engine turbine and
compressor blades, as demonstrated in Figure 1. In pursuit of this objective, the study is
designed to achieve the following aims:

1. To better understand the relationship between additive manufacturing, surface de-
fect detection in jet engine turbine and compressor blades, and deep learning, we
conduct a comprehensive comparative analytical review of deep learning architec-
tures proposed by previous researchers for image analysis of gas engine turbine and
compressor blades.

2. To implement a deep learning-based YOLOv8 algorithm for identifying surface flaws
on the turbine and compressor blades of jet engines that have been produced using
conventional and AM methods.

3. To assess the execution of the proposed approaches in detecting defects, a dataset consist-
ing of turbine and compressor blade images is employed in this research investigation.
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Figure 1. Surface, nick, and edge defects observed in the manufacturing of turbine blades using AM.

The paper’s structure is delineated as follows: Section 2 comprises a comprehensive re-
view of deep learning architectures proposed by prior researchers concerning the analysis of
gas turbine and compressor blade images. Section 3 outlines the research approach utilized
in this investigation, while Section 4 scrutinizes the definitive results of defect detection.

2. Methodology

In this research, a novel deep learning methodology was developed for identifying
surface defects in jet engine turbine and compressor blades, utilizing the advanced YOLOv8
algorithm. The approach is distinguished by the incorporation of both conventionally
manufactured and additively manufactured blades, enhancing the dataset’s diversity and
accuracy. This study marks the first application of YOLOv8 for defect detection in turbine
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blades, demonstrating the model’s adaptability and effectiveness in a new, high-stakes
domain. The novelty of this work lies in the targeted adaptation and optimization of
YOLOv8 for aerospace component surface inspection, a critical area previously unexplored
by this technology. The contributions include a bespoke dataset tailored for turbine blade
defects and significant enhancements to the model’s performance in this specific context.
This research advances the field of aerospace manufacturing and maintenance, offering
a pioneering approach to defect detection that promises to improve quality assurance
and operational safety in jet engines. The methodology section involved three main
components: dataset preparation, deep learning architecture and algorithm selection,
and training process and evaluation. A schematic research flowchart is illustrated below
in Figure 2.

Coatings 2024, 14, x FOR PEER REVIEW 4 of 15 
 

 

The paper’s structure is delineated as follows: Section 2 comprises a comprehensive 
review of deep learning architectures proposed by prior researchers concerning the anal-
ysis of gas turbine and compressor blade images. Section 3 outlines the research approach 
utilized in this investigation, while Section 4 scrutinizes the definitive results of defect 
detection.  

2. Methodology 
In this research, a novel deep learning methodology was developed for identifying 

surface defects in jet engine turbine and compressor blades, utilizing the advanced 
YOLOv8 algorithm. The approach is distinguished by the incorporation of both conven-
tionally manufactured and additively manufactured blades, enhancing the dataset’s di-
versity and accuracy. This study marks the first application of YOLOv8 for defect detec-
tion in turbine blades, demonstrating the model’s adaptability and effectiveness in a new, 
high-stakes domain. The novelty of this work lies in the targeted adaptation and optimi-
zation of YOLOv8 for aerospace component surface inspection, a critical area previously 
unexplored by this technology. The contributions include a bespoke dataset tailored for 
turbine blade defects and significant enhancements to the model’s performance in this 
specific context. This research advances the field of aerospace manufacturing and mainte-
nance, offering a pioneering approach to defect detection that promises to improve quality 
assurance and operational safety in jet engines. The methodology section involved three 
main components: dataset preparation, deep learning architecture and algorithm selec-
tion, and training process and evaluation. A schematic research flowchart is illustrated 
below in Figure 2. 

 
Figure 2. Schematic experimental flowchart of the research approach. 

2.1. Dataset Preparation 
For this research, an openly accessible compilation of multiple datasets (refer to Table 

1) containing 302 augmented images derived from 151 original images of jet engine tur-
bine and compressor blade surfaces featuring various surface defects was utilized. To 
evaluate the efficacy of the proposed YOLOv8 model, a dataset comprising turbine blade 
images from diverse origins was employed to assess the model’s proficiency in achieving 
100% accuracy in detecting nick, edge, and surface defects while utilizing a minimal da-

Figure 2. Schematic experimental flowchart of the research approach.

