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Abstract: Titanium nitride and/or nitrogen ion implanted coated dental materials have 

been investigated since the mid-1980s and considered in various applications in dentistry 

such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene 

instruments, and casting alloys for fixed restorations. Multiple methodologies have been 

employed to create the coatings, but detailed structural analysis of the coatings is generally 

lacking in the dental literature. Depending on application, the purpose of the coating is to 

provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion 

resistance, lower friction, as well as greater beneficial interaction with adjacent biological 

and material substrates. While many studies have reported on the achievement of these 

properties, a consensus is not always clear. Additionally, few studies have been conducted 

to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or 

nitrogen ion implanted coated dental materials potentially offer advantages over uncoated 

counterparts, but more investigation is needed to document the structure of the coatings 

and their clinical effectiveness.  
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1. Introduction 

Titanium nitride (TiN) and nitrogen ion implanted coatings have been used in industry for quite 

some time with eventual cross-over to dental applications in the mid-1980s. Since this time, these 

coatings have been applied to dental materials used in implant dentistry, orthodontics, endodontics, 

prosthodontics, and periodontics. Depending on application, the purpose of the coating is to provide 

increased surface hardness, abrasion/wear resistance, and corrosion resistance, lower friction, as well 

as greater beneficial interaction with adjacent biological and material substrates. A review of titanium 

nitride coatings in clinical dentistry was published in 1992 by Mezger and Creugers [1]. Taking into 

consideration that much has changed in dentistry and coating technology since 1992, the objective of 

this article was to provide a review of the literature of titanium nitride and nitrogen-ion implanted 

coated dental materials, focusing on coating methodologies, structural analysis, and an examination of 

coating applications and properties in the aforementioned disciplines. 

2. Coating Methodologies and Structural Analysis 

A myriad of methodologies have been used to create TiN and nitrogen ion implanted coatings in 

various dental materials. A compilation of the methodologies as listed in the literature is displayed in 

Table 1. It is possible some subcategory methodologies are the same since the methodology to coat the 

dental materials was not always explicitly detailed or common nomenclature was not used. Still, it is 

apparent the majority of methodologies used are of the physical vapor deposition (PVD) type while 

thermal nitriding and chemical vapor deposition were employed in only 3 and 4 studies, respectively. 

Approximately 20 studies did not list the way in which the coating was deposited. A possible reason 

for this is that the coating may have been on a commercial product; thus the method/details of 

deposition may remain proprietary or are not published in manufacturer literature. Additionally, the 

coating was not the main focus of a few studies so details were understandably lacking. Coating 

methodology was contained in all of the Endodontic and Prosthodontic literature reviewed below as 

the coatings were more likely to be experimental in nature and certain properties were investigated, 

whereas it was less likely to be mentioned in the Dental Implant and Orthodontic literature; for the 

latter, commercial products were commonly evaluated. 

Structural analysis, in the form of determining composition or phase structure of the coatings, was 

only used in a minority of studies (Table 1). Three methods were used to identify composition and/or 

phase structure: X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Nuclear 

Reaction Analysis. XPS was used for detailed surface composition analysis. Often the N/Ti ratio was 

determined to indicate the amount of N deposition in the coating and to determine whether the ratio 

corresponded to stoichiometric values. Additionally, alternating XPS with sputter etching allowed 

depth profiles to be generated. XRD was used to identify the crystal structure of the coatings. A 

majority of studies that used XRD (5 of 8 in Table 1) identified only TiN, whereas TiN with Ti2N was 
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identified only once. Oxynitrides were also mentioned, but definitive identification was lacking. 

Nuclear Reaction Analysis was used in two studies to determine the concentration of nitrogen as a 

function of depth. 

Table 1. Compilation of coating methods, structural (composition and phase) analysis 

methodology, and coating thickness listed in the various dental materials literature. 

Coating Method Type/Detail Reference 

Physical Vapor Deposition 

No further detail beyond “Physical Vapor 
Deposition” 

[2–7] 

Ion Plating [8–14] 
Cathodic Arc [15–19] 
Radiofrequency sputtering [20–27] 
Arc ion plating [28–31] 
Plasma immersion implantation [32–34] 
Ion beam/Ionic implantation [8,9,35–42] 

Thermal 

500 °C for 480 min [35] 
850 °C for 7 h [43] 
800–1000 °C for 5–30 min [44,45] 

Chemical Vapor/Chemical 

Reaction of wet NH3 with NiTi at 300 °C [46] 
MOCVD (metal organic chemical vapor 
deposition) via evaporation of Ti(Et2N)4 

[28,46] 

Plasma chemical vapor [38] 
Boiling in 30% nitric acid for 24 h [34] 

No method stated  [47–68] 

Structural Analysis Comment Reference 

X-Ray Photoelectron 
Spectroscopy (XPS) 

[N], [Ti], and sometimes other elements and ratios 
determined 

[3,28,29, 
32–35,46] 

X-Ray Diffraction (XRD) 

TiN Identified 
[27,29,30, 
42,67] 

TiN and Ti2N Identified [43] 

Unidentified oxynitrides [44,45] 

Nuclear Reaction Analysis [N] depth  [36,37] 

Method to Determine 
Coating Thickness Thickness Reference 

Scanning Electron Microscopy 
(SEM) 

1–2 μm [29] 
2 μm [20,43] 
~10 μm [44,45] 

Electron Probe MicroAnalysis 
(EPMA) 

0.3 μm average [26] 
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Table 1. Cont. 

