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Abstract: In this study, equiatomic Ru–Zr coatings were deposited on Si wafers at 400 ◦C by using
direct current magnetron cosputtering. The plasma focused on the circular track of the substrate
holder and the substrate holder rotated at speeds within 1–30 rpm, resulting in cyclical gradient
concentration in the growth direction. The nanoindentation hardness levels of the as-deposited Ru–Zr
coatings increased as the stacking periods of the cyclical gradient concentration decreased. After the
coatings were annealed in a 1% O2–99% Ar atmosphere at 600 ◦C for 30 min, the internally oxidized
coatings shifted their respective structures to a laminated structure, misaligned laminated structure,
and nanocomposite, depending on their stacking periods. The effects of the stacking period of the
cyclical gradient concentration on the mechanical properties and structural evolution of the annealed
Ru–Zr coatings were investigated in this study.

Keywords: cyclical gradient concentration; internal oxidation; multilayer coating; nanocomposite
coating

1. Introduction

Multilayer nitride coatings with nanoscale layer thickness have exhibited extremely high
mechanical hardness due to dislocation blocking by layer interfaces and Hall–Petch strengthening [1].
By contrast, the hardness enhancement in the Y2O3/ZrO2 superlattice has been limited because oxides
are brittle materials that are deformed by fracture mechanisms [2]. Two metallic multilayer coatings
deposited by cosputtering for immiscible systems, W–Cu [3,4] and Cu–Ta [5,6], have developed a
phase-separated nanostructure. However, Ru/Al multilayers have been deposited to fabricate a
B2-RuAl intermetallic compound through annealing at approximately 600 ◦C in a vacuum or Ar [7,8].
Oxide-dispersion-strengthened platinum materials [9] and Ag-oxide-based electric contact material [10]
are conventional applications of internal oxidation [11]. Our previous studies [12–15] investigated
the internal oxidation of Ru-based alloy multilayer coatings annealed at 600 ◦C in oxygen-containing
atmospheres for the application of protective coatings on glass molding dies. The specific cosputtering
processes, which were performed using a substrate holder rotating at a slow speed of one to seven
revolutions per minute, have been examined in detail for fabricating Ru–Ta coatings [14]; the fabricated
coatings had exposed substrates alternately to the sputter sources without shutter shielding, forming a
multilayer structure with a cyclical gradient concentration period at a nanometer scale. An oxidized
laminated structure formed because of the inward diffusion of oxygen during the annealing process;
this structure comprised alternating oxygen-rich and oxygen-deficient sublayers stacked adjacent
to the surface. The inward diffusion of oxygen at 600 ◦C was dominated by lattice diffusion in the
active element-enriched regions [13,16,17]. Because the elements were stacked on the substrate with an
alternating gradient concentration, the O atoms could easily diffuse through the paths in the transverse
direction, thereby forming oxide sublayers. After the oxygen content in the oxide sublayers reached
a saturation level, the grainboundary diffusion along the original columnar structure drove oxygen

Coatings 2017, 7, 46; doi:10.3390/coatings7040046 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
http://www.mdpi.com/journal/coatings


Coatings 2017, 7, 46 2 of 12

to the next period of the laminated structure. During an annealing process conducted at 600 ◦C in a
1% O2–99% Ar atmosphere, internal oxidation occurred for Ti–Ru, Zr–Ru, Nb–Ru, Mo–Ru, Hf–Ru,
Ta–Ru, and W–Ru coatings, which were prepared using a substrate holder rotating at one revolution
per minute [15]; the mechanical properties of the annealed coatings depended on the characteristics of
the oxide sublayers. The nanoindentation hardness of the annealed Zr0.30Ru0.70 coating exhibited a
relatively high value of 18.4 GPa. The widths of the oxide sublayers were restricted by the Ru-dominant
sublayers [16,17]; therefore, the internally oxidized coatings can be categorized as nonisostructural
oxide/metal multilayers [1]. The substrate holder rotation speed in sputtering affects the stacking
period of the laminated structure [14]; therefore, assessing the effect of the stacking period on the
mechanical properties of the internally oxidized Ru–Zr coatings is imperative.