2.1. Dataset Preparation

For this research, an openly accessible compilation of multiple datasets (refer to Table 1)
containing 302 augmented images derived from 151 original images of jet engine turbine
and compressor blade surfaces featuring various surface defects was utilized. To evaluate
the efficacy of the proposed YOLOv8 model, a dataset comprising turbine blade images
from diverse origins was employed to assess the model’s proficiency in achieving 100%
accuracy in detecting nick, edge, and surface defects while utilizing a minimal dataset
within the shortest possible detection time frame. The dataset was prepared by taking
high-resolution images of the turbine and compressor blades and manually annotating the
surface defects by creating a bounding box surrounding each defect area using a software
tool named roboflow (https://roboflow.com/auto-label (accessed on 14 April 2024)). The
annotated images were then split into train, validation, and test sets. The training dataset is
focused on training the required deep learning experimental model, while the validation
set is used to select the best architecture based on model performance. The images used for
the dataset are of three defects found in turbine and compressor blades and non-defective
turbine and compressor blades illustrated in Figure 3. In particular, inside the dataset, the
orange square labels reflect the areas of nick and red as surface defects, while the purple
squares signify edge defects.

https://roboflow.com/auto-label
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Table 1. Dataset source.

Image
Acquisition Study Reference

16 Engine blade LLP status from engine data information. [29]
12 Compressor blade damage assessment algorithm dataset. [30]
18 A survey on the aero-engine blade processing techniques by AM. [31]
14 Additive design and manufacturing of jet engine components. [32]
15 Gas turbine blade fault detection by XCT-ray computed tomography model. [33]
44 Evaluating risk assessment of engine blades visual inspection. [34,35]
16 The Blade Runners Investigation. [36]
16 Investigation of failure mechanism in a turbofan blade. [37]
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2.2. Preprocessing and Dataset Balancing

Preprocessing entails converting the unprocessed data into a suitable layout that is
appropriate for deep learning model training. In this investigation, the pixel values were
adjusted to a standard deviation value of 1 with a mean value of 0, and the photos were
scaled to an anchored size of 640 × 640 pixels and converted to the RGB color space.
Each stage is essential to ensure a real-world dataset that helps the deep learning model
accurately detect surface flaws in the jet engine turbine and compressor blade dataset. In
this study, the dataset was splattered randomly into three subsets: 67% for training, 18% for
validation, and 15% for testing. They can vary based on the dataset’s size, the complexity
of the model, and the specific requirements of the research or application, which serve
distinct purposes in deep machine learning model development. Although no universally
mandated rule exists for specifying precise allocation ratios, standard practice in deep
learning involves a distribution strategy that typically reserves approximately 60%–80%
of the dataset for training, 10%–20% for validation, and 10%–20% for testing. The choice
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of these percentages is based on ensuring that the model has sufficient data for effective
training while also providing sufficient unseen data for validation and testing, meeting
both the model’s needs and the project’s specific requirements. The larger training set (67%)
eases the model’s learning development by exposing it to a diverse range of turbine and
compressor blade defects, for example, aiding in defect recognition and feature extraction.
The validation subset (18%) plays a crucial role in adjusting the model’s hyperparameters
and preventing overfitting by assessing its performance on unseen data during training.
It helps in optimizing the model performance by providing feedback on how well the
model is generalizing from the training data. Lastly, the testing dataset (15%) remains
entirely separate from both the training and validation sets, allowing an independent
evaluation of the model’s generalization to the new dataset, thereby evaluating its real-
world performance.