Method to Determine 
Coating Thickness 

Thickness Reference 

XPS 
[N]max within 10 nm; [N] detected up to  
60 nm depth 

[35] 

Nuclear Reaction Analysis [N] detected up to 60 nm [36,37] 

Ball-cratering method 1.5 μm [21] 

Light Microscopy 8 μm [67] 

Given via a reference, 
manufacturer data, equipment 
parameters, or other 
unconfirmed sources 

<650 nm [40] 
0.3 μm N-implanted; 3 μm TiN [8,9] 
1 μm [27] 
1.5 μm [17,18] 
1.8 μm [22–25] 
2 μm [14,42] 
1–5 μm [15] 
2–5 μm [47] 
10 μm [19] 

Using these forms of structural analysis, it is apparent that the different coating methodologies  

will impart different deposition of nitrogen in terms of amount and depth, as also documented by 

others [28,32,35,46]. Even different parameters within a given coating technology will affect nitrogen 

distribution [36]. Overall, structural analysis of the coatings in the dental materials literature is lacking 

in a majority of studies. 

The thickness of the TiN and nitrogen ion implanted coatings are also compiled in Table 1. The 

majority of studies list the coating thickness as between 1 μm and 5 μm although the range is anywhere 

from 0.06 μm to 10 μm. Scanning Electron Microscopy (SEM) was used most frequently to determine 

coating thickness; also employed were XPS and Nuclear Reaction Analysis as mentioned above, as 

well as Electron Probe MicroAnalysis (EPMA), light microscopy, and the ball-cratering method. 

However, it was most common to cite the thickness of coating via reference, manufacturing data, 

based upon equipment parameters, or other unspecified sources instead of actual measurement. Since 

the thickness of coatings produced by the methodologies listed in Table 1 are sensitive to various 

parameters (e.g., time and temperature for thermal nitridation), specifically measuring the coating 

thickness would seem to be the best practice.  

Although the majority of analyses document more of a monolithic coating, it is likely the coatings 

exist as complex, layered structures. Certainly, the nitrogen concentration depth profiles may suggest 

this [28,32,35–37,46]. Additionally, several researchers observed multiple layers, whether intentionally 

deposited to increase adherence of the coating, a by-product of the coating process, or natural as in the 

form of titanium’s passive oxide layer. For instance, Chung et al. [20] and Kurt et al. [21] used an 

intermediate layer of sputter coated Ti and Al before adding nitrogen to improve adhesion of layers on 

the substrate. On the other hand, Iijima et al. [33] observed TiO2 on the surface covering a TiN layer 

on nickel-titanium (NiTi) wires via XPS, presumably due to the natural passivation of titanium. 
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Similarly, Endo et al. [29] showed a trilayer composed of TiO2 on the outside, a middle layer of TiNx 

(x > 1), and an inner layer of TiN.  

2.1. Coatings in Implant Dentistry 

The clinical efficacy of dental implants depends on many different factors related to the bulk and 

surface properties of the dental implant materials and their components. Recently, the application of 

nitride coatings on Ti and its alloys have been proposed as a surface treatment aiming to increase the 

mechanical, physical, and esthetic properties of dental implants. Generally, nitride coatings, by a factor 

of approximately 10, increase the surface hardness [43,47], wear resistance [47], and corrosion 

resistance [29,43] of implant materials. Additionally beneficial, coated Ti surfaces have also been 

connected with antimicrobial properties [8,9]. Nitride coatings specific to dental implant  

materials have been prepared mainly by Physical Vapor Deposition methods, with the exception of 

Tamura et al. [43] who used a thermal treatment, with measured thicknesses ranging between 1 μm 

and 2 μm [21,29,43].  

Bacterial adherence to the implant surface is associated with the pathogenesis of bacterial infections 

leading to implant loss. The implant abutment is exposed in the oral environment and so dental 

calculus and plaque can be readily developed. However, the calculus and plaque should be periodically 

removed to obtain a good prognosis throughout the lifetime of the dental implant. In light of this, 

antibacterial activity is a desirable property while, especially for the abutment, enhanced abrasion 

resistance against scaling treatments is wanted to maintain the surface finish of the abutment. 