2. Materials and Methods

Ru–Zr coatings with a Cr interlayer were fabricated by using magnetron cosputtering onto
silicon wafers. Pure metal targets of Ru (99.95%), Zr (99.9%), and Cr (99.95%) with diameters of
50.8 mm each were adopted as source materials for sputtering. The sputter guns were inclined to focus
plasma on the circular track of the substrate holder, as described in detail in a previous study [13].
The target-to-substrate distance was maintained at 90 mm for all sputtering runs. The chamber was
evacuated down to 2.7 × 10−4 Pa, followed by the inlet of argon gas as a plasma source. The substrate
holder was heated to 400 ◦C and the Ar flow rate was controlled at 20 sccm; the resulting working
pressure was 0.7 Pa. The substrate holder was rotated at 1 rpm for depositing the Cr interlayer.
Then, Ru–Zr coatings with fixed DC sputtering powers (WRu = 100 W and WZr = 200 W) and various
substrate holder rotation speeds were deposited on the Cr interlayer for 25 min. To investigate the
internal oxidation phenomenon after performing heat treatments, the Ru–Zr coatings were further
annealed at 600 ◦C in a 1% O2–99% Ar atmosphere by introducing O2–Ar mixed gas into a quartz
tube furnace.

Chemical composition analysis was conducted by using energy dispersive spectrometry (EDS,
Horiba, Kyoto, Japan) equipped with a scanning electron microscope (SEM, S3400N, Hitachi, Tokyo,
Japan) on the surface. Surface morphology and thickness evaluation of the coatings were performed
by using a field emission scanning electron microscope (FE-SEM, S4800, Hitachi, Tokyo, Japan) at a
15-kV accelerating voltage. A conventional X-ray diffractometer (XRD, X’Pert PRO MPD, PANalytical,
Almelo, The Netherlands) with Cu Kα radiation was adopted to identify the phases of the coatings,
using the grazing incidence technique with an incidence angle of 1◦. The Cu Kα radiation was
generated from a Cu anode operated at 45 KV and 40 mA. The nanostructure was examined by using
a transmission electron microscope (TEM, JEM-2010F, JEOL, Tokyo, Japan) at a 200-kV accelerating
voltage. The TEM samples were prepared by applying a focused ion beam system (FEI Nova 200,
Hillsboro, OR, USA) operated at an accelerating voltage of 30 kV with a gallium ion source. A Pt
layer was deposited to protect the free surface in the sample preparation. The chemical states of the
constituent elements were examined by using an X-ray photoelectron spectroscope (XPS, PHI 1600,
PHI, Kanagawa, Japan) with an Mg Kα X-ray beam (energy = 1253.6 eV and power = 250 W) operated
at 15 kV. The XPS spectra of O 1s, Ru 3d, and Zr 3d core levels were recorded. Ar+ ion beam of 3 keV
was used to sputter the coatings for depth profiling. The surface hardness and Young’s modulus
of Ru–Zr coatings were measured with a nanoindentation tester (TI-900 Triboindenter, Hysitron,
Minneapolis, MN, USA). The nanoindenter was equipped with a Berkovich diamond-probe tip. The
applied load was controlled to produce an indentation depth of 80 nm, which is 1/10 of the film
thickness [18]. The loading, holding, and unloading times were 5 s each. The nanoindentation
hardness and elastic modulus of each indent were calculated using the Oliver and Pharr method [19].
The standard deviations for nanoindentation data were calculated from 8 measurements made at
different locations on one sample. The surface roughness values of the coatings, Ra [20], were evaluated
by using an atomic force microscope (AFM, Dimension 3100 SPM, NanoScope IIIa, Veeco, Santa Barbara,
CA, USA). The scanning area of each image was set at 5 × 5 µm2 with a scanning rate of 1.0 Hz.
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3. Results

3.1. As-Deposited Equiatomic Ru–Zr Coatings

Table 1 lists the chemical compositions of the as-deposited equiatomic Ru–Zr coatings prepared
at various substrate holder rotation speeds of 1–30 rpm. The samples were denoted as RuxZr1−x(Ry),
or Ry, where Ry indicated that the sample prepared using the substrate holder was rotated at y rpm.
All the coatings exhibited similar atomic ratios Ru/(Ru + Zr) within 0.46–0.50 after being examined
using EDS on the surface, and a thickness of 870–920 nm after being evaluated using FE-SEM in the
cross section. Oxygen content in the as-deposited coatings was 0.1–0.5 at.% because of weak oxidation
caused by the residual oxygen in the vacuum chamber.