2.3. Deep Learning Architecture and Algorithm Selection

For this study, the YOLOv8 deep learning architecture was selected as the latest version
for real-time surface defect inspection. YOLOv8, released in 2023, is intended to combine
the finest real-time image-detecting algorithms launching upon the principles of cross-
stage partial (CSP), state-of-the-art (SOTA) [38], the spatial pyramid pooling fast (SPPF)
module [39], and the path aggregation network with feature pyramid network (PAN-FPN)
feature fusion approach [40,41]. The backbone design of YOLOv8 is substantially evocative
of YOLOv5, but it adds the C2f module in favor of C3 [42]. To fulfill the requirements of
the project, it was likewise created using a scaling coefficient akin to that of YOLOv5 and
YOLOv7 [43], except YOLOv8 uses binary cross entropy (BCE) loss for classification.

YOLOv8 maintains the use of the PAN-FPN methodology in the neck region, which
improves the integration of layer details at various scales and offers more complete represen-
tation learning capabilities by merging C3 and ELAN. By successfully merging confidence
and regression boxes, YOLOv8’s neck is built on the concept of extracting head architecture
in YOLOx through the use of several C2f modules. This enables YOLOv8 to attain a better
level of accuracy. This method’s application in the final section of the neck module enhances
YOLOv8’s accuracy and performance.

Fundamentally, one important feature of YOLOv8 is its exceptional extensibility,
which allows for seamless transition between various versions and complete compatibility
with all YOLO variations. More significantly, the concept of the rapid detection YOLOv8
architecture is incorporated as an efficient solution for accurate detection in different turbine
and compressor blade defect structures like edge, dent, and nick, enhancing the precision
of defect classification. Figure 4 elucidates the advancements in the YOLOv8 architecture,
designated as the proposed model. Specifically, Figure 4a delineates the network partition
flow chart of the YOLOv8 architecture. Figure 4b elaborates on the backbone design, which
is analogous to that of YOLOv5 but integrates the C2f module replacing the traditional C3
module. Lastly, Figure 4c illustrates the decoupled head of the YOLOv8, highlighting its
structural modifications.

2.4. Training Process and Performance Evaluation

The final step in the methodology is the training process and evaluation of the model’s
performance. Following the development of the YOLOv8 architecture, the subsequent
phase is dedicated to training the model on the annotated dataset. This involves using
the training set to adjust the weights of the neural network through a process called
backpropagation. The primary objective is to minimize the loss function by quantifying the
disparity between the predicted and actual output. During each iteration of the training
process, a batch of images is processed by the model, and the weights are adjusted based
on the error between the predicted outputs and the ground truth annotations. This process
is repeated for 25 epochs for the YOLOv8 model or until the model reaches a certain level
of performance. The details of the experiment’s initialization model settings and hardware
and software environments for turbine and compressor blade defect detection are presented
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in Table 2. The accuracy of the proposed approach was systematically evaluated using
globally recognized established metrics pertinent to computer vision deep learning image
processing, specifically within the context of object detection models [44]. In evaluating the
performance of the YOLOv8 model on both training and validation sets, several key metrics
are employed to provide comprehensive insights into the model’s precision (P), recall (R),
and overall efficacy. These metrics include F1_curve, PR_curve, P_curve, and R_curve, as
illustrated in Figure 5, which are standard metrics used to evaluate object detection models.
During this phase, adjustments to hyperparameters like the number of epochs or model
fine-tuning may be undertaken to optimize performance. The choice of learning rate, set
at 0.001, was crucial for balancing the speed of convergence and the stability of training.
This process is replicated until the model accomplishes satisfactory performance on the
validation set. Fine-tuning encompasses meticulous adjustments to hyperparameters and
potential architectural modifications. These adjustments can encompass variables such as
batch size and epoch count in the model’s layers. Following successful fine-tuning and
the attainment of satisfactory performance on the validation dataset, the model undergoes
comprehensive testing to determine its ultimate efficacy. An essential aspect of this phase
involves a comparative analysis of testing results against the model’s performance on the
validation dataset, ensuring overfitting is mitigated.
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Table 2. Hardware and software environments for turbine and compressor blade defect detection.