However, surface coatings have been shown to be prone to detachment after just a few actions with Ti 

and stainless steel dental instruments [15]. 

Three in vitro research studies assessed the antibacterial activity of TiN coatings and concluded that 

there is no difference between Ti and nitrified Ti for adherence of Streptococcus mutans [43], 

Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans [8,9]. In contrast, the 

adherence of Streptococcus mutans and Streptococcus sanguis was significantly reduced on TiN 

surfaces compared to polished ones [22]. The same favorable results were found for TiN-TPS 

(titanium plasma sprayed) compared to uncoated TPS where Streptococcus pyogenes and 

Streptococcus sanguinis bacteria demonstrated decreased bacterial adhesion and proliferation [16]. 

Two studies based on in vivo data confirmed the positive effect of TiN coating on the antibacterial 

activity of Ti surfaces. The results of Scarano et al. [2] showed that implants coated with TiN 

illustrated a minor quantity of the surface covered by bacteria after a 24-h exposure to the oral cavity 

while a smaller bacterial quantity were found on TiN glass sheets compared to pure Ti coated glass 

sheets after 60 h of intraoral exposure [23]. TiN coatings seem to have a beneficial effect on 

antibacterial activity inhibiting the formation of microbial plaque, minimizing the adverse effects of 

peri-implantitis on implant longevity. The aforementioned antibacterial activity combined with the 

wear resistance to scaling treatment points out that the application of TiN coatings to implant 

abutments holds promise and is worthwhile for further scientific research and optimization.  

The introduction of Ti and its alloys in implant dentistry was based on the osseointegration 

properties of Ti oxide (i.e., anchoring of the implant via growth and attachment of bone to the 

implant). After this breakthrough, research worldwide focused on surface modifications to improve 
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and accelerate bone remodeling on Ti surfaces. In vitro and in vivo results show that TiN coatings do 

not have an adverse effect on this vital property. In vitro studies demonstrated that cell adhesion was 

no different between coated and uncoated Ti surfaces employing either mouse [24] or human gingival 

fibroblasts [25], while proliferation of human osteoblasts increased on TiNOx-coated titanium surfaces 

compared to uncoated controls [3]. Similar results were found by other studies applying bone marrow 

human mesenchymal stem cells [38] and bone marrow human stromal cells [4]. In vivo tests with 

animal models were similarly positive. Despite the diversity of experimental methodology, all in vivo 

data illustrate that bone formation as expressed by Bone Implant Contact (BIC) around coated and 

uncoated dental implants is similar. Table 2 demonstrates the duration of implantation, the animal 

model used, and BIC for Ti and TiN-coated materials from several in vivo studies. In yet another  

in vivo study in rats, the thickness of fibrous connective tissue around Ti-6Al-4V implants was found 

to be the same whether it was coated with TiO2 or TiN [10]. Based on the above studies, it can be 

concluded that the TiN coating demonstrates a good biological response and does not negatively affect 

osseointegration and healing around Ti implants.  

Table 2. Duration of implantation, animal model, and Bone Implant Contact (BIC) for 

several in vivo implant material studies. 

Duration 
(Weeks) 

Animal 
Model 

Prior Surface 
Treatment 

BIC (%) 
Reference 

Ti TiN 
8 Rats Machining 59.0 ± 3.1 58.0 ± 3.0 [5] 
8 Rats Sandblasting 64.0 ± 4.1 66.0 ± 3.5 [5] 
8 Rats TPS 72.0 ± 2.5 70.0 ± 2.1 [5] 
8 Rats  42.6 40.8 [43] 
8 Dogs  69.7 ± 1.3 70.6 ± 1.7 [48] 
12 Rabbits  58.8 52.7 [39] 

Besides abutments and implants, TiN coatings have also been evaluated with other components. 

TiN coatings may provide enhanced resistance to wear in ball attachments for implant-overdenture 

systems, significantly increasing their longevity. After 1 year of clinical use, TiN coated attachment 

systems appeared unchanged while extensive wear was evident in uncoated systems [47]. Wear 

decreases the retention force of attachments, causing discomfort to the patient and increasing the 

maintenance needs of removable prosthetic restorations [49]. The last application of TiN coating in 

implant dentistry is the covering of retentions screws for implant supported crowns [50]. Screws 

coated with aluminum titanium nitride showed inferior retention of torque, a finding that might be 

associated with the minimal ductility of the coated screw compared to pure Ti. Thus, aluminum 

titanium nitride coatings are not recommended for this application.  