Table 1. Chemical compositions, thickness values, laminated period, mechanical properties, and
surface roughness values of RuxZr1−x(Ry) coatings as-deposited and annealed at 600 ◦C in 1% O2–99%
Ar for 30 min.

Sample

Chemical
Composition (at.%) Atomic Ratio Thickness (nm)

Period (nm) H (GPa) E (GPa) Roughness
(nm)

Ru Zr O Ru:Zr Coating Interlayer

As-deposited

Ru0.50Zr0.50(R1) 50.2 49.6 0.2 50.3:49.7 870 90 34.8 9.1 ± 0.2 128 ± 3 1.76 ± 0.04
Ru0.49Zr0.51(R3) 48.7 50.9 0.4 48.9:51.1 900 100 12.0 10.3 ± 0.3 142 ± 3 2.51 ± 0.02
Ru0.48Zr0.52(R5) 47.9 51.8 0.3 48.0:52.0 890 100 7.2 10.5 ± 0.6 137 ± 6 3.35 ± 0.06
Ru0.47Zr0.53(R10) 47.2 52.3 0.5 47.4:52.6 900 100 3.6 11.0 ± 0.4 161 ± 4 2.62 ± 0.05
Ru0.46Zr0.54(R15) 46.3 53.4 0.3 46.4:53.6 900 90 2.4 11.1 ± 0.5 177 ± 7 4.08 ± 0.04
Ru0.47Zr0.53(R20) 46.6 53.4 0.1 46.6:53.4 920 95 1.8 11.4 ± 0.6 171 ± 6 1.25 ± 0.01
Ru0.46Zr0.54(R30) 46.4 53.6 0.1 46.4:53.6 920 90 1.2 13.1 ± 0.5 172 ± 5 1.37 ± 0.01

Annealed

Ru0.50Zr0.50(R1) 21.3 21.1 57.5 50.1:49.9 1380 110 55.2 15.5 ± 0.4 157 ± 10 5.33 ± 0.50
Ru0.49Zr0.51(R3) 21.2 21.2 59.2 48.0:52.0 1370 110 18.1 16.1 ± 0.8 158 ± 8 4.26 ± 0.10
Ru0.48Zr0.52(R5) 20.6 20.6 60.7 47.6:52.4 1390 110 11.1 17.2 ± 0.4 178 ± 9 7.02 ± 0.37
Ru0.47Zr0.53(R10) 20.3 20.3 61.5 47.3:52.7 1390 110 5.5 12.3 ± 2.1 164 ± 16 17.32 ± 0.53
Ru0.46Zr0.54(R15) 20.2 20.2 62.5 46.1:53.9 1390 110 3.7 16.4 ± 1.0 182 ± 6 7.05 ± 0.20
Ru0.47Zr0.53(R20) 20.8 20.8 61.3 46.3:53.7 1380 110 2.8 16.1 ± 0.8 160 ± 6 1.89 ± 0.00
Ru0.46Zr0.54(R30) 21.0 21.0 61.4 45.7:54.3 1390 110 1.9 17.9 ± 0.7 175 ± 6 5.90 ± 1.05

Figure 1 shows cross-sectional SEM images of the as-deposited Ru–Zr coatings, which exhibit
a columnar structure. Laminated structures stacked along the growth direction were observed
in the Ru0.50Zr0.50(R1) and Ru0.49Zr0.51(R3) coatings, for which the equilibrated laminated layer
periods were 35 and 12 nm, respectively, as determined using the thickness recorded from the SEM
observation divided by the number of laminated layers; in other words, the number of revolutions of
the substrate holder. Each equilibrated laminated layer period formed as a result of cyclical gradient
concentration deposition. The laminated structures of the Ru–Zr(Ry) coatings prepared at higher
substrate holder rotation speeds such as Ru0.47Zr0.53(R10) and Ru0.46Zr0.54(R30) exhibited narrower
equilibrated laminated layer periods that could not be evaluated through SEM images.