Category Configuration

Hardware
GPU NVIDIA NVTX 11.6
CPU Intel Core i7-8565

Operating system Linux Ubuntu 16.04

Software
Program environment Python 3.9

Deep learning framework PyTorch 1.7

In the case of surface defect analysis of the jet engine compressor and turbine blades,
the training process would involve feeding a dataset of annotated images of turbine
and compressor blades with both defective and non-defective surfaces into the YOLOv8
architecture. The model would adjust its weights during training in response to the training
data, and the process would be repeated for a fixed number of epochs. The process of
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weight adjustment, a cornerstone of the YOLOv8’s learning algorithm, plays a paramount
role in the architecture’s ability to incrementally refine its predictive accuracy. This intricate
process is undergirded by the principles of backpropagation and sophisticated optimization
algorithms, facilitating a methodical adjustment of weights in accordance with the gradient
of the loss function. During the model’s training phase, a forward propagation mechanism
is employed to generate predictions based on input data, followed by the computation of
loss using a predefined function that quantifies the deviation between these predictions and
the actual labels. This recursive process is designed to minimize loss, thereby progressively
ameliorating the model’s predictive performance across successive epochs.
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Figure 5a showcases the F1-score, a critical metric derived as the harmonic mean
of precision and recall, plotted against varying confidence thresholds for distinct defect
classifications: edge defect, nick, and surface defect. This plotting elucidates the model’s
performance spectrum across diverse defect types alongside a consolidated assessment of
its overall efficacy across all classes. In addition, the precision–recall curve, as shown in
Figure 5b, elucidates the model’s precision against recall, devoid of the direct influence
of confidence thresholds. The precision–confidence (Figure 5c) and recall–confidence
curves (Figure 5d) elaborate on how the model’s precision and recall metrics evolve with
fluctuating confidence levels, showcasing a sophisticated balance between these metrics, as
highlighted by an aggregate precision score of 1 with a standard deviation of 0.458.

This intricate analysis underscores the model’s commendable performance, yet it
also illuminates significant optimization avenues, especially in bolstering the model’s
consistency across varying defect classifications and confidence thresholds. After training,
the model would be evaluated on a separate validation set of annotated images to determine
its performance and identify areas for improvement. This might involve fine-tuning the
model or modifying the architecture by changing hyperparameters.



Coatings 2024, 14, 501 9 of 15

Following the attainment of satisfactory metrics on the validation set, it will be tested
on a separate testing set of annotated images to evaluate its final performance. The testing
results would be compared to the performance on the validation dataset to verify that
the model has not overfitted the validation set and to obtain an estimate of the model’s
generalization performance. In the assessment of object detection performance, Intersection
over Union (IoU) serves as a critical metric by assessing the ground truth bounding box to
the predicted one, as articulated in Equation (1). Within the domain of defect detection,
IoU assumes the role of quantifying the congruence between two bounding boxes, thereby
evaluating the concurrence of ground truth and prediction regions in defect detection tasks.

Precision (P), denoting the accuracy of predictions emanating from the model’s per-
formance, and recall (R), reflecting the model’s ability to detect all possible positive cases
among top-priority predictions, are mathematically represented by Equations (2) and (3).
These metrics are pivotal in gauging the model’s precision-recall trade-off and its effective-
ness in capturing relevant instances. Average precision (AP) is utilized as the calculating
matrix for turbine and compressor blade defect detection, while the mean average preci-
sion (mAP) and (mAP@0.5:0.95) [45] are used to assess the model’s overall performance,
analyzed through Equations (4)–(6), where true positive (TP) and false positive (FP) rates
indicate that misalignment defects exist in the non-defect areas as a false detection. A false
negative (FN) rate, representing ground truth, is present in the dataset, and the model
failed to detect exact defect types.