In conclusion, the application of TiN coating on Ti implants provides antibacterial activity without 

compromising the osseointegrative properties of the Ti surface. In addition, it enhances the wear 

resistance of Ti abutments. Further research appears warranted, especially clinical research to assess 

the efficacy of the coatings long term.  
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2.2. Coatings in Orthodontics 

During orthodontic treatment, tooth movement is achieved by applying forces to the teeth through 

the use of brackets, wires and elastics, which in turn result in the remodeling of the alveolus, or tooth 

socket. It is believed that light, continuous forces are optimal for most effectively and least 

traumatically moving teeth. The wire most commonly used in the initial leveling phase of treatment is 

the NiTi archwire, for it is the most elastic and flexible, capable of maintaining the light continuous 

forces desired. The NiTi alloy typically possesses a composition of 50/50 at % Ni/Ti, or approximately 

55 wt % Ni and 45 wt % Ti, and was introduced to orthodontics in 1971 [69]. Treatment is typically 

finished out with β-titanium and stainless steel (SS) arch wires. β-titanium was introduced to 

orthodontics in 1979 [70] and contains Mo to metastabilize a BCC phase to room temperature, along 

with Sn and Zr. As a result, this wire was initially introduced by the Ormco Corporation (Glendora, 

CA, USA) as “TMA” for Titanium Molybdenum Alloy. While all three types of wires are available as 

originally designed, the NiTi and TMA wires are also available in versions which have undergone an 

ion implantation process during which nitrogen is implanted into the surface of the wires. The ion 

implanted TMA has also been known as “low-friction” and is offered in different colors as shown in 

Figure 1. This ion implantation process provides the NiTi and β-titanium wires with a coating which 

has been hypothesized to decrease surface roughness, and thereby decrease frictional forces, to 

produce more efficient tooth movement, and to reduce corrosion of the NiTi wires by limiting the 

release of nickel ions from the wire over time. Each of these hypotheses have been tested and 

documented in the literature. The following will provide an overview of the findings in regards to the 

effects of coatings applied to NiTi and β-titanium arch wires. 

Figure 1. Ion implanted β-titanium orthodontic archwires (honeydew and purple). 

 

Perhaps the most widely tested hypothesis regarding ion implanted arch wires and/or brackets is 

whether these coatings have the ability to reduce surface roughness and frictional forces, and by 

extension, to produce more efficient tooth movement. Six studies [6,40,44,51–53] found that nitrogen 

implanted NiTi and TMA wires decreased surface roughness, frictional coefficients, or friction  

force values, although oral exposure may mitigate this initial advantage [51]. Contrastingly, two 
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studies [11,54] found that applying coatings made no significant difference in the roughness and/or 

friction coefficients. Interestingly, another study found coated TMA exhibited increased or decreased 

static and kinetic friction forces compared to uncoated TMA depending on the color of the coating. 

This is curious since the TMA products are offered by the same company and presumably would 

originate from the same wire stock. Table 3 summarizes the effect of nitrogen implantation on friction 

behavior observed in some of the above orthodontic studies. When coatings did increase friction, the 

values were generally within 111% of that exhibited by the control or non-coated wire. However, when 

the coating decreased friction, values were as low as 20% of the control. Nonetheless, the stability of 

the coating in vivo and its ability to continue providing reduced friction is in question as shown by 

Wichelhaus et al. [51]. Although new wires of coated NiTi (Neo Sentalloy F80 Ionguard) displayed 

less friction compared to uncoated NiTi (Neo Sentalloy), after 4 weeks of clinical use, friction values 

were equivalent. Thus, while surface treatments were shown to improve the sliding of the bracket 

along the arch wire initially, that effect was lost when the wires were exposed to the oral cavity. 

Table 3. Effect of nitrogen implantation on friction observed in several in vitro orthodontic studies. 

Wire Type 
Commercial Product Name 

(Manufacturer) 

Coupled 
Material for 

Friction  
(if specified) 

Amount of Friction 
Compared to Control 

(non-coated 
counterpart) 

Reference 

NiTi  Ti-6Al-4V 45% 
[44] 

NiTi  Stainless steel 59% 

NiTi 
Neo Sentalloy F80 Ionguard 

(GAC Int., Bohemia, NY, USA) 
 77% [51] 

β-titanium Purple TMA (Ormco) Stainless steel 
25% (static)  

20% (kinetic) 
[6] 

β-titanium Ion-implanted TMA (Ormco) 
Ti implanted 

alumina 
47% (static)  

66% (kinetic) 
[40] 

β-titanium Ion-implanted TMA (Ormco) Stainless steel 
100% (static)  

108% (kinetic) 
[54] 

β-titanium Aqua TMA (Ormco) Stainless steel 
105% (static)  

111% (kinetic) 

[55] 

β-titanium Honeydew TMA (Ormco) Stainless steel 
49% (static)  

55% (kinetic) 

β-titanium Purple TMA (Ormco) Stainless steel 
102% (static)  

104% (kinetic) 

β-titanium Violet TMA (Ormco) Stainless steel 
96% (static)  

102% (kinetic) 

β-titanium Ion-implanted TMA (Ormco) Stainless steel 
51% (static)  