Figure 2 shows the XRD patterns of the as-deposited Ru–Zr(Ry) coatings. The Ru0.50Zr0.50(R1),
Ru0.49Zr0.51(R3), Ru0.48Zr0.52(R5), and Ru0.47Zr0.53(R10) coatings exhibited reflections of hexagonal Ru
[ICDD 06-0663], cubic RuZr [ICDD 18-1147], and hexagonal Zr [ICDD 05-0665] phases, implying that
these coatings consisted of laminated sublayers. The equilibrated laminated layer periods for the R5
and R10 coatings were 7.2 and 3.6 nm, respectively. By contrast, XRD patterns of the as-deposited
Ru0.46Zr0.54(R15), Ru0.47Zr0.53(R20), and Ru0.46Zr0.54(R30) coatings exhibited a RuZr phase dominant
structure. The cubic RuZr phase exhibited XRD reflections of (110), (200), and (211), which are
comparable with previous XRD results reported by Mahdouk et al. [21]. RuZr exhibited a B2 structure
(CsCl type) [21–25]. Figure 3 depicts a cross-sectional TEM image of the as-deposited Ru0.46Zr0.54(R15)
coating, which comprises a columnar structure without evident laminated sublayers; the diffraction
pattern of the selected area shows a cubic RuZr phase. The equilibrated laminated layer periods
for the as-deposited Ru0.46Zr0.54(R15), Ru0.47Zr0.53(R20), and Ru0.46Zr0.54(R30) coatings were 2.4, 1.8,
and 1.2 nm, respectively, which were too thin to construct the laminated structure. Under such
conditions, the equilibrated laminated layer periods were equal to a variation period of cyclical gradient
concentration. Because the substrate temperature was sustained at 400 ◦C during cosputtering, the
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deposited atoms formed an intermetallic RuZr compound, as observed by the XRD patterns. In our
previous study [26], B2-RuAl phase was observed for Ru–Al multilayer coatings prepared at 400 ◦C.
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3.2. Internally Oxidized Ru–Zr Coatings

Figure 4 shows the cross-sectional SEM image of the annealed Ru0.50Zr0.50(R1) coating,
which exhibited a laminated structure with an equilibrated laminated layer period of 55 nm. However,
the features of the other coatings could not be identified through SEM. Figure 5 presents the
XRD patterns of the Ru–Zr coatings after annealing in 1% O2–99% Ar at 600 ◦C for 30 min;
all patterns exhibited monoclinic ZrO2 [ICDD 32-1484], tetragonal ZrO2 [ICDD 42-1164], and Ru
phases. The Ru:Zr atomic ratios were maintained at levels similar to those of the as-deposited coatings
(Table 1), implying that no volatile oxides were formed during annealing. The O content in the
annealed coatings increased to within 58–62 at.%, indicating that extra O was trapped because the
stoichiometric ratio of ZrO2 was two, enabling partial Ru atoms to be oxidized.
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Figure 6a–c illustrates the XPS spectra of O 1s, Zr 3d, and Ru 3d core levels, respectively, at
various thickness levels of the annealed Ru0.50Zr0.50(R1) coating. The detected depth crossed six
periods of the laminated layers. The O and Zr species were identified as O2− and Zr4+, whereas
Ru was identified as Ru0 except for the spectra near the surface region (depth < 13 nm), where
the Rux+ and Ru4+ signals were split. The binding energy value of Ru0 3d5/2 (279.96 ± 0.08 eV)
was consistent with that of other coatings (279.69–280.16 eV) reported in the literature [13,16,17,27],
whereas the binding energies of Rux+ and Ru4+ 3d5/2 were 280.45 ± 0.11 and 282.57 ± 0.15 eV,
respectively. Previous studies reported 281.4–282.2 eV [26,28–30] for the binding energy of Ru4+

