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Abstract: Flexible thermoelectric composite films of polypyrrole (PPy) nanotubes coated paper were
fabricated by an in-situ polymerization procedure using methyl orange as a template and paper as the
substrate for the first time. Both the electrical conductivity and Seebeck coefficient of the polypyrrole
nanotubes coated paper composite films have been enhanced (from ~0.048 S/cm to ~0.068 S/cm
and from ~5.34 µV/K to ~8.21 µV/K for the average value for three measurements, respectively)
as the temperature increased from ~300 K to ~370 K, which lead to the same trend of the power
factor. The thermal conductivity of the polypyrrole nanotubes coated composite films was very low
(~0.1275 W·m−1·K−1 at ~300 K), and a highest ZT (material’s dimensionless figure of merit (S2σT/κ))
value of 3.2 × 10−7 was obtained at ~370 K.
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1. Introduction

Polypyrrole (PPy) is a potential thermoelectric (TE) material, mainly because it has a low thermal
conductivity and high electrical conductivity when doped with suitable dopants. PPy also has many
advantages, such as being easy to fabricate, low-density, low-cost, and having good mechanical
properties [1]. Therefore, more and more researchers have focused on the TE properties of PPy
and its corresponding composites [2–6]. For example, a maximum ZT value (S2σT/κ, S is the
Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and T is the absolute
temperature) of 2.8 × 10−3 at room temperature (RT) was achieved for the PPy/graphene nanosheet
composites with a weight ratio of pyrrole monomer to graphene nanosheets of 1:0.4 [2]; a maximum
power factor (S2σ) of 2.079 µW·m−1·K−2 was obtained at RT for multi-walled carbon nanotube/PPy
composites with 20 wt % multi-walled carbon nanotubes [3], and a power factor of 52.5 µW·m−1·K−2

was achieved by a PPy/graphene/polyaniline ternary nanocomposite with 32 wt % graphene at
90 ◦C [7]. Most recently, a ZT value of 0.0043 was calculated along its chain direction of a crystalline
PPy-PF6 using the first-principles method [1].

As a 1D material, polypyrrole nanotubes (PPy–NTs) have a higher electrical conductivity
when compared to PPy nanoparticles [8,9]; therefore, it is beneficial to enhancing its TE properties.
For example, a ZT value of 5.71 × 10−4 (power factor of 0.31 µW·m−1·K−2) at 310 K was reported
for the PPy–NT films [10]. Furthermore, Misra et al. [11] prepared PPy–NTs and then treatment with
various dopants, e.g., HCl, p-toluene-sulphonic acid monohydrate (ToS), and tetrabutyl ammonium
hexaflurophosphate (PF6). A highest ZT value of ~3.4 × 10−3 (power factor of 0.08 µW·m−1·K−2) was
achieved at 380 K for the PF6 doping of PPy–NTs. During chemical oxidative polymerization, the anions
(e.g., chloride, sulfate, phosphate, oxalate, and acetate ion) of the dopants can be incorporated along
a polymer backbone [12,13]. These studies show that PPy–NT has a potential to be used as a TE material.
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Paper is a suitable substrate for flexible TE materials, due to its low density, low cost, and
flexibility. Many researchers use paper as a substrate to prepare flexible TE materials. Jiang et al. [14]
prepared poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/paper composite
films, and a maximum ZT value of 5.5 × 10−3 was obtained at 300 K. Wei et al. [15] fabricated the
TE modules by screen printing PEDOT:PSS on paper.

If a suitable method can be applied to coat paper with PPy–NTs, it will endow paper with
TE properties. However, so far, to the best of our knowledge, no research on the TE properties of
PPy–NT/paper composite films has been reported. In this work, flexible PPy–NT/paper composite
films was prepared via an in-situ chemical polymerization procedure using methyl orange (MO)
as a template. The composition, morphology, and TE properties of the PPy–NT/paper composite films
have been investigated.

2. Materials and Methods

2.1. Materials

Pyrrole monomer (Chemical grade) was purchased from Sigma–Aldrich (Shanghai, China).
Methyl orange (reagent grade) was purchased from Adamas Reagent Co., Ltd. (Shanghai, China).
FeCl3·6H2O (analytical reagent) and absolute ethanol (reagent grade) were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Paper was purchased from Zhanjiang Chenming Paper
Co., Ltd. (Zhanjiang, China, the density and thickness is 70 g/m2 and 96 µm, respectively). All the
materials were used without further treatment or purification.

2.2. Preparation of the Flexible PPy–NT/Paper Composite Films

0.56 mL pyrrole monomer and 0.49 g methyl orange (MO) were dissolved in 150 mL of deionized
water (Solution A), then a piece of common printing paper (3 cm × 3 cm) was soaked in Solution A,
and stirring continued for 30 min. 8.72 g FeCl3·6H2O dissolved in 100 mL of deionized water (Solution
B) was then added to Solution A and constantly stirred for 8 h at RT. After oxidization FeCl3·6H2O was
added into the solution, the acidity of the solution was enhanced due to the hydrolysis of FeCl3·6H2O.
As a result, the salt form of MO with high water solubility was changed into the acid form of MO with
poor water solubility, and then 1D templates were formed for the polymerization of pyrrole monomer
on the surface of paper [8,16]. After that, the PPy–NT/paper composite film was taken out by using
a pair of tweezers and washed with deionized water and absolute ethanol three times, respectively.
The washed composite film was dried at 60 ◦C for 12 h, and then soaked in 1 mol/L hydrochloride
(HCl) for 12 h. Finally, the composite film was dried at 60 ◦C for 12 h. For a comparison, PPy–NTs were
also prepared using the same procedures as above, but without a piece of paper. Figure 1 illustrates
the procedure for the preparation of flexible PPy–NT/paper composite films.
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Figure 1. The fabrication process of the polypyrole nanotube (PPy–NT)/paper composite films.