55% (kinetic) 

It has also been hypothesized that the ion implantation process would increase the biocompatibility 

of NiTi wires by reducing the amount of nickel released during the corrosion process. Seeing as nickel 
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allergies are an issue in orthodontics, a reduction in the release of nickel ions would be greatly 

beneficial. Besides measuring nickel release into a solution, an indirect method of assessing this is to 

test the corrosion properties of the alloys. As a result, both methods appear in the literature. Of the 

studies which pertained to the above hypothesis, three [33,45,56] found a coating provided beneficial 

corrosion property alterations, while three other studies [12,57,58] found the ion implantation process 

incapable of decreasing the amount of nickel released into the oral environment or providing beneficial 

corrosion properties. These studies will be briefly summarized below. 

NiTi wires treated with a nitrogen diffusion thermal treatment to create a TiN surface layer intended 

to reduce the corrosion potential of the wires were examined by Gil et al. [45] to measure ion release 

into an artificial saliva solution. While both the treated and untreated wires showed a high rate of 

nickel ion release initially, the treated wires ultimately released significantly less than that released by 

the untreated wires, reaching saturation at a much lower concentration of nickel ions. Iijima et al. [33] 

studied the corrosion properties of nitrogen ion implanted NiTi wires (Neo Sentalloy Ionguard) 

compared to non-ion implanted NiTi (Neo Sentalloy). The two wires were examined utilizing 

potentiodynamic polarization measurements, which were completed in both artificial saliva and a 

fluoride mouth rinse solution, as it has been hypothesized that the acidic environment created by 

fluoride may dissolve the TiN coating. Ultimately, it was found that the Neo Sentalloy Ionguard wires 

had a greater corrosion resistance in both artificial saliva and fluoride mouth rinse solution, despite the 

slightly more acidic environment that it created. Neumann et al. [56] similarly evaluated nitrogen ion 

implanted NiTi compared to an uncoated version, as well as two coated TMA wires, via measurement 

of rupture potentials in artificial saliva. The coating on the TMA wires was stable electrochemically; 

the coating on NiTi increased its rupture potential by 140 mV and reduced surface destruction when 

viewed under SEM.  

Peitsch et al. [57] measured nickel release from mechanically loaded coated (Neo Sentalloy 

Ionguard) and uncoated NiTi in ultrapure water and saline. When the wires were subjected to a load, 

they released significantly more nickel ions, which is important to consider given that arch wires are 

typically under load in the oral cavity. However, the data could not confirm that surface nitridation 

reduced the release of nickel ions, whether in a loaded or unloaded state. 

Kao et al. [12] conducted a study in which TiN ion implanted stainless steel brackets were analyzed 

against non-ion implanted stainless steel brackets in regards to corrosion resistance and release of Ni 

ions into the oral environment. The TiN coated brackets were shown to release more nickel, 

chromium, cobalt, manganese, and ferric ions. Copper was the only ion in which the ion implanted 

brackets released less of than the non-ion implanted brackets. Based on these findings, the authors 

were able to conclude that the anticorrosion properties of TiN coated brackets are relatively poor; thus 

no increase in biocompatibility is to be expected. 

Kim et al. [58] studied the breakdown potential of the following arch wires: stainless steel, NiTi, 

nitride-coated NiTi, epoxy-coated NiTi, and titanium in a 0.9% NaCl solution of neutral pH at room 

temperature. It was determined that the TiN coating on the NiTi wires did not decrease corrosion and 

did not alter the breakdown potential. The epoxy-coated wire, however, did significantly decrease 

corrosion. Thus, the authors concluded that for patients with nickel allergies, an epoxy-coated NiTi 

wire would be recommended so as to reduce the risk of an allergic reaction. 
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Schuster et al. [59] determined the allergic potential of orthodontic materials utilized during 

treatment via questionnaire. While they concluded that the number of patients with allergies to 

orthodontic materials is likely overestimated, there are still 0.2% of patients who will show some sort 

of reaction. Based on the fact that allergies are a possibility, they recommend avoiding materials prone 

to corrosion, as well as coatings such as titanium nitride, so as not to induce a nickel related allergy. 

The rationale for the latter recommendation, however, was not well developed. 

One additional study, conducted by Pernier et al. [60], analyzed the effects of autoclaving on ion 

implanted and non-ion implanted wires in regards to the effect of surface structure. Six commonly 

used wires were analyzed: one stainless steel wire, two NiTi wires (Neo Sentalloy and Neo Sentalloy 

Ionguard), and three titanium-molybdenum wires (TMA, Low Friction TMA and Resolve). The Low 

Friction TMA and NeoSentalloy Ionguard are commercially subjected to the ion implantation process. 