3d5/2. Ru of 17%–20% exhibited the Ru4+ state at a depth of 0–13 nm. Ru atoms remained in its
metallic state beneath the near surface region. Figure 6d shows the intensity variations of O2− 1s,
Ru0 3d5/2, and Zr4+ 3d5/2 signals along the depth, which indicates that the variation trend of the
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O2− 1s profile coincides with that of the Zr4+ 3d5/2 profile and is in contrast to that of the Ru0 3d5/2
profile, implying that ZrO2 is the dominant oxide. Therefore, the annealed Ru0.50Zr0.50(R1) coating
comprised alternating oxygen-rich and oxygen-deficient layers stacked along the O-diffusion direction.
The binding energy value of Zr4+ 3d5/2 deviated within 182.05–183.35 eV (Figure 6e). Moreover, this
range decreased to 182.71–183.35 eV after the data in the first laminated period had been excluded.
Previous studies have reported 182.75 [31], 182.8 [32], and 182.9 eV [33] for the binding energy value of
Zr4+ 3d5/2. The binding energy value of O2− 1s demonstrated a variation pattern similar to that of the
binding energy value of Zr4+ 3d5/2 (Figure 6e). The charging effect of analyzing insulators [34] caused
substantial deviation in binding energy. The binding energy difference ∆ = (O2− 1s − Zr4+ 3d5/2) was
347.92 ± 0.05 eV at the analyzed depth of 19.5–318.5 nm. This difference was highly consistent with
the reported difference of 348.01 and 348.2 eV, calculated using 530.76 and 182.75 eV [31] or 531.1 and
182.9 eV [33] for O2− 1s and Zr4+ 3d5/2, respectively. The periodic changes of nonoxidized metallic Ru
suggested the influence of oxygen in the Zr-deficient sublayers.
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annealing in 1% O2–99% Ar at 600 ◦C for 30 min; variation patterns of (d) intensity and (e) binding
energy of O2−1s, Zr4+3d5/2, and Ru0 3d5/2.
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Figure 7a,b shows the cross-sectional TEM images of the annealed Ru0.48Zr0.52(R5) coating; the
laminated structure was evident. Figure 7c shows a high-resolution TEM image of the near-surface
region of the annealed coating. The lattice fringes of particular areas indicated that the annealed
Ru0.48Zr0.52(R5) coating comprised ZrO2- and Ru-dominant sublayers, which linked together across
the original columnar boundaries such that the annealed Ru0.48Zr0.52(R5) coatings were laminated
and the columnar boundaries were unresolved. Figure 8a depicts the cross-sectional TEM image of
the annealed Ru0.47Zr0.53(R10) coating. The laminated sublayers were curved, because of which
the stacks of sublayers among neighboring columnar structures were disconnected. Figure 8b
shows the high-resolution TEM image of the middle region of the annealed Ru0.47Zr0.53(R10)
coating. The Ru-dominant sublayers were two-nanometers thick only, and disconnected regions
of the sublayers among neighboring columnar structures were observed. The fast variation of cyclical
gradient concentration for the R10 coatings prepared with a quick substrate holder rotation speed
resulted in the formation of grooved sublayers. For the coatings with thicker Ru sublayers, R1, R3,
and R5, the sublayers became flat. The misaligned connections were more evident in the near-surface
region (Figure 8c).
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Figure 9a shows a cross-sectional TEM image of the annealed Ru0.46Zr0.54(R30) coating, in
which the original columnar boundaries are evident, but no laminated structures were observed.
A high-resolution TEM image (Figure 9b) revealed nanocrystalline grains of ZrO2 and Ru, each
approximately five nanometers in diameter, implying that a nanocomposite structure had been
constructed. Furthermore, Ru grains, the dark regions in the image, tended to concentrate along
the columnar boundaries. Figure 10a–c illustrates the XPS spectra of the annealed Ru0.46Zr0.54(R30)
coating. The XPS spectra of Ru 3d core levels indicated the presence of minor Ru4+ (3d5/2: 282.11 eV)
in addition to Ru0 (3d5/2: 280.19 ± 0.07 eV) at the near-surface region (Figure 10b), which was
attributed to the incorporation of Ru into the ZrO2 grains because RuO2 and ZrO2 possessed a similar
tetragonal structure. Figure 10d shows that the intensities of O2− 1s, Ru0 3d5/2, and Zr4+ 3d5/2 signals
were constant along the depth due to the limit of XPS analyses. Similar binding energy trends were
observed for O2− and Zr4+ (Figure 10e). The binding energy difference ∆ = (O2− 1s − Zr4+ 3d5/2) was
348.00 ± 0.02 eV at the analyzed depth (5.7–96.9 nm). Therefore, Zr reacted with O during annealing,
and the annealed coating exhibited a nanocomposite comprising ZrO2 and Ru grains.
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3.3. Mechanical Properties of Internally Oxidized Ru–Zr Coatings