Intersection Over Union(IOU) =
A ∩ B
A ∪ B

=
Area of overalp
Area of union

(1)

Average Precision(AP) =
∫ 1

0
p(r)dr (2)

Mean Average Precision(mΛP) =
1
N ∑ N

i ΛP(i) (3)

Precision(P) =
True Positive(TP)

True Positive(TP) + False Positive(FP)
(4)

Recall(R) =
True positive(TP)

True Positive(TP) + False Negative(FN)
(5)

mAP@0.5 : 0.95 =
mAP0.50 + mAP0.55 . . . + mAP0.95

N
(6)

3. Results and Discussion

The suggested deep learning strategy with YOLOv8 achieved 99.5% accuracy, 94%
precision, 98% recall, and 96% F1-score on the validation set, as shown by the experiments.
The proposed approach successfully detected surface flaws on jet engine blade components,
and the findings reveal that the proposed method is more accurate and reliable in com-
parison to other conventional deep learning approaches. With a mAP of 0.99 and a model
detection speed of 150 frames per second, it proves to be a valuable tool with excellent
defect detection, particularly in the context of quality assurance within the aerospace sector.
The detailed results of the surface defect detection model would typically be evaluated
based on several metrics, including F1-score, accuracy, recall, and precision, as depicted in
Figure 6 below.

In the training dataset results presented in the top row of Figure 6b, an assortment of
metrics provides a detailed account of the model’s proficiency through the training phase.
The train/box_loss metric, indicative of the model’s accuracy in bounding box predictions,
shows a declining trend, suggesting enhanced capability in localizing objects within the
dataset. Complementing this is the train/cls_loss, which charts the classification loss; its
steady decrease is emblematic of the model’s improving accuracy in object classification.
Additionally, the train/dfl_loss, potentially representing a specialized loss function, ex-
hibits a downward trajectory, further affirming the model’s refinement over the course of
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training. Fluctuations in the metrics/precision(B) and metrics/recall(B) notwithstanding,
both metrics exhibit an overall trend toward improvement. This trend is indicative of an
increasing proportion of true positive detections and an amelioration in the model’s ability
to identify relevant objects. The metrics/mAP50(B), reflecting the mean average precision
at an Intersection Over Union (IOU) threshold of 0.50, remains notably stable and high,
denoting a commendable level of performance. Conversely, the metrics/mAP50-95(B),
encompassing a range of IOU thresholds from 0.50 to 0.95, presents a lower value, which
is consistent with the increased difficulty in maintaining precision across more stringent
IOU thresholds. The bottom row, delineating the validation losses such as val/box_loss,
val/cls_loss, and val/df1_loss, offers insights into the model’s generalizability. These
metrics, expectedly higher than their training counterparts, should ideally parallel the
downward trends observed in training.
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The accurate identification of samples among the total samples defines accuracy, while
precision represents the percentage of accurately identified faulty surfaces within a set of
samples flagged as positive. Additionally, the recall denotes the percentage of accurate
predictions in relation to the total validation predictions. Incorporating both precision
and quantity of accurate predictions, the F1-score reaches a maximum value of 1. Notably,
the confusion matrix demonstrates a 100% detection accuracy for nick, edge, and surface
defects (see Figure 6a). Some faults in turbine and compressor blades were picked up by
the YOLOv8 algorithm, as depicted in Figure 7 below.
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Validation determines the YOLOv8 model’s performance using multiple datasets,
where it identifies surface, edge, and nick flaws with an average value of 0.9, derived from
the turbine and compressor blade training model. By testing the algorithm on a validation
set, one can evaluate its potential for standardization and make the required modifications
to enhance its performance. Table 3 provides a detailed analysis of the algorithm’s test,
where the average mean pixel size (MAP) was 0.99, and the accuracy values for surface,
nick, and edge defects were up to 0.91, 0.91, and 1, respectively. All of the detected images
had 640 × 640 pixels.

Table 3. Detailed YOLOv8 summarized results.

Class Box (Precision) Box (Recall) mAP mAP 50-95

All 0.935 0.985 0.995 0.58
Nick 0.91 1 0.995 0.57

Surface defects 1 0.95 0.995 0.54
Edge defects 0.91 1 0.995 0.67

Overall, the YOLOv8 gas turbine and compressor blade defect detection algorithm
performed magnificently as an excellent detector to identify metal AM turbine and com-
pressor blade defects like nicks, edges, and surface defects as a novel approach. To extend
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its applicability to additional surface defect types, a similar methodology can be employed.
This involves annotating new defect types in the dataset and subsequently training the
YOLOv8 model to enhance its capabilities for identifying and classifying these new types
of defects.