2.3. Characterizations

The phase composition and morphology of the samples were characterized using
X-ray photoelectron spectroscopic (XPS, PHI 5000 VersaProbe, ULVAC-PHI, Chigasaki, Japan),
scanning electron microscopy (SEM, Philips XL 30 FEG, Philips, Eindhoven, The Netherlands), and
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transmission electron microscopy (TEM, CM200-FEG, Philips, Eindhoven, The Netherlands), respectively.
In-plane electrical conductivity and Seebeck coefficient were measured simultaneously in a vacuum
atmosphere from 300 to 370 K on a MRS-3L thin-film thermoelectric test system (Wuhan Giant Instrument
Technology Co., Ltd., Wuhan, China). Out-plane thermal conductivities of the samples were measured
by a transient hot-wire method at RT (TC3000E thermal conductivity meter, Xiatech Electronics Co.,
Xi’an, China).

3. Results and Discussion

Figure 2a–c shows the SEM images of the paper, PPy–NTs, and PPy–NT/paper composite
films, respectively. Figure 2d shows the TEM image of PPy–NTs. The diameter of the prepared
PPy–NTs is ~70 nm to 150 nm, and the lengths are in the µm-range. The PPy–NTs are found to be
uniformly coated on the surface of paper. Figure 2e shows the SEM image of the fracture surface of
the PPy–NT/paper composite films. The film thickness measured based on the Figure 2e is ~124 µm,
which is slightly thicker than that of the common printing paper (110 µm). This is mainly because the
surface of paper was coated by PPy–NTs. After the PPy–NT coating, the color of paper changed from
white to black. The prepared PPy–NT/paper composites have a good flexibility (Figure 3a–d).

The XPS of the PPy-NTs coated paper is shown in Figure 4. For the paper, it mainly contained C and
O, whereas for the PPy–NTs and PPy–NTs-coated paper films, N has been observed, which indicates the
PPy–NTs were successfully coating on the paper. Note that Cl came from HCl, because the composite
film was doped with HCl.
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The electrical conductivity, Seebeck coefficient, and power factor of the PPy–NT/paper are shown
in Figure 5. The sample was cycled three times in the measured temperature range from ~300 K
to ~370 K. Both the electrical conductivity and Seebeck coefficient are very stable. The electrical
conductivity of the composite films increased slowly from ~0.048 S/cm to ~0.068 S/cm (average value
for three measurements) as the temperature increased from ~300 K to ~370 K. However, this value
is still lower than that of the PPy particle (3.98 S/cm) [2], PPy–NT film (9.81 S/cm) [10], HCl doped
PPy–NTs (10.6 S/cm) [11], or PF6 doped PPy–NTs (2.4 S/cm) [11]. It is mainly due to the electrical
isolation characteristic of paper [17]. The Seebeck coefficient also increased slowly from ~5.34 µV/K
to ~8.21 µV/K (average value for three measurements) as the temperature increased in the measured
temperature range. The positive value of the Seebeck coefficient means PPy–NT/paper composite
film is a p-type TE material. This value is lower than that of reported elsewhere, such as PPy particle
(9.72 µV/K) [2], PPy–NT film (17.68 µV/K) [10], HCl doped PPy–NTs (11.4 µV/K) [11], and PF6 doped
PPy–NTs (18.5 µV/K) as well [11].

The power factor of PPy–NT/paper composite films also increased as the temperature increased
from ~300 K to ~370 K, due to the same trend of the electrical conductivity and Seebeck coefficient
of the composite films. A high power factor of 4.56 × 10−4 µW·m−1·K−2 (average value for three
measurements) has been achieved at ~370 K. The thermal conductivity of the composite films is
only 0.1275 W·m−1·K−1 at 300 K, which is much lower than that of inorganic materials, such as SnSe
crystal (0.46–0.7 W·m−1·K−1) [18], and PPy–NT films (0.17 W·m−1·K−1) [10]. The thermal conductivity
is the sum of electronic contribution and phonon contribution [14], and the electronic contribution
is directly proportional to the electrical conductivity. For the PPy–NT/paper composite films, the
electrical conductivity is only 0.048 S/cm at 300 K, which may be the main reason of the low thermal
conductivity of PPy–NT/paper composite films. The ZT value of 3.2 × 10−7 was obtained at 300 K,
which is lower than that of the traditional TE materials (such as Bi–Te based alloys with ZT ~1 [19])
and common thermocouples (e.g., Fe–constantan thermocouple with ZT ~5 × 10−4 [20]). Although
this value is too low when compared to inorganic TE materials, e.g., SnSe [18] and BiSbTe [21], and
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conducting polymer, e.g., PEDOT:PSS [22,23], this is still a facile method to endow paper with stable
TE properties. The process can be extended to other conducting polymers and substrates.
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PPy–NT/paper composite film.

4. Conclusions

Flexible PPy–NT/paper composite thermoelectric films have been prepared by an in situ
polymerization procedure using methyl orange as a template and paper as the substrate. The composite films
show very stable TE properties in three measurements from ~300 K to ~370 K. Both the electrical conductivity
and Seebeck coefficient of the PPy–NT/paper nanocomposite films were slowly enhanced as the measured
temperature increased. The composite film has a low thermal conductivity of 0.1275 W·m−1·K−1, and a ZT
value of 3.2 × 10−7 at ~300 K.
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