All wires were autoclaved for 18 min at 134 °C and examined before and after sterilization with 

various surface analysis techniques. None of the analyses showed significant changes in the properties 

of any of the wires after having been autoclaved. Thus, the authors concluded that autoclaving is a safe 

means of sterilizing arch wires without interfering with or changing the properties of such wires. 

Lastly, it has been postulated that coated arch wires have the ability to generate more efficient tooth 

movement. Likely this finding is an extension of the effect the coatings have on the friction generated 

between the arch wire and the bracket. Of the studies which specifically analyzed efficiency of tooth 

movement, one [61] found that wires subjected to the nitrogen ion implantation process produced more 

efficient tooth movement, while two other studies [62,63] found that the ion implanted arch wires were 

not able to produce a significantly faster rate of tooth movement. 

The following five wires were used by Ryan et al. [61] to test efficiency of tooth movement: N ion 

implanted nickel-titanium, untreated nickel-titanium, N ion implanted β-titanium, untreated β-titanium, 

and stainless steel. All wires were tested under identical conditions in vitro, and the relative tooth 

movement produced by each type of wire was measured and compared. The results showed that ion 

implantation of the wires was capable of reducing friction, and allowed the treated wires to produce 

significantly more tooth movement than their untreated counterparts.  

In one of only two clinical studies looking at efficacy, Cobb et al. [62] measured the efficiency of 

initial alignment in 155 dental arches, with the patients being treated with stainless steel, superelastic 

NiTi, or ion implanted NiTi archwires. A three-way archwire randomization was completed for 

optimum results. The ultimate goal was to determine if the ion implantation process had the ability to 

produce more efficient tooth movement. Patients who were initially determined to have >5 mm incisor 

irregularity participated in this study over the course of 12 months. The degree of anterior irregularity 

was determined each month for each patient utilizing Little’s irregularity index. Ultimately, it was 

determined that all three wires provided similar initial alignment when re-ligated on a monthly basis, 

showing no advantage to the ion implantation process for NiTi wires in terms of efficiency of  

tooth movement.  

Kula et al. [63] conducted a “split mouth” design study in which 30 subjects were treated with  

β-titanium (TMA) wires, half of which had been ion implanted with nitrogen, the other half remaining 

in its natural state. At each monthly adjustment appointment, measurements were made to determine 

the amount of tooth movement achieved on each side of the mouth. Ultimately, they found that there 
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was no statistically significant difference in the rates of closure between the implanted and 

unimplanted sides, thereby concluding that implanted TMA wires cannot enhance space closure. 

In conclusion, while ion implanted arch wires have continually been gaining popularity due to their 

hypothesized reduction in friction, increase in rate of tooth movement and decrease in release of nickel 

ions, results are often contradictory and thus inconclusive. More clinical testing should be performed 

to determine with confidence whether surface-treated arch wires have the hypothesized benefits. 

2.3. Coatings in Endodontics 

Endodontic treatment involves the removal of infected nerve tissue within the pulp chamber and 

canals of the tooth. Due to the small size of the canals, endodontic files are used to shape and clean the 

canals along with specific chemicals to ensure the disinfection of the canals. Following its introduction 

to orthodontics, the benefits of NiTi in endodontic applications was first published in 1988 [71]. NiTi’s 

superelastic characteristic allows for greater flexibility and elasticity to that of an ordinary metal/alloy; 

as a result it has superior ability compared to stainless steel to negotiate root canals without causing 

undesirable shapes where bacteria may reside. Although NiTi endodontic files show some ideal 

qualities, after repeated use, increased wear, lower cutting efficiency and reaching a cyclic fatigue limit 

can be problematic for the practitioner. Surface treatments, including TiN and N ion implantation, have 

been developed to help control these factors. Figure 2 displays a file that has a titanium nitride coating 

compared to an uncoated file. 

Figure 2. Titanium nitride coated (gold color; left) and uncoated endodontic files. 

 

As with other applications, some of the purported advantages associated with surface treatment 

include increased surface hardness, cutting efficiency, corrosion resistance, and cyclic fatigue 

resistance. Several studies have supported these statements. Rapisarda et al. [41] found both nitrogen 

ion implanted and thermally nitride files possessed greater wear resistance and had increased cutting 

capacity compared to uncoated controls. In a more qualitative study via SEM by the same authors [35], 

they found nitrogen ion implanted instruments did not manifest the typical signs of wear and surface 

changes that affected untreated NiTi files when used to instrument acrylic endodontic training blocks. 

Similarly, Schäfer [17] showed files that had undergone physical vapor deposition had increased 
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cutting efficiency compared to uncoated files. Further, repeated sterilization cycles via autoclaving or 

exposure to sodium hypochlorite prior to sterilization did not alter the cutting efficiency of  

PVD-coated NiTi files but it did affect the non-coated files [18]. In this study, the greater cutting 

efficiency of PVD-coated files was noted among the non-sterilized groups. Bonaccorso et al. [7] 

observed greater pitting potentials of PVD-coated files tested in NaCl, indicating increased corrosion 

resistance. Gavini et al. [36] observed greater cyclic fatigue lifetimes in NiTi files processed via 

nitrogen ion implantation. 