In evaluating the most effective method for detecting aero-engine blade defects, it
is crucial to assess the efficacy, accuracy, and applicability of NDT testing and optical
methods in comparison to the proposed deep learning-based YOLOv8 algorithms. While
non-destructive testing and optical methods are traditional and reliable, they each have
limitations either in the type of defects they can detect or in their operational efficiency. The
deep learning-based YOLOv8 algorithm, on the other hand, offers a comprehensive solution
that can continuously evolve and adapt, providing high accuracy and real-time detection
capabilities. Therefore, for the specific case of inspecting surface coating issues, edges,
and nicks in aero-engine blades, the YOLOv8 deep learning approach is generally more
advantageous, especially in scenarios where high throughput and precision are required.

This study found that the proposed deep learning strategy based on the YOLOv8
method surpassed existing methodologies in accuracy and reliability. However, the method
did have a few limitations, like the small size of the dataset, which may limit the model’s
applicability in other contexts. When it comes to machine learning, the quality and amount
of data used for training the model are crucial to its success. Overfitting, where the model
becomes overly particular to the examples in the dataset and fails to generalize adequately
to new, unseen examples, can occur when the dataset is small.

The computational complexity of the YOLOv8 architecture was another shortcom-
ing of the proposed solution. The computational complexity of an algorithm describes
how much time and space the program needs to execute in real time. It is possible that
real-time detection is crucial for ensuring safety and preventing faults from producing
catastrophic failures when it comes to identifying surface defects on jet engine turbine and
compressor blades.

4. Conclusions

In deep learning, numerous layers of artificial neural networks are used to learn elabo-
rate representations of data. When applied to tasks like image identification, identifying
items, and natural language processing, deep learning has proven to be remarkably effec-
tive. In this research, a YOLOv8-based deep learning approach was devised for identifying
flaws in the surface of jet engine turbine and compressor blades. The great precision and
speed attained by the suggested technology make it a viable option for quality control in
the aerospace jet engine industry. The findings show that deep learning-based methods can
be utilized to detect surface defects in jet engine turbine and compressor blades produced
by using additive manufacturing with high accuracy and efficiency.

The experimental findings suggested that the YOLOv8 model adequately detected
nick, edge, and surface defects in the turbine and compressor blade dataset, attaining an
optimized defect detection precision of up to 99.5% within just 280 s in comparison to
former automatic defect identification techniques. The suggested approach can immensely
minimize the cost and time required for defect identification when contrasted to other
existing methods. In addition, the proposed method can be executed in real time, enabling
instantaneous problem detection and rectification all through the production cycle.

In the future, researchers may look at generalizing the model to detect flaws in dif-
ferent types of components and expanding the dataset to cover a broader spectrum of
defects. In order to discover and rectify flaws in the manufacturing process in real time, the
proposed technology can be incorporated into an automated flaw detection system. Despite
stringent controls, manual annotation of defects introduces a possibility of human error,
potentially affecting the uniformity and dependability of the training inputs. Additionally,
the reliance on high-resolution imagery raises concerns about the model’s performance
degradation when deployed with lower-quality images commonly encountered in practical
settings. To further boost the accuracy and acceleration of the model, the suggested method
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can be enhanced by investigating alternative deep learning architectures and optimiza-
tion strategies. The performance of the suggested model can be enhanced through the
application of pre-trained models on larger datasets via transfer learning.

Overall, surface flaw identification on additively built jet engine turbine and compres-
sor blades using the suggested deep learning approach with YOLOv8 showed encouraging
results in terms of precision, efficiency, and speed. Potentially applicable to other de-
fect detection activities in the manufacturing industry, the proposed method can provide
an efficient and precise solution for fault identification and drastically cut costs while
simultaneously raising product quality during the manufacturing process.
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