Figure 11 depicts the nanoindentation hardness variations of the as-deposited and internally
oxidized Ru–Zr coatings prepared at various substrate holder rotation speeds through sputtering.
The hardness of the as-deposited coatings increased from 9.1 to 13.1 GPa with the substrate holder
rotation speed and decreasing equilibrated laminated layer period. This hardness increase was
attributed to the decrease in crystalline size and structural variation. The nanoindentation hardness
of all Ru–Zr coatings increased after annealing in 1% O2–99% Ar at 600 ◦C for 30 min. The hardness
variation curve of the internally oxidized Ru–Zr coatings exhibited three divisions representing a
laminated structure, a disconnected laminated structure, and a nanocomposite region. The hardness
increased from 9.1, 10.3, and 10.5 to 15.5, 16.1, and 17.2 GPa for the annealed Ru0.50Zr0.50(R1),
Ru0.49Zr0.51(R3), and Ru0.48Zr0.52(R5) coatings, respectively, which exhibited equilibrated laminated
layer periods of 55, 18, and 11 nm, respectively. This result indicates that the hardness of the internally
oxidized Ru–Zr coatings, which exhibited crystalline phases identical to those identified through XRD
analysis and appropriately maintained their multilayer structures, was affected by the layer period.
These internally oxidized Ru–Zr multilayer coatings were categorized as nonisostructural oxide/metal
multilayers [1]. Dislocation could not be moved across oxide/metal interfaces because oxides are
brittle materials that deform through fracture mechanisms, limiting the hardness enhancement [2];
therefore, the hardness of oxide/metal multilayers approached that of the oxide ZrO2. Gan et al.
reported a nanoindentation hardness of 18 GPa for monoclinic ZrO2 thin films [35]. By contrast, the
hardness of the annealed Ru0.47Zr0.53(R10) coatings with an equilibrated laminated layer period of
5.6 nm exhibited a relatively low level of 12.3 GPa. Although the internally oxidized Ru0.47Zr0.53(R10)
coatings were laminated in each columnar structure, the same sublayers among neighboring columnar
structures were misaligned and disconnected, which reduced the hardness. The internally oxidized
Ru0.46Zr0.54(R15), Ru0.47Zr0.53(R20), and Ru0.46Zr0.54(R30) coatings exhibited high hardness within
16.1–17.9 GPa and were categorized as nanocrystalline composites consisting of hard ZrO2 grains and
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soft Ru grains. Figure 12 shows the variation in Young’s moduli of the as-deposited and internally
oxidized Ru–Zr coatings. The Young’s moduli increased from 130 to 140 GPa for R1, R3, and R5
coatings, to 160 GPa for R10 coatings and 170–180 GPa for R15, R20, and R30 coatings. Because the
internally oxidized Ru–Zr coatings exhibited similar phases, ZrO2 and Ru, the differences in Young’s
moduli among the annealed coatings were limited (i.e., 160–180 GPa). The surface roughness values
of the Ru–Zr coatings are shown in Table 1. When evaluating the mechanical properties of coatings,
previous studies [36–38] have reported that coatings with higher surface roughness exhibit larger
standard deviation values or lower mean values. The effect of surface roughness on the mechanical
properties of as-deposited Ru–Zr coatings was unclear. By contrast, the mechanical properties of the
annealed coatings revealed larger deviations and higher surface roughness values than did those of
the as-deposited coatings.
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4. Conclusions

Rotation speeds of the substrate holder during sputtering affected the crystalline structure and
mechanical properties of Ru–Zr coatings both in the as-deposited and internally oxidized states.
Because Ru–Zr coatings were fabricated using a cyclical gradient concentration stacked constitution,
the coatings prepared at low rotation speeds (1–10 rpm) exhibited a laminated structure in addition to
a columnar structure. The as-deposited Ru–Zr coatings exhibited nanoindentation hardness of 9.1–13.1
GPa, and the coatings prepared at higher substrate holder rotation speeds exhibited higher hardness.
After annealing in a 1% O2–99% Ar atmosphere at 600 ◦C for 30 min accompanied by the conduction of
internal oxidation, the coatings prepared at a substrate holder rotation speed of one to five revolutions
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per minute maintained a laminated structure; this structure comprised alternately stacked Ru-dominant
and ZrO2-dominant sublayers whose nanoindentation hardness increased to 15.5–17.2 GPa because of
the formation of ZrO2 phase and the maintenance of sublayer interfaces. By contrast, the annealed
coatings prepared at a rotation speed of 10 rpm maintained a similar laminated structure; however,
the stacks of sublayers among neighboring columnar structures were misaligned and disconnected,
resulting in relatively low nanoindentation hardness of 12.3 GPa. The annealed coatings prepared
at a substrate holder rotation speed of 15–30 rpm exhibited nanocomposite coatings comprising
Ru and ZrO2 grains within evident columnar boundaries and a high nanoindentation hardness of
16.1–17.9 GPa.
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