A potential issue when NiTi is subjected to coating treatments is whether the coating procedure will 

alter the phase transformation behavior of the files. For this reason, low temperature or even room 

temperature coating procedures have been advocated and shown to minimally affect phase 

transformation. Li et al. [34] found phase transformation temperatures and enthalpies between  

as-received and room temperature plasma immersion ion implantation files were similar, indicating the 

procedure should not affect superelastic properties. 

Not all articles have provided positive results with coating endodontic files. Wolle et al. [37] 

compared Ni and Ar ion implanted files for fatigue resistance using curved canals in resin blocks. 

Results showed that argon implantation moderately improved the performance of the files, but nitrogen 

implanted files performed worse than uncoated files in the fatigue test. It was theorized that the 

reduction in file performance was caused by nitrogen diffusion in the grain boundaries, instead of the 

desired improvement caused by titanium nitride formation. Alves-Claro et al. [32] observed a decrease 

in hardness for NiTi files following plasma immersion nitrogen ion implantation, although they stated 

that wear resistance was increased. 

Overall, the majority of articles presented suggest TiN coating of endodontic files leads to an 

increase in beneficial properties without necessarily sacrificing its superelastic qualities. However, it 

should be noted that these studies have all been in vitro, therefore the clinical success of coated NiTi 

endodontic instruments remains untested. 

2.4. Coatings in Prosthodontics 

Casting alloys used in dentistry may be bonded to a ceramic (porcelain) system for esthetic 

restorative purposes. In these systems, the bond between the ceramic material and the alloy relies on 

the oxide layer between the materials. Careful consideration of the material and methods to improve 

the oxide layer is required in order to increase the bond strength between the substrates. Although it 

has its drawbacks, titanium may be used in cast structures in dentistry due to its favorable properties of 

high strength, good biocompatibility, and corrosion resistance. When looking at titanium bonded to 

porcelain, the oxide layer can be controlled through the use of surface coatings. TiN coatings have 

been suggested to control the oxide layer formation and provide a better bond between materials. 

Oshida and Hashem [30] determined the oxide layer formed on samples coated with TiN resulted in a 

layer 2.34 times thinner compared to those samples without the coating. This was illustrated as the 

non-coated samples resulted in an oxide layer of 1–2 μm, whereas the TiN coated samples produced an 

oxide layer of 0.3–0.5 μm. These results indicate that the application of TiN as a coating does control 

the oxide layer. Whether this control over the oxide layer provided better bond strengths was not 

determined in this study. 
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Lim et al. [31] measured the fracture load of crowns using titanium copings and a low fusing 

porcelain to determine if a TiN coating provides better strength. In addition to a TiN coating, airborne 

particle abrasion with Al2O3 and sputter coating with gold were used for comparative surface 

preparation techniques. Of these, the gold coated titanium, as well as the TiN coated titanium copings, 

resulted in higher fracture loads than the airborne particle abraded group. This study demonstrated the 

application of TiN as a coating to titanium does provide strength similar to that of gold-ceramic 

crowns. Apart from porcelain adherence and strength, fit of a coping or crown is also important.  

Wu et al. [19] compared the marginal adaptation of a NiCr base metal alloy with and without a coating 

via optical microscopy. The TiN coated titanium copings resulted in clinically acceptable marginal 

adaption 64.86% of the time, whereas the base metal coping had an acceptance rate of only 47.50%.  

Dental magnetic attachments have been used to aid stabilization of removable partial dentures and 

retention of implant-supported structures. Likewise, TiN coatings have been studied to determine the 

benefit of application on magnetic stainless steel attachment systems. Traditionally, magnetic stainless 

steel attachment systems have an undesirable level of corrosion, especially when coupled with other 

alloys in the oral cavity. The purpose of introducing a TiN coating on magnetic stainless steel has been 

to reduce corrosion. Hai et al. [13] compared the corrosion rates of a TiN coated magnetic stainless 

steel attachment system to pure titanium and found it did decrease the level of corrosion. While this 

study showed a decrease in corrosion of magnetic stainless steel upon application of TiN as a coating, 

the adhesive capabilities with other materials should also be considered. Taira et al. [14] determined 

the shear bond strengths of TiN coated magnetic stainless steel and non-coated magnetic stainless steel 

to two primers and bonding agents and found no significant difference in bond strength between any of 

the groups and across the materials (coated and non-coated). Therefore, due to the increase in 

corrosion resistance and equivalent bonding to other substrates, it may be suggested that TiN coated 

magnetic stainless steel should be used over non-coated magnetic stainless steel attachments. Titanium 

nitride coatings have since been further investigated in bonding with resin composites when applied to 

Au-Pd-Ag alloys, as in the case of a resin-veneered crown. Tanaka et al. [26] examined the shear bond 

strength of TiN coatings on Au-Pd-Ag alloys when bonded to composite resin with a metal primer. 

The results from this study showed an increase in bond strength for groups with a TiN coating on the 

alloy compared to the non-coated group.  

Throughout the TiN coating prosthodontics literature, most research has demonstrated benefits for 

application of the coating. These benefits range from increases in physical properties to decreases in 

the amount of corrosion. Biocompatibility of the TiN coating to its oral surroundings is also very 

important clinically. Chien et al. [27] evaluated the cytotoxicity of nickel-based alloy surfaces after 

nitride film coatings of TiN and TiAlN. At 3 h, human fibroblast cells began to spread across all test 

surfaces, but at 24 h, the coated groups were significantly higher in cell proliferation and viability than 

polished and control Ni-alloy surfaces. Thus, the biocompatibility of this nickel-based alloy increased 

significantly after the application of TiN and TiAlN coatings.  

Better marginal adaptation was found clinically with the application of TiN coating on titanium. For 

magnetic stainless steel alloys, better corrosion resistance and adequate bond strengths were found 

with the application of TiN as a coating. In addition, TiN coatings on Au-Pd-Ag alloys did increase the 

bond strength to composite resin and the coating of TiN to a nickel-based alloy improved 



Coatings 2012, 2                    

 

 

173

biocompatibility. Overall, with all of these benefits in mind, it is clear that many dental alloys have 

marked improvements with the application of TiN coatings. 

2.5. Coatings in Dental Instrumentation 

Periodontal therapy includes the removal of hard and soft deposits from root surfaces. As a result, 

many dental instruments used in oral hygiene control must be sufficiently hard and resistant to wear 

and dulling. Naturally, coating dental instruments with titanium nitride coatings has been investigated 

as a means of developing instruments with better edge retention. Sisera et al. [64] compared TiN 

coated curettes to a cryogenically treated stainless steel instrument and uncoated stainless steel control 

in a study involving root planing of bovine teeth. All three materials held their cutting capacity for up 

to 1010 strokes, however, sterilization of the instruments was found to decrease cutting edge retention. 

Clinically, the cutting efficacy of the curettes is important for removal of subgingival biofilm, calculus, 

and endotoxins from the root surface. Aspriello et al. [65] showed the use of a curette followed by a 

TiN coated ultrasonic instrument created root surfaces free from smear layers, which presumably 

would promote early wound healing. Sawase et al. [42] measured surface hardness and abrasion 

resistance of different hygiene instruments, some with a TiN coating. The TiN coated titanium 

possessed a hardness approximately twelve times that of non-coated titanium. Further, abrasion 

resistance was greater in the TiN coated group compared to pure titanium.  

Certain dental instruments are used to place restorative materials and may be used mechanically but 

may also contact restorative materials. Thus, titanium nitride has been researched as a coating to 

stainless steel dental instruments to improve properties of adhesion of the restorative material, 

contamination and discoloration of the restorative material, and wear resistance [66]. With regard to 

adhesion of restorative materials, TiN coatings have been suggested and marketed to be low-stick and 

improve this quality over traditional stainless steel instruments due to its low coefficient of friction and 

higher contact angle. For composite resins and glass ionomers, TiN coated stainless steel instruments 

produced no decrease in adhesion compared to non-coated, clean, polished stainless steel instruments. 

When considering discoloration of the restorative material, TiN coated stainless steel instruments 

produced no discoloration of the restoration, whereas non-coated stainless steel instruments did 

discolor composite resin samples [66]. When compared with non-coated stainless steel instruments, 

TiN coated instruments had better wear resistance to unpolymerized composite resin [67]. Further, this 

coating was shown to be harder, smoother and uncracked compared to alumina coated stainless steel 

instruments and non-coated stainless steel instruments after sterilization and ultrasonic cleaning cycles. 

In order to improve wear resistance of tungsten carbide (WC-Co) instruments, TiN has been suggested 

as an interlayer prior to diamond deposition on these dental instruments. In this case, TiN acts as a 

diffusion barrier between cobalt and carbon species to increase the adhesion of diamond films which 

are desired for their wear resistance [68]. When compared to tungsten carbide instruments without an 

interlayer of TiN, the instruments with TiN present increased the lifetime of the instrument and had 

better wear resistance [68].  
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3. Conclusions 

Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated 

within many different dental disciplines for a few decades. Despite this, commercially-available 

materials primarily consist of coated orthodontic archwires. Though much research has determined the 

effect of the coatings on hardness, wear resistance, corrosion, friction, bone adaption, and bacterial 

adherence, very few clinical studies are available to ascertain their effectiveness in vivo.  
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